
A Note on Mixed Linear Layouts of Planar Graphs
Michael Kaufmann1 and Maria Eleni Pavlidi2

1 Department of Computer Science, University of Tübingen, Germany
michael.kaufmann@uni-tuebingen.de

2 Department of Mathematics, University of Ioannina, Greece
m.e.pavlidi@uoi.gr

Abstract
In this work, we study mixed linear layouts of graphs. Our motivation stems from a result by
Pupyrev [15], who disproved a conjecture by Heath and Rosenberg [14] by showing the existence of
planar graphs not admitting layouts with one stack and one queue. Since stacks and queues form
special cases of the recently-introduced riques, we strengthen this result by showing that there exist
planar graphs that do not admit a layout with one rique and either one stack or one queue.

1 Introduction

Linear layouts of graphs [12] have a long tradition of research, e.g., in Algorithm Design,
Combinatorics, Graph Theory and Graph Drawing. The ones that we consider in this paper
are defined using an associated data structure [3, 4, 9, 14]. The task is to find a so-called
linear order of the vertices of the input graph and a partition of its edges into as few parts
(called pages) as possible, such that the edges of each part can be processed by the given data
structure. Namely, assuming that the vertices are left-to-right ordered according to their
linear order, each edge is added to the data structure when its left endpoint is encountered
in the order and is removed from the data structure when its right endpoint is encountered.

In this context, the most prominent types of linear layouts are the stack [9, 17] and
the queue layouts [11, 14] that are defined using the stack and the queue data structures,
respectively. A page of the former is called stack and does not allow two crossing edges, while
a page of the latter is called queue and does not allow two nesting edges; see Fig. 2. Both
these layouts form special cases of the so-called deque layouts [3], which are defined using
the double-ended queue (or deque, for short) data structure. It is well-known that a page of a
deque layout, called deque, has the following properties: the union of (i) two stacks, or (ii)
two queues or (iii) a stack and a queue forms a deque [3]. In particular, (i) and (ii) imply
that the deque-number (i.e., the minimum required number of deques over all deque layouts)
of a graph cannot be more than half its stack- or its queue-number (i.e., the corresponding
required numbers of stacks and queues, respectively).

In this work, we focus on planar input graphs and mixed linear layouts consisting of two
pages; one that is either a stack or a queue, and one that is rique [4]; such a page is defined
by the restricted-input double-ended queue (or rique, for short) data structure; refer, e.g.,
to Fig. 1 for a sample linear layout consisting of a single rique and to Section 2 for formal
definitions. The rique data structure forms a special case of the deque data structure as
follows. While in a deque insertions and removals occur both at the head and at the tail
of it, in a rique insertions occur only at the head (removals occur both at the head and at
the tail). Our work is motivated by a result by Pupyrev [15], who disproved a conjecture by
Heath and Rosenberg [14] by showing the existence of planar graphs not admitting mixed
layouts with one stack and one queue. Here, we show that there exist planar graphs that do
not admit mixed layouts with one rique and either one stack or one queue. In other words,
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Figure 1 Illustration of: (a) the Goldner-Harary graph without the edge connecting its topmost
vertex with its bottommost one, and (b) a rique layout of it with a single rique, in which the green
edges are head-head, while the blue ones are head-tail.

with respect to the previously mentioned result by Pupyrev [15], our result implies that
substituting one of the pages by a rique is still not enough for a positive answer to Heath
and Rosenberg’s conjecture.

Our work is also related to the rique-number (i.e., the minimum required number of riques
over all rique layouts) of planar graphs. More precisely, since the stack-number of planar
graphs is 4 [7, 17], it follows that the deque-number of planar graphs is 2, as also observed by
Auer et al. [3]. So, it is natural to ask whether the rique-number of planar graphs is also 2;
the obvious upper bound is 4, since a stack page is trivially a rique [4]. Unfortunately, we
have not managed to completely settle this question, as our result does not close the gap
on the rique-number of planar graphs (this ranges between 2 and 4, as noted). It forms,
however, an indication that it might be not 2 (as observed above, both stacks and queues
form special cases of riques).

2 Preliminaries

A vertex order ≺ of a graph G is a total order of its vertices, such that for any two vertices
u and v of G, we write u ≺ v if and only if u precedes v in the order. Let F be a set
of k ≥ 2 pairwise independent edges (ui, vi) of G, that is, F = {(ui, vi); i = 1, . . . , k}. If
u1 ≺ · · · ≺ uk ≺ vk ≺ · · · ≺ v1, then the edges of F form a k-rainbow, while if u1 ≺ · · · ≺
uk ≺ v1 ≺ · · · ≺ vk, then the edges of F form a k-twist; see Fig. 2. Two edges that form
a 2-twist (2-rainbow) are commonly referred to as crossing (nested). A stack is a set of
pairwise non-crossing edges in ≺, while a queue is a set of pairwise non-nested edges in ≺.

u1 u2 u3 v1 v2 v3

(a)

u1 u2 u3 v3 v2 v1

(b)

u1 u2 v2 v1

(c)

Figure 2 Illustration of: (a) a 3-twist (i.e., three pairwise crossing edges), (b) a 3-rainbow (i.e.,
three pairwise nesting edges), and (c) a rique page with two edges; a head-head and a head-tail.

A rique is a set of edges that does not contain three edges (a, a′), (b, b′) and (c, c′) such
that a ≺ b ≺ c ≺ b′ ≺ {a′, c′} in ≺ [4]. A more intuitive definition of a rique is the following.
Assume that the vertices of the input graph are arranged on a horizontal line ℓ from left to
right according to ≺ (say, w.l.o.g., equidistantly). Then, each edge (u, v) with u ≺ v can
be represented either (i) as a semi-circle that is completely above ℓ connecting u and v, or
(ii) as two semi-circles on opposite sides of ℓ, one that starts at u, lies above ℓ and ends at a
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point p of ℓ to the right of the last vertex of ≺ and one that starts at p, lies below ℓ and
ends at v. Then, a rique is a set of edges each of which can be represented with one of the
two types (i) or (ii) that avoids crossings (such a representation is called cylindric in [3, 4]);
see Fig. 2c. A type-(i) edge is called head-head, while a type-(ii) edge is called head-tail1;
refer to the green and blue edges of Fig. 2c, respectively. It is not difficult to see that the
subset of the head-head edges of a rique induces a stack in ≺, while the corresponding set of
the head-tail edges of a rique induces a queue in ≺ [4]. Thus, in a sense, a rique is a special
case of a stack and a queue; not every pair of a stack and a queue however forms a rique.

3 Our result

In this section, we prove that there exist planar graphs that do not admit mixed layouts
with one rique and either one stack or one queue. To achieve this, we establish a recursive
definition of a planar graph (Section 3.1) and we prove that every layout of it with one
rique and either one stack or one queue contains at least two edges that either cross in the
cylindric representation of the rique or that cross (nest) in the stack (queue). Our proof
contains several combinatorial arguments (Section 3.2) but the case analysis that needs to
be performed in order to obtain the desired result is deferred to the computer (Section 3.3).
The reason for this is that there exist several cases that one needs to consider arising from
the two different types that each edge may have; in addition to this, each edge assigned
to the rique may be head-head or head-tail (Section 3.4). For the last step in the proof,
we exploit a known formulation of the problem of testing whether a given (not necessarily
planar) graph admits a layout with a certain number of pages (stacks, queues or riques) as
a SAT instance [8]. In our approach, we use properties from our combinatorial analysis to
reduce the size of the search space and to introduce several symmetry-breaking constraints
in the SAT instance, which made the latter verifiable in reasonable amount of time (less
than 10 minutes) using a standard SAT solver [10]. Note that, the actual implementation
has become part of [5] and the corresponding code is available to the community as part of
the following GitHub repository:

https://github.com/linear-layouts/SAT

3.1 The graph supporting the proof
We start with the description of the graph, which contains a set of 2T independent vertices
si and ti, with 1 ≤ i ≤ T , called terminals. For each i = 1, . . . , T , we connect each of si

and ti to two adjacent vertices A and B, called poles. Each pair of such terminals delimits
a so-called component Ci in GT (colored gray in Fig. 3a) as follows: For i = 1, . . . , T − 1,
we add two vertices xi and yi that are connected by an edge; each of these two vertices is
connected with si and ti; additionally, xi is connected with A, and yi with B. In a second
step, we construct a 3-cycle ⟨ai, bi, ci⟩ and we connect vertex ai with xi and si, vertex bi

with si and yi, and vertex ci with xi and yi. Symmetrically, we construct a 3-cycle ⟨a′
i, b′

i, c′
i⟩

and we connect vertex a′
i with xi and ti, vertex b′

i with ti and yi, and vertex c′
i with xi and

yi; see Fig. 3b. Aiming to introduce in GT several subgraphs, which are neither 2-stack nor
2-queue embeddable [1, 13], the construction continues by stellating several already formed

1 Note that a deque additionally supports tail-tail edges (semi-circles below ℓ) and tail-head edges (two
semi-circles, one that starts at the left endpoint of the edge, lies below ℓ and ends at a point p of ℓ to
the right of the last vertex of ≺ and one that starts at p, lies above ℓ and ends at the other endpoint).
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Figure 3 Illustrations for the construction of graph GT : Each gray subgraph in (a) corresponds
to a copy of the graph in (b); each gray subgraph in (b) corresponds to a copy of the graph in (c).

faces, where the operation of stellating a face f bounded by a cycle C introduces a vertex u

in f and connects u to each of the vertices of C. In particular, we proceed by stellating the
resulting faces ⟨ai, bi, ci⟩ and ⟨a′

i, b′
i, c′

i⟩, introducing two new vertices di and d′
i, respectively

(refer to the yellow vertex in Fig. 3c). Afterwards, a second round of stellations occurs
involving the faces ⟨ai, di, bi⟩, ⟨ai, di, ci⟩, ⟨bi, di, ci⟩, ⟨a′

i, d′
i, b′

i⟩, ⟨a′
i, d′

i, c′
i⟩ and ⟨b′

i, d′
i, c′

i⟩ (refer
to the green vertices in Fig. 3c). The final graph GT is obtained by stellating each of the
newly formed faces once more (refer to the red vertices in Fig. 3c). We refer to two vertices
(edges) of two different components Ci and Cj that correspond to the same vertex (edge) in
the construction above as twin vertices (edges), e.g., the vertices x1, . . . , xT are twin vertices,
while the edges (A, x1), (A, x2), . . . , (A, xT ) are twin edges.

3.2 The combinatorial part of the proof

Assume that GT has a mixed linear layout L with one rique and either one stack or one
queue. By symmetry, we may assume w.l.o.g. that A ≺ B and si ≺ ti holds in L, for each
i = 1, . . . , T . Since each component in GT is of fixed size, if we set T to be large enough,
then we can assume by pigeonhole principle that there is a certain number, say k, of copies
of components, w.l.o.g. C1, . . . , Ck, of GT that have exactly the same layout in L. Namely,
for any two components Ci and Cj , with 1 ≤ i, j ≤ k, (i) the order in which any two vertices
u and v of Ci appear in L is the same as their twin vertices u′ and v′ of Cj , while (ii) any
two twin edges of Ci and Cj are assigned to the same page and additionally are of the same
type (e.g., both head-head or both head-tail) if assigned to the rique of L. Using Ramsey’s
theory (and assuming that T is even larger), we can further guarantee that (iii) each group
of twin edges form a rainbow or a twist or a necklace in the underlying linear order.

In the following, we assume that T is large enough such that we can identify k = 4
components C1, C2, C3 and C4 with the aforementioned properties. In this case, by symmetry,
we can further assume that t1 ≺ t2 ≺ t3 ≺ t4. Let w1 be any vertex connected to t1 that
is not one of the poles A or B of GT . Let w2, w3 and w4 be the twins of w1 in C2, C3 and
C4, respectively. Since the edges (t1, w1), (t2, w2), (t3, w3) and (t4, w4) are twin edges (thus,
forming a rainbow or a twist or a necklace), it follows that either w1 ≺ w2 ≺ w3 ≺ w4 or
w4 ≺ w3 ≺ w2 ≺ w1 holds in L. Extending this argument to the neighbors of w1, w2, w3 and
w4 and further, one may conclude that for every quadruple of twin vertices z1, z2, z3 and z4 in
C1, C2, C3 and C4, respectively, it holds that either z1 ≺ z2 ≺ z3 ≺ z4 or z4 ≺ z3 ≺ z2 ≺ z1.
Twin vertices satisfying this property are said to be monotonically ordered.
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3.3 The computer-aided part of the proof
With the observations that we made in Section 3.2, we were able to prove that, for large
enough values of T , graph GT does not admit a mixed linear layout with one rique and either
a stack or a queue using the SAT formulation described in [8]. More precisely, assuming to
the contrary that GT admits such a layout, the subgraph of GT formed by the poles A and
B and by the four components C1, C2, C3 and C4 that we described in Section 3.2 must also
admit a corresponding layout under the following constraints:

1. Pole A precedes pole B.
2. Terminal si precedes terminal ti for each i = 1, 2, 3, 4.
3. Every quadruple of twin edges is assigned to the same page.
4. For every quadruple of twin vertices, we require them to be (i) monotonically ordered,

(ii) either all before or all after pole A and (iii) either all before or all after pole B.

Note that, by our discussion in Section 3.2, Constraints 1–4 preserve the satisfiability
of the SAT instance. However, with the online implementation [6] of [8], which already
provides support for encoding Constraints 1–4 in SAT, we verified that the subgraph of GT

formed by the poles A and B and by the four components C1, C2, C3 and C4 admits a mixed
linear layout neither with one rique and one stack nor with one rique and one queue when
Constraints 1–4 are imposed, contradicting the fact that GT also admits such a layout. The
total time needed to verify the unsatisfiability was less than 10 minutes on a single-node
4-core 3.3 GHz Intel Core i5-4590 machine with 16GM RAM. We summarize this finding in
the next theorem.

▶ Theorem 3.1. There exist planar graphs that do not admit mixed linear layouts with one
rique and either one stack or one queue.

3.4 Some remarks towards a purely combinatorial proof
We conclude this section by mentioning that a purely combinatorial proof is possible to
be derived by further extending the arguments that we introduced in Section 3.2. As a
matter of fact, the next step in the proof is to consider the six possible permutations that
may arise for the poles A and B with respect to the terminals s1, t1, s2, t2, s3, t3, s4
and t4 of the components C1, C2, C3 and C4, namely: (P.1) si ≺ A ≺ B ≺ ti, (P.2)
A ≺ si ≺ B ≺ ti, (P.3) si ≺ A ≺ ti ≺ B, (P.4) A ≺ B ≺ si ≺ ti, (P.5) si ≺ ti ≺ A ≺ B

and (P.6) A ≺ si ≺ ti ≺ B. Then, one has to argue on the feasible positions of the
remaining (twin) vertices contained in C1, C2, C3 and C4 within each of P.1–P.6. However,
these positions depend on the page that each edge is assigned (rique, stack or queue) and
of its type (head-head or head-tail, if the edge is in the rique). This make the number of
starting cases for the edges connecting A, B and the terminals s1, t1, s2, t2, s3, t3, s4 and t4
already very large and the resulting purely combinatorial proof very tedious.

4 Conclusions

In this work, we demonstrated planar graphs that do not admit mixed linear layouts with one
rique and either one stack or one queue strengthening a corresponding result by Pupyrev [15]
limited to layouts with one stack and one queue. We also made a step towards answering a
question in [8] related to the rique number of planar graphs that ranges between 2 and 4; we
feel that to show a lower bound of 3 is a realistic goal. Nevertheless, we consider closing this
gap as an interesting open problem for future consideration.

EuroCG’24
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Related to our work is also a result by Angelini et al. [2], who also provided a strengthened
version of the result by Pupyrev [15] by demonstrating 2-trees that do not admit mixed linear
layouts with one stack and one queue. Their result implies that 2-trees do not admit rique
layouts with one rique. On the other hand, 2-trees admit stack layouts with two stacks [16],
which trivially implies that they also admit mixed linear layouts with one rique and one
stack. In this regard, it would be interesting to study whether this result transfers to planar
3-trees, namely, whether planar 3-trees admit mixed linear layouts with one rique and either
one stack or one queue; note that planar 3-trees admit stack layouts with three stacks [13],
which implies that they also admit mixed linear layouts with one deque and one stack. So,
in a sense, our question is whether substituting the deque page with a rique one still suffices
for such a positive result.

Acknowledgements. The authors thank M. A. Bekos for numerous fruitful discussions.
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