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Abstract
A non-crossing spanning tree of a set of points in the plane is a spanning tree whose edges pairwise
do not cross. Avis and Fukuda in 1996 proved that there always exists a flip sequence of length at
most 2n − 4 between any pair of non-crossing spanning trees (where n denotes the number of points).
Two recent results of Aichholzer et al. and Bousquet et al. improved the upper bound on the length
of a flip sequence to 2n − Ω(log n) and 2n − Ω(

√
n) when the points are in convex position.

We pursue the investigation of the convex case by improving the upper bound by a linear factor
for the first time in 30 years. We prove that there always exists a flip sequence between any pair
of non-crossing spanning trees T1, T2 of length at most cn where c ≈ 1.95. Our result is actually
stronger since we prove that, for any two trees T1, T2, there exists a flip sequence from T1 to T2 of
length at most c|T1 \ T2|.

We give a new lower bound in terms of the symmetric difference by proving that there exists a
pair of trees T1, T2 such that a minimal flip sequence has length 5

3 |T1 \ T2|. We generalize this lower
bound construction to non-crossing flips (where we close the gap between upper and lower bounds)
and rotations.

Related Version arXiv:2310.18518

1 Introduction

Let C be a set of n points in the plane in convex position. A spanning tree T on the set of
points C is a subset of edges that forms a connected acyclic graph on C. A spanning tree T on
C is non-crossing if every pair of edges of T (represented by the straight line interval between
their endpoints) are pairwise non-crossing. Let us denote by S(C) the set of all non-crossing
spanning trees on the point set C. Let T ∈ S(C). A flip on T consists of removing an edge e

from T and adding another edge f so that the resulting graph (T ∪ f) \ e is also in S(C). A
flip sequence is a sequence of non-crossing spanning trees such that consecutive spanning
trees in the sequence differ by exactly one flip.

Avis and Fukuda [2] proved that there always exists a flip sequence between any pair of
non-crossing spanning trees of length at most 2n − 4 by showing that there is a star S on C

such that T1 and T2 can be turned into S with at most n − 2 flips. In fact, they showed that
this flip sequence exists even if the point set C is in general position.

Given two spanning trees T1, T2, the symmetric difference between T1 and T2 is denoted
by ∆(T1, T2) = (T1 \ T2) ∪ (T2 \ T1). We denote by δ(T1, T2) = |∆(T1, T2)|/2 the number of
edges in T1 and not in T2, which is a trivial lower bound on the length of a flip sequence from
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T1 to T2. The set of spanning trees of a graph G forms a matroid, hence, for any possible
pair of spanning trees T1, T2, there is a (non geometric) flip sequence that transforms T1 into
T2 in exactly δ(T1, T2) flips. However, more flips are needed for non-crossing spanning trees.
Hernando et al. [5] provided for every n, two non-crossing spanning trees T1, T2 on a convex
set of n points whose minimal flip sequence needs 3

2 n − 5 flips.
During 30 years, no improvement of the lower or upper bound has been obtained until

a recent result of Aichholzer et al. [1]. They showed that the upper bound of Avis and
Fukuda can be improved when points are in convex position by proving that there exists a
flip sequence between any pair of non-crossing spanning trees of length at most 2n − Ω(log n).
Their result has been further improved by Bousquet et al. [4] who proved that 2n − Ω(

√
n)

flips are enough. However, until now, there does not exist any general proof that there always
exists a flip sequence of length at most (2 − ϵ)n for some ϵ > 0. On the other side, Bousquet
et al. [4] conjectured that the lower bound of Hernando et al. [5] is essentially tight:

▶ Conjecture 1.1. Let C be a set of n points in convex position. There exists a flip sequence
between any pair of non-crossing spanning trees of length at most 3

2 n.

One can easily prove that there exists a flip sequence of length at most 2δ(T1, T2) between
any pair of non-crossing spanning trees in convex position. The improvement of Aichholzer et
al. [1] also improves this upper bound by Ω(log(δ(T1, T2))). Since in the example of Hernando
et al. the intersection is reduced to two edges, one can wonder if Conjecture 1.1 can be
extended to the symmetric difference, namely:

▶ Conjecture 1.2. Let C be a set of n points in convex position. There exists a flip sequence
between any pair of non-crossing spanning trees T1, T2 of length at most 3

2 δ(T1, T2).

Contributions Our main results first consist in (i) improving the best known upper bound
to approximatively 1.95 · δ(T1, T2), breaking the linear factor 2 of the threshold on the length
of a minimal flip sequence (even in terms of the symmetric difference), and (ii) disproving
Conjecture 1.2 by proving that the best upper bound factor we can hope for is 5

3 . We complete
these results by providing improved upper and lower bounds on the length of transformations
in other models of flips, namely non-crossing flips and rotations. In particular, we close the
gap between upper and lower bounds in the case of non-crossing flips.

Due to space constraints, we only sketch some proofs of the main results, and the full
proofs can be found in a recent preprint [3].

2 Definitions

Let C be a set of points in convex position and T be a non-crossing spanning tree on C. We
say two points of a convex set C are consecutive if they appear consecutively on the convex
hull of C. A border edge (for T ) is an edge between consecutive points. An edge of T which
is not a border edge is called a chord. A hole of T is a pair of consecutive points that is not
a border edge. We will say that we fill a hole when we apply a flip where the created edge
joins the pair of points of the hole.

One can remark that, for each chord e of T , the line containing e splits the convex hull of
C in two parts. A side of a chord e is the subset of points of C contained in one of the two
closed half-planes defined by the line containing the two endpoints of e (see Figure 1 for an
illustration). A side of T is a side of a chord e for some e ∈ T . We say an edge (or a hole) is
in a side A if both its endpoints are in A.
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In the following, for every side A of a chord, we will denote by kA the number of holes in
A, which is also the number of chords of T in A. Since T is acyclic, we also have kA > 0.
Note that each chord e of T defines two sides A and B whose intersection is exactly the
endpoints of e. Moreover, T has exactly kA + kB holes.

h1

h2

h3e

v1

v4

v3

v2v6

v5

Figure 1 The side A (in grey) of the chord e is is the subset of vertex {v1, v4, v5, v6} and the
other side B (in red) of e is {v1, v4, v2, v3}. The edges of T in A are the edges v5v6, v1v5 and v1v4.
The holes h1 and h2 of T are in A and h3 is in B. So we have kA = 2 and kB = 1.

Let A be a side of a chord e of T . We define the degree of a side A in a tree T ′ as the
number of chords of T ′ crossing e plus twice the number of chords of T ′ with both endpoints
in A (see Figure 2 for an illustration). Note that, if T ′ has no chords with both endpoints in
A, then the degree of A in T ′ is equal to the number of chords of T ′ crossing e.

v4

v1

v2

v3

v5

v6v7

Figure 2 The side A of the edge v1v4 highlighted in grey contains v1, v2, v3, v4 and v5. The
degree of A in the red tree is equal to 4 : v4v6 and v4v7 cross v1v5, and v1v3 has both endpoints in
A. Note that v1v2 is not a chord, thus it does not increase the degree of A in T ′.

3 Upper bound

The first result of the paper is to improve the best upper bound of [4] by a linear factor by
proving that the following holds:

▶ Theorem 3.1. Let C be a set of n points in convex position. There exists a flip sequence
between any pair of non-crossing spanning trees T1 and T2 of length at most c · δ(T1, T2) with
c = 1

12 (22 +
√

2) ≈ 1.95.
In particular, there exists a flip sequence of length at most cn ≈ 1.95n between any pair of
non-crossing spanning trees.

EuroCG’24
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We prove Theorem 3.1 by induction. Let TI , TF be two trees on a convex point set C, and
assume that Theorem 3.1 holds for every pair of trees T ′

I and T ′
F , which are either defined on

the same set of points and δ(T ′
I , T ′

F ) < δ(TI , TF ) or on a smaller set of points. The goal to
prove Theorem 3.1 is to match pairs of chords in TI , TF using few flips, i.e. less than c flips
per pair of chords matched. Indeed, if we manage to apply at most ck flips on TI and TF to
obtain T ′

I and T ′
F with k more edges in common, we get δ(T ′

I , T ′
F ) = δ(TI , TF ) − k and we

can conclude by induction.

Basic properties of TI and TF Since common chords and non-common border edges can
be trivially reduced, we first observe that, if TI , TF share a common chord or do not have
the same border edges, we can conclude by induction. Hence, we may assume for the rest of
the proof that TI and TF form a nice pair of trees, i.e. the two trees have no common chord
and have the same border edges. Note that for a nice pair of trees, every pair of consecutive
points is either a common hole or a common border edge. Thus, for a nice pair of trees
(T, T ′), we will refer to a hole of T or T ′ simply as a hole.

The rest of the proof describes a transformation from the nice pair (TI , TF ) to a pair
(T ∗

I , T ∗
F ) which matches k pairs of chords of TI and TF using at most c · k flips. The main

steps of the proof are illustrated in Figure 3. We define a τ -extremal side, which is a side
which always exists in a nice pair of trees (and hence which we can also find in TI and TF ).
We then transform a τ -extremal side to what we call a very good side without using too
many flips. At the end we observe that in very good sides, we can match the kA chords in the
side using at most 5

3 kA flips in total. Analysing the steps then gives us the desired bound.

τ -extremal side

fill bad holes

good side

remove extra
crossing chords

very good side

match remaining
chords

matched side

Figure 3 The main steps in the proof of Theorem 3.1. The goal is to match the chords in a side
using few steps. (We define τ -extremal, bad, good and very good later).

τ -extremal side Our process starts from a τ -extremal side S of TI . Let T, T ′ be a nice pair
of trees and τ > 2. We say a side A of a chord e of T is τ -extremal for a tree T ′ if the degree
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of A in T ′ is at most τ · kA, and, for every side A′ ⊊ A of T ′, the degree of A′ in T is more
than τ · kA′ . To prove that such a side always exists in TI or TF (say TI by symmetry), we
start from an arbitrary side and use an iterative greedy argument until we get a τ -extremal
side.

The next step is to refine S until we can show it can be matched using few flips. This
refinement will start by removing bad holes. A hole h in a side A of T is bad w.r.t T ′ if it is
also in a side B ⊊ A of T ′, see Figure 4. For our process to yield the desired number of flips,
we first need to show that S contains few bad holes. In particular, we prove that S contains
m ⩽ 2

τ kS bad holes w.r.t. TF .

e′

e

h

h′

Figure 4 Let T1 be the black tree and T2 the red tree. The hole h is a bad hole of the side A (in
grey) w.r.t T2 since it is inside the side of e′ included in A.

Refining a τ -extremal side We describe in this paragraph how we refine S into a very good
side. Let T and T ′ be a pair of trees. A good side A of T with respect to T ′ is a side of T

containing no chord of T ′ (see Figure 5 for an illustration). A very good side A of T (w.r.t.
T ′) is a good side w.r.t T ′ whose degree in T ′ is at most kA.

e

h

h′

Figure 5 Let T1 be the black tree and T2 the red tree. The side A (in grey) of e is a good side of
T1 w.r.t. T2 since there is no chord of T2 inside A, but A is not very good w.r.t T2 since the degree
of A in T2 is 3 > kA = 2.

As we already said, we first obtain a good side from S by filling its bad holes with chords
of TI and TF that have both endpoints in S, therefore we perform 2m flips to match m pairs
of chords. In the resulting pair of trees (T ′

I , T ′
F ), the size of S is now k′

S = kS − m and its
degree is dS − 2m with dS the degree of S in TF .

Observe that S being good but not very good simply means that there are too many
chords crossing the unique chord e on the boundary of S. Hence, we now remove these
dS − 2m − k′

S extra chords crossing e by matching them with a chord of T ′
I on a hole which

is not in S.
To refine S from a good side into a very good side, we use 2(dS −2m−k′

S) = 2(dS −2m−k′
S)

flips to match dS − 2m − k′
S = dS − 2m − k′

S pairs of chords.

EuroCG’24
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Very good side Now that S is a very good side, we can match the k′
S chords in S with few

flips using the following:

▶ Lemma 3.2. Let T1 and T2 be a nice pair of trees, e be a chord of T1, and A be a very
good side of e (w.r.t. T2). Then, we can match the kA chords of T1 in A with chords of T2
using at most 5

3 kA flips in total.

Bounding the number of flips Let (T ∗
I , T ∗

F ) be the pair of trees obtained after refining S

then applying Lemma 3.2 to it. We are now ready to conclude the proof of Theorem 3.1.
Our transformation is as follows: first, we transform (TI , TF ) into (T ∗

I , T ∗
F ) by matching

m+(dS −2m−k′
S)+k′

S = dS −m pairs using 2m+2(dS −2m−k′
S)+ 5

3 k′
S = 2dS −kS/3−5m/3

flips. Then, we apply induction on (T ∗
I , T ∗

F ) and get a transformation from T ∗
I to T ∗

F using
at most cδ(T ∗

I , T ∗
F ) flips.

In order to conclude the proof of Theorem 3.1, we need to make sure that we save enough
using Lemma 3.2 to compensate for the expensive refinement process. More precisely, we
need that the total number of flips we used to get (T ∗

I , T ∗
F ), namely 2dS − kS/3 − 5m/3, is

at most c(dS − m). Using that dS ⩽ τkS and that m ⩽ 2
τ kS (since S is τ -extremal), this

boils down to an inequality implying only c and τ , which is satisfied when plugging in the
values τ = 2 +

√
2 and c = 1

12 (22 +
√

2).

4 Lower bounds

Our second set of results consists in proving stronger lower bounds in terms of the symmetric
difference of the two trees. In particular, we disprove Conjecture 1.2:

▶ Theorem 4.1. For every k > 0, there exist two trees Tk and T ′
k such that δ(Tk, T ′

k) = 3k

and every flip sequence between Tk and T ′
k has length at least 5k = 5

3 δ(Tk, T ′
k).

The proof of Theorem 4.1 consists in first providing two spanning trees T1, T ′
1 on 8 vertices

for which δ(T1, T ′
1) = 3 and such that the minimal flip sequence between T1 and T ′

1 needs 5
flips (see Figure 6). We can prove that if we glue many instances of (T1, T ′

1) appropriately,
we can obtain a similar example with arbitrarily large value of k.

v5

v2

v6

v1

v8

v3

v7

v4 vi+1
6vi+1

5vi
7 = vi+1

2vi
4vi

3

vi
5 vi

6 vi
8 = vi+1

1 vi+1
3 vi+1

4

vi
1

vi
2 vi+1

7

vi+1
8

Figure 6 On the left, the tree T1 in black and the tree T ′
1 in red. On the right, an example of

two copies of T1 and T ′
1 glued together.

We have not found any example for trees T1, T2 for which a flip sequence of length more
than 5

3 δ(T1, T2) is necessary. We therefore leave the following as an open problem:
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▶ Question 4.2. Let C be a set of points in convex position and T1, T2 two non-crossing
spanning trees on C. Does there always exist a flip sequence between T1 and T2 of length at
most 5

3 δ(T1, T2)?
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