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Abstract
In this paper, we study algorithms for the discrete Fréchet distance in graphs with low highway
dimension. We describe a ( 5

3 + ε)-approximation algorithm for the Fréchet distance between a
shortest path P with n vertices and an arbitrary walk Q with m vertices in a graph G = (V, E). The
algorithm makes use of a collection of sparse shortest paths hitting sets which are precomputed for
the graph G. After preprocessing, the algorithm has running time O

(
n log D + m(h log h log D)2)

,
where h is the highway dimension and D is the diameter of G. The preprocessing for the graph is
polynomial in |G| and 1/ log(1 + ε) and uses O (|V | log D(1/ log(1 + ε) + h log h)) space.

1 Introduction

The notion of the Fréchet distance between polygonal curves was introduced to Computational
Geometry by Alt and Godau in 1992 [5]. They also gave a O(n2 log n) algorithm to compute
the continuous Fréchet distance between two curves with O(n) vertices in Euclidean metric
spaces of fixed dimension. Bringmann showed that neither the discrete nor the continuous
Fréchet distance between two curves can be computed in time O(n2−ε) for any ε > 0
unless the orthogonal vectors hypothesis fails [9] and there are known algorithms showing
that this lower bound is tight in the discrete [4] and the continuous case [10]. There are
various faster exact and approximation algorithms known in specialized settings for the
continuous [6, 7, 11, 12, 13, 14] and discrete Fréchet distance [7, 15, 17, 19]. Some of these
algorithms work with a preprocessing that stores one curve such that computing the Fréchet
distance to any other curve can be done efficiently [13, 15, 17, 19]. All of the mentioned
algorithms require that the curves are embedded in some sort of underlying metric space.

We consider the discrete Fréchet distance between walks in a graph with respect to
the shortest path metric. This can for example be used to determine similarities between
trajectories in street networks, which has been a question of interest in the past [8, 18].
Driemel, van der Hoog and Rotenberg showed that for this variant of the problem the
near-quadratic conditional lower bound still holds [16]. They also study approximation
algorithms for the setting that one of the walks is κ-straight, that is a near-shortest path.
A path is κ-straight if any subpath between any two vertices p and q along the path has
length at most κ times the shortest path distance from p to q. In particular, a shortest
path is κ-straight for κ = 1. They show that one can compute a (1 + ε)-approximation of
the Fréchet distance between a κ-straight path P and any walk Q in a planar graph G in
O

(
|G| log |G| /

√
ε + |P | + κ

ε |Q|
)

time and they give a (κ + 1)-approximation algorithm, with
running time in O

(
(|P | + |Q|) log3+o(1) |G|

)
, after preprocessing. For general graphs, the
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second algorithm has running time in O ((|P | + |Q|) · T (G) · log D), where T (G) denotes the
time for a distance query in G.

In this paper, we focus on the case where the graph G = (V, E) is not necessarily planar,
but has low highway dimension, a property which has been studied in the context of road
networks before [2]. We give an algorithm that computes a ( 5

3 + ε)-approximation to the
discrete Fréchet distance between a shortest path P and any walk Q in G. After preprocessing
the graph, the running time of the algorithm is in O

(
|P | log D + |Q| (h log h log D)2)

, where
h is the highway dimension of the graph and D is the diameter of G. The preprocessing is
polynomial in |V | and 1/ log(1 + ε) and uses O (|V | log D(1/ log(1 + ε) + h log h)) space.

1.1 Highway Dimension
Abraham, Delling, Fiat, Goldberg and Werneck introduced multiple definitions of the highway
dimension over the years [3, 1, 2]. We work with the latest definition from 2016 [2].

The intuition behind a low highway dimension is that there exists a small set of vertices
(“hubs”) such that for any point in the graph every shortest path to a destination far away
visits at least one of these hubs. Abraham et al. argue that this is a realistic model of road
networks [2]. A low highway dimension is especially helpful for shortest path computations.
We use these hitting sets of long shortest paths for Fréchet distance queries.

Let G = (V, E) be a graph with non-negative integer edge weights ℓ that satisfy the
triangle inequality and can all be expressed in a word of Θ(log |V |) bits. A walk in G is
a sequence of vertices with an edge between any two successive vertices. A path is a walk
where every vertex is visited at most once. We assume that shortest paths in G are unique.

Let P be a shortest path with weight ℓ(P ) > r for some value r > 0. Denote by V (P ) the
set of vertices in P . In [2], Abraham et al. call a shortest path P ′ an r-witness for a shortest
path P if ℓ(P ′) > r and P is either equal to P ′ or it arises from P ′ by deleting one or both
end vertices of P ′. All shortest paths that have an r-witness are called r-significant. This
means that also single vertices can be r-significant. Denote by Pr all r-significant paths.

▶ Definition 1.1 (Highway dimension [2]). The highway dimension h of the graph G = (V, E)
is the smallest integer such that for any real value r > 0 and v ∈ V there exists a set H ⊆ V

with |H| ≤ h and H ∩ V (P ) ̸= ∅ for all r-significant paths P with an r-witness P ′ satisfying
dist(v, P ′) := minw∈V (P ′) dist(v, w) ≤ 2r.

The sets H exist separately for every vertex and radius. Abraham et al. give a related
definition of sparse hitting sets:

▶ Definition 1.2 (Sparse Shortest Path Hitting Set (SPHS) [2]). For r > 0 an (h, r)-SPHS
is a set C ⊆ V (G) such that |B2r(v) ∩ C| ≤ h for all v ∈ V (G) and V (P ) ∩ C ̸= ∅ for all
P ∈ Pr, where B2r(v) is the set of vertices in G that have distance at most 2r to v.

It can be shown that there always exists an (h, r)-SPHS in a graph with highway dimension
h [2]. Note that the set B2r(v) ∩ C is very similar to the set H for v and r in the definition
of the highway dimension but it might not hit all necessary r-significant paths even though
C hits all these paths. One can extend this definition even further in the following way:

▶ Definition 1.3 (µ-multiscale SPHS). For µ > 1 a µ-multiscale SPHS with value h of
G is a collection of sets Ci for 0 ≤ i ≤

⌈
log D
log µ

⌉
, where Ci is a (h, µi−1)-SPHS and D :=

maxv,w∈V (G) dist(v, w) is the diameter of G.

In [2] the definition of a multiscale SPHS matches our definition of a 2-multiscale SPHS. Note
that log D ∈ O (log |V |) because all edge weights can be expressed in a word of Θ(log |V |)
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bits. Computing an (h, r)-SPHS in a graph with highway dimension h can be NP-hard.
However, we can compute an approximation in polynomial time (Theorem 8.2 in [2]), which
leads to the following theorem:

▶ Theorem 1.4. In a graph with highway dimension h, we can compute a µ-multiscale SPHS
with value O(h log h) in running time polynomial in size(G) and (log µ)−1.

Using 2-multiscale SPHS, one can create a fast distance oracle in G as it is discussed in [2]:

▶ Theorem 1.5 (see Theorem 8.3 in [2]). With a polynomial-time preprocessing and O(|V | log D·
h log h) space we can preprocess a graph G = (V, E) with highway dimension h such that a
distance query between any two vertices takes O (h log h log D) time.

1.2 Fréchet Distance
We follow [16] in our definition of the discrete Fréchet distance in a graph. The discrete
Fréchet distance is a similarity measure between two walks in a graph. Assume we are given
a graph G with a metric weight function w. Let P = (p1, . . . , pn) and Q = (q1, . . . , qm) be
walks in G. We denote by [n] × [m] ⊂ N × N the integer lattice of n by m integers and say
that an ordered sequence F of pairs in [n] × [m] is an xy-monotone discrete walk if for every
consecutive pair (i, j), (k, l) ∈ F , we have k ∈ {i, i + 1} and l ∈ {j, j + 1}.

▶ Definition 1.6 (see Section 2 in [16]). The strong discrete Fréchet distance of two walks
P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qm) is the minimum over the maximum pairwise
distance of any xy-monotone discrete walk F from (1, 1) to (n, m):

DF (P, Q) := min
F

max
(i,j)∈F

dist(pi, qi).

For brevity we just call this the Fréchet distance of P and Q. One can verify that the Fréchet
distance satisfies the triangle inequality.

Given two walks P , Q and some real value d, we define a |Q| × |P | matrix M which we
call the free-space matrix Md. The i-th column of Md corresponds to the i-th vertex in P

and the j-th row corresponds to the j-th vertex in Q. We assign to each matrix cell Md[i, j]
the integer −1 if dist(pi, qj) ≤ d, and 0 if dist(pi, qj) > d.

The Fréchet distance between two walks P and Q is at most d, iff there exists an xy-
monotone discrete walk F from (1, 1) to (n, m) such that ∀(i, j) ∈ F we have Md[i, j] = −1.

2 Algorithm

On a high level, our algorithm first computes a simplification of the shortest path P using
a certain SPHS. It then runs a BFS on a free space matrix between the walk Q and the
simplification of P to approximately determine, whether DF (P, Q) ≤ δ. In the analysis, we
show that the distance between the chosen simplification and P can be bounded from above,
which then bounds the approximation factor of the algorithm. Then, we prove that the
BFS does not visit too many vertices making use of the fact that almost all vertices on the
simplification belong to the same SPHS. This then bounds the runtime of our algorithm. In
the end we choose the values for the multiscale SPHS, the simplification and the free space
matrix to achieve the desired approximation factor.

Throughout the rest of the paper, let P = ⟨p1, . . . , pn⟩ be a shortest path in G and let
Q = ⟨q1, . . . , qm⟩ be an arbitrary walk in G. We denote by |P | the number of vertices in P .
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First, we focus on the case, where we are already given a certain SPHS and see that we
can compute an approximation of the Fréchet distance between P and Q quite fast, using
only a subset of the vertices of P .

Let Hδ be a (h′, δ)-SPHS for some h′ ∈ N and δ ≥ 0. Define by P δ the subsequence of
vertices in P , where we start in p1, then only visit the points of P ∩ Hδ and end in pn. Note
that P δ is not necessarily a walk in G. However, we treat it like a walk by adding artificial
edges in between any two consecutive points of P δ with costs equal to their distance.

▶ Lemma 2.1. It holds that DF
(
P, P δ

)
≤ δ

2 .

Proof. Denote by ai the index of the vertex pi in P δ. We define an xy-monotone path
through the free space matrix Mδ/2 of P and P δ only visiting entries with value −1 and
visiting all the tuples (i, ai) for pi ∈ P δ. We start with (1, 1). Let pi and pj be consecutive
in P δ. We now want to define an xy-monotone subpath from (i, ai) to (j, aj). We start with
(i, ai). If j = i + 1, we can take (j, aj) as the next tuple, which is a legal step and we are
done.

Now suppose that j > i + 1. Then, pi and pj are not consecutive in P . Assume
dist(pi, pj) > δ. Denote by P [i, j] the subpath of P starting in pi and ending in Pj . Observe
that P [i, j] is a shortest path. If we delete the two outer vertices of this subpath, we either
have another subpath or a single vertex. Denote this subpath or singleton by P̃ . The shortest
path P̃ is δ-significant with P [i, j] as a δ-witness. Hence, a vertex of P̃ has to be contained
in Hδ because it is a hitting set for all δ-significant shortest paths. This is a contradiction to
pi and pj being consecutive on P δ and hence dist(pi, pj) ≤ δ must hold.

Let i′ be the largest index such that dist(pi, pi′) ≤ δ
2 . This means that dist(pi′+1, pj) ≤ δ

2
because P is a shortest path. So, we define the following xy-monotone subwalk:

(i, ai), (i + 1, ai), . . . , (i′, ai), (i′ + 1, aj), . . . , (j − 1, aj), (j, aj).

The distance of all tuples is at most δ
2 and hence their entries in Mδ/2 are −1. Hence, if we

combine all such subpaths, we end up with an xy-monotone walk through Mδ/2 only visiting
entries with value −1, implying that the Fréchet distance between P and P δ is ≤ δ

2 . ◀

Using Lemma 2.1 and the triangle inequality of the Fréchet distance, we get the following:

▶ Lemma 2.2. If DF
(
P δ, Q

)
> α for any α ≥ 0, then DF (P, Q) > α − δ

2 .

▶ Proposition 2.3. Let Hδ be a (h′, δ)-SPHS of G, let P be a shortest path and let P δ be
given. Assume that a distance query in G takes time T (G). Then, we can decide in time
O (mh′T (G)) if DF

(
P δ, Q

)
≤ α for any 0 ≤ α ≤ 2δ.

Proof. The algorithm performs an implicit breadth first search through the non-zero entries
of the free space matrix Mα between P δ and Q and checks if (n, m) can be reached. This
means that we only compute dist(pi, qj), if the tuple (i, j) is considered in the BFS.

Note that only non-zero entries of Mα get added to the queue and every element in the
queue has at most three legal successors. Hence, for the runtime it suffices to bound the
number of non-zero entries in Mα. Let q be a vertex in Q. Hδ being a (h′, δ)-SPHS implies
|Bα(q) ∩ Hδ| ≤ |B2δ(q) ∩ Hδ| ≤ h′. So, the inner vertices of P δ with distance at most α to q

all lie in this set. Adding p1 and pn this yields that there are at most h′ + 2 non-zero entries
in the row corresponding to q and at most m(h′ +2) non-zero entries in Mα in total. For each
of them we have at most three distance oracle calls. So, the BFS takes O (mh′T (G)). ◀

This gives us all the necessary tools to prove the following theorem:
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▶ Theorem 2.4. Let G = (V, E) be a graph with a metric weight function and highway
dimension h and let ε > 0. Suppose a distance query in G takes O (T (G)) time using
O (S(G)) space. After preprocessing G in time polynomial in |V | and 1/ log(1 + ε), we
can decide for any shortest path P with n vertices, any walk Q with m vertices and any
δ > 0, whether DF (P, Q) ≤ ( 5

3 +ε)δ or DF (P, Q) > δ in O (n + m(h log h)T (G)) time using
O (|V | log D/ log(1 + ε) + S(G)) space.

Proof. Define µ := 1 + 9ε
8+3ε > 1. In this case, log(µ)−1 = Θ(log(1 + ε)−1). In the

preprocessing, we compute a µ-multiscale SPHS with value O (h log h) in running time
polynomial in |V | and 1/ log(1 + ε) by Theorem 1.4. We save this µ-multiscale SPHS as a
matrix of booleans with a row for every vertex and a column for every SPHS. This takes
O (|V | log D/ log(1 + ε)) space and ensures that we can check in constant time whether a
vertex is contained in a certain SPHS.

Now we choose α = δ
1− µ

4
and i such that µi < α

2 ≤ µi+1. From the µ-multiscale SPHS
we compute the set P µi+1 in O (|P |) time. Then, we compute in O (|Q| (h log h)T (G)) time
whether DF

(
P µi+1

, Q
)

≤ α using Proposition 2.3. If this is true, using Lemma 2.1 and the
triangle inequality, we can derive that

DF (P, Q) ≤ α + µi+1

2 ≤ (1 + µ

4 )α =
1 + µ

4
1 − µ

4
δ =

(
5
3 + ε

)
δ.

In the other case, we can use Lemma 2.2 to see that

DF (P, Q) > α − µi+1

2 > (1 − µ

4 )α = δ. ◀

Since the Fréchet distance between P and Q can be at most D, we can apply the algorithm
combined with a binary search on the value of the Fréchet distance to get the following result:

▶ Corollary 2.5. Let G = (V, E) be a graph with a metric weight function and highway
dimension h and ε > 0. Suppose a distance query in G takes O (T (G)) time using O (S(G))
space. After preprocessing G in time polynomial in |V | and 1/ log(1 + ε), we can compute for
any shortest path P with n vertices and any walk Q with m vertices a ( 5

3 + ε)-approximation
of DF (P, Q) in O (log D(n + m(h log h)T (G))) time using O (|V | log D/ log(1 + ε) + S(G))
space.

Using the distance oracle from Theorem 1.5, our algorithm for approximating the Fréchet
distance from Theorem 2.4 can be implemented in O

(
|P | log D + |Q| (h log h log D)2)

time
and using O (|V | log D(1/ log(1 + ε) + h log h)) space.
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