
A variant of backwards analysis applicable to
order-dependent sets∗

Evanthia Papadopoulou1 and Martin Suderland2

1 Faculty of Informatics, Università della Svizzera italiana (USI), Lugano,
Switzerland
evanthia.papadopoulou@usi.ch

2 Courant Institute, New York University (NYU), New York, NY, USA
martin.suderland@cs.nyu.edu

Abstract
Backwards analysis is a simple, yet powerful technique used in analyzing the expected performance of
randomized algorithms: a randomized incremental algorithm is seen as if it were running backwards in
time, from output to input [Seidel 1993]. To be applicable, a key requirement is that the algorithm’s
output is independent of the randomization order. This needs to hold even for intermediate structures,
assuming the same set of elements have been processed. In this note we illustrate a variant, which
can be applied to algorithms with order-dependent output. As an example, we use the randomized
incremental triangulation of a point set in Rd, a generalization of Quicksort in higher dimensions,
which has been cited by Seidel as a negative example, where backwards analysis could not be applied.
We prove that the expected running time of this algorithm is Opn log nq. This variant of backwards
analysis was introduced by [Junginger and Papadopoulou, DCG 2023].

1 Introduction

Backwards analysis was popularized in Computational Geometry by Seidel [7]. It is a simple,
yet powerful technique to analyze the expected performance of a randomized algorithm.
Backwards analysis is based on the observation that the cost of the last step of an algorithm
can be often expressed as a function of the complexity of the final output; and thus, the
algorithm can be analyzed as if it were running backwards in time, from output to input [7].

In computational geometry, the first algorithm analyzed by backwards analysis was the
construction of the Delaunay triangulation of a set of points in convex position in the plane [2].
Since then, backwards analysis has been applied to a plethora of problems, and has become a
standard trick in analyzing the expected performance of randomized algorithms, see e.g., [1]
and references therein. This includes a simplified analysis of the influential randomized
incremental construction paradigm, introduced by Clarkson and Shor [3], and a particularly
simple approach to analyze Quicksort, both presented by Seidel in [7]. A key requirement
to apply backwards analysis, however, is that the algorithm’s output is independent of the
randomization order. To illustrate this fact, Seidel pointed out a negative example, where
backwards analysis could not be applied. This is the randomized incremental triangulation of
a point set in Rd, which generalizes Quicksort in higher dimensions. Seidel concluded the
section with an open problem: “It remains to be seen whether for fixed d ą 1 the expected
running time of this triangulation algorithm is indeed Opn log nq”.

∗ This research was supported by the Swiss National Science Foundation, Projects 200021E_201356
(Evanthia Papadopoulou) and P500PT_206736/1 (Martin Suderland).

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



60:2 A variant of backwards analysis for order-dependent sets

Contribution. In this paper we advertise a new variant of backwards analysis, which indeed
can prove the aforementioned Opn log nq time complexity for the randomized incremental
triangulation algorithm. Problems where the final output or intermediate structures depend
on the randomization order can benefit from this approach. It was first described in [5]
for analyzing a randomized incremental algorithm to perform deletion in abstract Voronoi
diagrams in linear time The intermediate Voronoi-like diagrams computed by this algorithm
were order-dependent and thus ordinary backwards analysis could not be correctly applied1.
In this paper we present another example where this new variant of backwards analysis can
analyse the running time of a randomized incremental algorithm while ordinary backwards
analysis cannot be applied.

2 Backwards analysis

Preliminaries Given n P N, we write rns for t1, 2, ..., nu. Let Sn be the set of all permutations
of length n. We use the one-line notation of permutations.

For a permutation σ “ pσ1, σ2..., σnq and index 1 ď i ď n let σpiq “ σi. Further, we
define the shift permutation σpiq “ pσ1, ..., σi´1, σi`1, ..., σn, σiq, which moves the i-th element
to the end.

The standard backwards analysis is based on the following idea: “Analyze an algorithm as
if it were running backwards in time, from output to input. This is based on the observation
that often the cost of the last step of an algorithm can be expressed as a function of the
complexity of the final product output of the algorithm” [7].

The expected running time of a randomized algorithm is computed step by step. We
assume that the algorithm is randomized over a set of n elements. Denote by Ti the running
time expended for the i-th step and by Oi the computed structure at step 1 ď i ď n. Then
Tipσq, the time required for the i-th step for permutation σ, is getting bounded by a function
of the complexity of the output object Oipσq).

Considering that each permutation is equally likely, we write for the expected time EpTiq:

EpTiq “

ř

σPSi
Tipσq

i! “

ři
j“1

ř

σPSi

σpiq“j

Tipσq

i! .

Because the standard backwards analysis is used for order-independent structures, the
time needed for the i-th step does not depend on the entire permutation σ but only on the
last processed element, i.e. σpiq “ j.

The variant of backwards analysis exploits the key idea of looking at groups of similar
permutations, where the order of elements is almost the same. A group has one representative
permutation σ and consists of Gσ “ tσp1q, σp2q, ..., σpnqu, where σpnq “ σ.

Essentially each group has one representative from which all other permutations can be
derived, by moving one element to the end of the one-line representation, see Fig. 1. Let
Rn Ă Sn be a set of pn ´ 1q! many representative permutations such that the groups of
representatives is a partition of all permutations of length n, i.e.

Ť

σPRn
Gσ “ Sn.

1 The preliminary version of this paper [4] had originally assumed otherwise, after expressing the time
complexity of each step as a function of the output structure. The new variant in [5] successfully
completed the analysis.



E. Papadopoulou and M. Suderland 60:3

Gσ “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

σ “ pσ1, σ2, σ3, ..., σn´1, σnq “ σpnq

σp1q
“ pσ2, σ3, ..., σn´1, σn, σ1q

σp2q
“ pσ1, σ3, ..., σn´1, σn, σ2q

...
σpiq

“ pσ1, ..., σi´1, σi`1..., σn, σiq

...
σpn´1q

“ pσ1, σ2, ..., σn´2, σn, σn´1q

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

Figure 1 The group Gσ for representative σ “ pσ1, σ2, σ3, ..., σn´1, σnq.

For brevity we write TipGσq “
ř

ρPGσ
Tipρq. Thus, for the expected time needed for step

i we can derive:

EpTiq “

ř

σPSi
Tipσq

i! “

ř

σPRi
TipGσq

i! .

The existence of such a set Rn, for all n P N, was shown by Levenshtein [6] for problems
that were not related to backwards analysis or this variant, and this was originally pointed
out to us by Stefan Felsner. For n “ 4, the set

tp1, 2, 3, 4q, p2, 1, 4, 3q, p3, 1, 4, 2q, p3, 2, 4, 1q, p4, 1, 3, 2q, p4, 2, 3, 1qu

can be chosen as R4. Only the existence of a set Rn is important for the variant to work
without having to know a particular representation.

Why choose this grouping? The grouping is chosen with the following ideas in mind.

Each element appears exactly once as last element: this is important for computing the
overall expected running time, where each element should appear as last the same number
of times.
The grouping minimizes the number of inversions between the base permutation σ and
the permutations within its group Gσ.

Among all groupings satisfying the first property, the one that we chose with Gσ induces
the least number of inversions. Minimizing inversions is desirable because it can drastically
simplify the derivation compared to other alternative groupings that may satisfy the first
item, such as the one generated by swapping elements σpiq and σpnq.

To evaluate TipGσq we try to bound each Tipσ
pjqq by a portion of the output structure

Oipσq for the base permutation σ of the group. We thus evaluate TipGσq as a function
involving Oipσq. A minimum number of inversions between σpjq and σ is hense essential for
simplifying this task. For our triangulation example this is done in Lemma 3.2.

3 Example: Triangulation algorithm

Given a set of n points P “ tp1, p2, ..., pnu Ă Rd for some d P N within a d-simplex ∆. We
are recalling a higher-dimensional triangulation algorithm of P within ∆, see [7]. Initially,
the triangulation T consists of just one simplex ∆. The points are getting inserted one-by-one
while we keep the triangulation updated. If point pi is inserted we are looking for the simplex
τ of T, which contains pi. We replace this simplex τ by the d ` 1 many simplices, which
have pi as corner each and which partition τ . An overview of the algorithm is given in
Algorithm 1 together with an example in Fig. 2. The randomized version is achieved by

EuroCG’24



60:4 A variant of backwards analysis for order-dependent sets

Algorithm 1: Triangulating a point set
Input : Set of n points P “ tp1, p2, ..., pnu within simplex ∆ Ă Rd

Output : Triangulation T of P and ∆
1 T Ð ∆;
2 for i “ 1 Ñ n do
3 Remove simplex τ , which contains pi, from T;
4 Partition τ into d ` 1 simplices, each having pi as corner;
5 Add the new d ` 1 simplices to T;
6 return T;

p1

p3

p2

p4

Figure 2 Triangulation of Algorithm 1 for the insertion order σ “ p1, 2, 3, 4q.

initially permuting the set of points P by some random permutation σ P Sn, i.e. processing
the points in the order pσp1q, pσp2q, ..., pσpnq.

At any time during the algorithm the following information is kept:

1⃝ for each simplex we know the points of P , which are contained in it, and
2⃝ for each point p P P we know the simplex containing p.

Expected time complexity In this part we show how to apply the variant of the backwards
analysis to derive a bound on the time complexity for the triangulation algorithm. For
simplicity we prove the following bound for the 2-dimensional version, even though the
analysis can easily be generalized to higher dimensions.

§ Theorem 3.1. For any fixed d, Algorithm 1 has Opn log nq expected time complexity.

The expected running time of the i-th step is dominated by updating the information
in Items 1⃝ and 2⃝, i.e. rebucketing the remaining points of P which were contained in the
deleted triangle τ . These are at most n ´ i many points, but we show that this number
is much less in expectation. For 0 ď j ď i ď n and permutation σ P Sn denote by Ti

σ

the partial triangulation derived by only processing the first i many points specified by σ.
Moreover, let jAi

σ be the union of triangles of Ti
σ, which are incident to point pσpjq. Finally,

if i ă n we write ∆i
σ for the triangle of Ti

σ, which contains point pσpnq.
The main idea for the variant of the backwards analysis is to bound the time complexity

needed to process an entire group Gσ by some features of the output derived from a single
permutation σ. In the triangulation algorithm case, we are putting the points, which need
rebucketing in the i-th step for some permutation σpjq for some j P rns, in relation with the
output triangulation Ti

σ corresponding to permutation σ.



E. Papadopoulou and M. Suderland 60:5

p1

p3

p2

p4

p1

p3

p2

p4

Figure 3 (Left) Partial triangulation T 3
σ for insertion order σ “ p2, 1, 4, 3q and orange highlighted

area 2A3
σ and (Right) partial triangulation T 2

σp2q for insertion order σp2q
“ p2, 4, 3, 1q with gray

highlighted triangle ∆2
σp2q . Note the subset relation between the orange and gray highlighted sets,

which are proven in Lemma 3.2.

§ Lemma 3.2. For all 1 ď j ď i ď n and any permutation σ P Sn it holds: ∆i´1
σpjq Ă

jAi
σ.

Proof. The proof works by induction over i. The base case i “ j holds because ∆j´1
σpjq “

jAj
σ.

The first difference between σpjq and σ occurs at the j-th position. Thus the triangle in Tj´1
σpjq ,

which contains point pσpjq, equals the union of three triangles in Tj
σ incident to pσpjq.

Let us therefore assume that the induction hypothesis ∆i´1
σpjq Ă

jAi
σ holds for some

i P tj, j ` 1, ..., n ´ 1u. We want to prove that also ∆i
σpjq Ă

jAi`1
σ .

If pσpi`1q R
jAi

σ then we have ∆i´1
σpjq “ ∆i

σpjq and jAi
σ “

jAi`1
σ and thus the claim

∆i
σpjq Ă

jAi`1
σ trivially follows. For the rest of the proof we assume the opposite, i.e.

pσpi`1q P
jAi

σ. See Fig. 4 for an illustration of the proof. Consider the ray from pσpjq to
pσpi`1q and denote q the point of intersection with the boundary of jAi

σ. In counterclockwise
order around the boundary of jAi

σ we call a (resp. b) the vertex directly after (resp. before)
q. Let ra (resp. rb) be the ray from pσpi`1q to a (resp. b). Finally, we call W the wedge
bounded by rb and ra, which does not contain the segment pσpjqpσpi`1q. Note that none of
the points P X

jAi
σ lies in the interior of W . By construction, we have that jAi`1

σ “
jAi

σzW .
On the other hand, the boundary of the triangle ∆i

σpjq intersects the segment pσpjqpσpi`1q, or
at least passes through pσpi`1q; at the same time it contains the point pσpjq and none of its
endpoints lies in W . Therefore, ∆i

σpjq X W “ H.
Combining the induction hypothesis ∆i´1

σpjq Ă
jAi

σ with the properties ∆i
σpjq Ă ∆i´1

σpjq ,
∆i

σpjq X W “ H, and jAi`1
σ “

jAi
σzW , we can indeed verify that also ∆i

σpjq Ă
jAi`1

σ holds:

∆i
σpjq Ă ∆i´1

σpjq Ă
jAi

σ

ñ ∆i
σpjq zW Ă

jAi
σzW

ñ ∆i
σpjq Ă

jAi`1
σ

đ

§ Corollary 3.3. In the i-th insertion step of Algorithm 1, each of the n ´ i remaining points
has to be rebucketed for at most 3 permutations within a group Gσ for any σ P Si.

Proof. Due to Lemma 3.2 we have the property ∆i´1
σpjq Ă

jAi
σ holding true for any j P ris

and permutation σ P Si. The term ∆i´1
σpjq describes exactly the region which has to be

re-partitioned in the i-th step of the triangulation algorithm if the permutation σpjq is chosen,
i.e. any point of P falling into that region would have to be rebucketed. Thus, the region
which needs to be repartitioned for permutation σpjq is a subset of all triangles in Ti

σ, which
are incident to point pσpjq. For a point p P P let τ be the triangle of Ti

σ containing p. Then p

EuroCG’24



60:6 A variant of backwards analysis for order-dependent sets

(a)
p1

p3

p2

p4

rarb ab
q

(b)
p1

p3

p2

p4

rarb ab
q

(c)
p1

p3

p2

p4

rarb ab
q

(d)
p1

p3

p2

p4

rarb ab
q

Figure 4 For insertion order σ “ p2, 1, 4, 3q we show: (a) T 3
σ with highlighted 2A3

σ (b) T 2
σp2q with

highlighted ∆2
σp2q (c) T 4

σ with highlighted 2A4
σ (d) T 3

σp2q with highlighted ∆3
σp2q . From ∆2

σp2q Ă
2A3

σ

we derive that also ∆3
σp2q Ă

2A4
σ.

only needs to be rebucketed for permutations of Gσ, in which one of τ ’s corners is processed
last. Thus p has to be rebucketed at most three times in total for the entire group Gσ; at
most once for each permutation in Gσ with one of τ ’s corners being processed last. đ

The proof of Theorem 3.1 follows immediately from the previous corollary:

EpT pnqq “

ř

σPRi
TipGσq

i! “ O

ˆ

ř

σPRi
3pn ´ iq

i!

˙

“ O

˜

n
ÿ

i“1

n

i

¸

“ Opn log nq.

4 Conclusion

The first example using this variant of backwards analysis appeared in the context of abstract
Voronoi-like diagrams. These were introduced in [5] serving as intermediate structures in a
randomized incremental algorithm to perform site-deletion in an abstract Voronoi diagram
in expected linear time. These intermediate structures depended on the permutation order
of the randomized algorithm, while the final output did not.

The triangulation algorithm, presented in this abstract, is a very simple algorithm,
which we mostly used to illustrate this new variant of backwards analysis. We believe that
this variant can be of interest to many other problems, when analyzing the expected time
complexity of randomized algorithms for order-dependent structures.

References
1 Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry. Cambridge University

Press, New York, NY, USA, 1998.
2 L. Paul Chew. Building Voronoi diagrams for convex polygons in linear expected time.

Technical report, Dartmouth College, Hanover, USA, 1990.
3 Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in computational

geometry, II. Discrete & Computational Geometry, 4:387–421, 1989.
4 Kolja Junginger and Evanthia Papadopoulou. Deletion in abstract Voronoi diagrams in

expected linear time. In 34th International Symposium on Computational Geometry (SoCG),
volume 99 of LIPIcs, pages 50:1–50:14, 2018.



E. Papadopoulou and M. Suderland 60:7

5 Kolja Junginger and Evanthia Papadopoulou. Deletion in abstract Voronoi diagrams in
expected linear time and related problems. Discrete & Computational Geometry, 69(4):1040–
1078, 2023.

6 Vladimir I Levenshtein. On perfect codes in deletion and insertion metric. Discrete
Mathematics and Applications, 2(3):241–258, 1992.

7 Raimund Seidel. Backwards analysis of randomized geometric algorithms. In New trends in
discrete and computational geometry, pages 37–67. Springer, 1993.

EuroCG’24


	Introduction
	Backwards analysis
	Example: Triangulation algorithm
	Conclusion

