
GeoCluster: A latent variable generative model for
continuous space geometric clustering
Minas Dioletis1,3, Ioannis Z. Emiris2,5, George Ioannakis3, Evanthia
Papadopoulou6, Thomas Pappas3, Panagiotis Repouskos3,
Panagiotis Rigas3,4,5, and Charalambos Tzamos3,7

1 School of Electrical and Computer Engineering, National Technical University
of Athens, Greece
minasdioletis@mail.ntua.gr

2 Athena Research Center, Greece
emiris@athenarc.gr

3 Institute for Language and Speech Processing, Athena Research Center, Greece
{minas.dioletis,gioannak,thomas.pappas,
panagiotis.repouskos,panagiotis.rigas,charalambos.tzamos}@athenarc.gr

4 Archimedes, Athena Research Center, Greece
panagiotis.rigas@athenarc.gr

5 Department of Informatics & Telecommunication, National & Kapodistrian
University of Athens, Greece
{emiris,rigasp}@di.uoa.gr

6 Faculty of Informatics, Università della Svizzera italiana, Switzerland
evanthia.papadopoulou@usi.ch

7 Czech Technical University in Prague, Czech Republic
tzamos.charalampos@fel.cvut.cz

Abstract
Given a set of shapes realized in Rd, an important but challenging task is, given a query point
p ∈ Rd, to find the nearest shape to p w.r.t. a given distance function. Finding approximate or exact
nearest neighbors is a fundamental algorithmic problem, which so far has predominantly focused
on point-sets. In this work, given only a point-shape distance function, we tackle the problem of
approximating the nearest neighbor of a query point to a set of shapes of unknown properties. We
design a shape-agnostic algorithm for partitioning the set of shapes hierarchically, and build a tree
data structure for answering nearest neighbor queries. For partitioning the space in k parts, we
propose a machine learning algorithm, in which the shapes are treated as high dimensional vectors.
We evaluate our proposed method on an extensive set of synthetic experiments.

1 Introduction

Nearest Neighbor Search constitutes a fundamental algorithmic problem that remains an
active research field due to its importance in a variety of settings. The Nearest Neighbor
Search problem is defined as follows. Let Od denote a finite collection of objects (shapes)
in Ω ⊆ Rd that satisfy a property P. This property indicates the type of data that we
have, namely cubes, spheres, ellipses, convex polytopes with bounded number of vertices, etc.
The distance between a point p ∈ Rd and an object O ∈ Od is denoted by D(p, O), and its
analytical form depends on the property P . In this work, we are interested in approximating
the nearest neighbor O∗ of a query point p from a collection of objects Od, such that:

O∗ = arg min
O∈Od

D(p, O). (1)

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

64:2 GeoCluster

We assume that d a is small constant and provide experimental results for d = 2 and d = 3.
In the simple case when the objects represent points in Rd, the problem of approximating

the nearest neighbor has been studied extensively [12, 3, 10, 11, 16, 5].
Point-based nearest neighbor queries are essential in data analysis for a variety of

applications [2]. Searching for the nearest neighbor exhaustively is infeasible because the
linear, on the number of candidates, time complexity tends to be expensive in any real-world
setting [21]. Hence, one turns to approximate search where the goal is to retrieve one or a
set of Approximate Nearest Neighbors (ANNs) in a fast and effective manner, namely that
achieves sublinear, logarithmic, or even constant query time.

Considering more complex than points, objects, in a recent work [1], nearest neighbor
queries against line segments in Rd has been considered, for a fixed dimension d, yielding an
(1 + ε)-approximate nearest neighbor algorithm. In [7], the authors address the problem of
finding the nearest neighbor to a set of ellipses in R2 by computing the Voronoi diagram of a
set of ellipses. In [6], orthogonal polyhedra in R2 and R3 are considered, and the problem of
nearest neighbor is tackled by computing the Voronoi diagram of the set of polyhedra, using
the L∞ metric. In [18], the authors propose an algorithm for computing the L∞ Voronoi
diagram of a set of non-orthogonal shapes in R2. To the best of our knowledge, prior work
on shape-based ANN search is limited to specific objects families and fixed dimension.

In this paper, we consider objects that can be determined by a finite set of parameters, e.g.
a line segment in R2 can be uniquely described by its two endpoints, which can be considered
as a vector of four parameters. For such shape-agnostic class of objects in Rd, we designed
an algorithm based on a generative machine learning model that answers efficiently ANN
queries to a given point. To demonstrate the performance and applicability of our method to
different types of objects, we provide experimental results. Code is publicly available 1, with
details on how install and train the model, coupled with a demo.

2 Method

Our method employs a latent-variable generative model for hierarchical clustering, creating a
tree structure where nodes represent data space regions, not just centroids, and child nodes
represent sub-regions of their parent. Such a hierarchical clustering has been used in [16].
Hierarchical clustering refers to a tree T with branching factor k, that is built by recursively
partitioning the data into sub-clusters until individual or constant number of data points
are reached. This deviates from traditional fixed-cardinality clustering by adapting to the
data manifold’s shape. Critics assess and value the edges in this tree, converting it to a
weighted graph for navigational decision-making by an actor with a policy[14, 15]. Explicit
data embedding in a higher-dimensional space transforms complex shapes into discrete
points, enabling divergence calculations for iterative state refinement. This approach, termed
GeoCluster, dynamically clusters data, facilitating efficient approximate nearest neighbor
queries.

2.1 Architecture

The proposed architecture is centered around a clustering mechanism, forming the foundation
of a tree. This process begins by embedding objects into the high-dimensional space. The

1 https://github.com/PRigas96/GeoCluster

M. Dioletis et al. 64:3

clustering approach is recursive, resulting in a tree structure where each node is not merely
a centroid, but represents a specific area of the data manifold M.

To complement the clustering process a critic that evaluates and assigns values to the
edges connecting the nodes in this tree is used. This evaluation results in a weighted tree,
where the edge weights reflect the critic’s assessment of the relationship between nodes, given
a condition query p.

For inference, the tree T is utilized, or its corresponding quantified manifold S ′ obtained
from M after training. Given a query point q ∈ Q, T is inferred by the actor through its
policy π. This is based on weights on nodes, that act as decision-making tools, guiding the
inference process. This approach mirrors a cost-minimization strategy, akin to finding the
shortest path in the tree based on cross-entropy minimization [15].

Upon reaching a leaf node, an exhaustive search is conducted among the remaining
objects to find the nearest neighbor O∗. The tree’s functionality is illustrated in Fig. 1, where
each node, endowed with a critic function, actively contributes to the inferential process by
assigning scores to its children.

Figure 1 The tree constructed during training, and each node is associated with a critic.

2.1.1 Detailed Description

The architecture is presented at Fig. 2a, with the topology for the construction of a node in
T . It consists of a latent variable z ∈ Z decoder module to produce the centroids c ∈ S. A
divergence Div then is calculated based on c and data x ∈ M. Every fclk Hz, a Gaussian
sampler[4, 13, 20] is utilized and produces fuzzy centroids with radius ζ−1Div, scaled by a
factor Sc, to alleviate the initialization problem caused by the many bad local minima, and
initial centroids[17, 19]. This does not prevent clusters from being empty, which is utilized
to further enable structure alignment by deleting non-participant centroids[8].

After states have been constructed, critic network CS , a parametric function, is employed
to assign low and high values to non probable and probable state transitions respectively,
as shown in Fig. 2b. It is trained with data produced and labeled by an uncertainty area
sampler (UN) module. The UN sampler consists of getting the Voronoi surfaces, sampling
normal edges and points on those edges, conducting an efficient sampling in areas of uncertain
prediction due to non-linear bounds between spaces.

The clustering network’s latent variable is regularized through a one-hot encoder[9].
Representations c are regularized through Rrep =

∑
i

∑
j ̸=i dp(ci, cj)−1, a repulsive loss that

prevents trivial solutions and Rproj that enforces each representation to fall within its state.

EuroCG’24

64:4 GeoCluster

To ensure this the states associated critic is utilized:

Rproj =
∑
c∈S

∑
x∈c

∑
u∈bbox

ReLU
(∏

∀e∈u

e − x

|e − x|

)
min(||u − x||)

+
∑
S∈T

ωS

∑
c∈Sτ

CE(Softmax(Cs(c)), qs), (2)

where ReLU(x) = max(0, x) ensures initialization in root state, while cross entropy (CE),
weighted by ωS , that each a centroid in a path, satisfies all previous trajectory states, ensuring
flow of information between different hierarchy level states. Div =

∑
x∈M Ew(x, z̄), where

Ew is the states energy, is used to ensure clustering compactness[22].

Figure 2 Proposed Network. (a) illustrates the network topology, for the construction of a node
in the tree T . (b) showcases the critic network assigning weights in edges of a tree.

3 Experimental Results

In this section, we showcase the methods performance in three different aspects, the quality
of produced representations and associated states, the search precision and the robustness.

3.1 Representation Evaluation
In Fig. 3 the centroids are shown for different structured data. It is clear that they capture
the underlying structure effectively.

Figure 3 One-layer centroids, seen in dark blue areas for different structured 2D Data.

The resulted space for one layer of hierarchy is also shown for a 3D case in Fig. 4. Spaces
can be non-linear and discontinuous.

M. Dioletis et al. 64:5

Figure 4 Quantified space S
′

for 3D cuboids. Each color corresponds to a different cluster.

3.2 Search Precision and Parallelization
In this section, we delve into the model’s search precision, specifically its efficacy in identifying
complex geometric forms, as explicated in Tables 1 and 2. Table 1 provides insights
the model’s adeptness across various geometric shapes, demonstrating its commendable
generalization capabilities. Notably, the model exhibits similar layer-wise accuracies, with
final acc =

∏
i∈N acci, where N is the number of layers, being stable.

Layer 1-2 Layer 2-3 Layer 3-4 Layer 4-5 Layer 5-6 Dimensions Metric

Squares 82.8 ± 2.0 97.7 ± 0.7 99.8 ± 0.2 - - R2 L∞

Cuboids 91.3 ± 0.8 87.9 ± 1.4 90.5 ± 2.4 93 ± 2.2 99.3 ± 0.7 R3 L∞

Ellipses 95.7 ± 0.6 95.2 ± 1.1 97.7 ± 0.9 - - R2 L2

Table 1 Table of Layer-wise Accuracies for Each Shape in the Dataset of 10,000 elements. The
table displays mean accuracy and standard deviation for each shape. “Accuracy” is defined as
the model’s ability to precisely locate the nearest neighbor between layers, tested with randomly
generated query points within the data’s bounding area. Final accuracies can be obtained as a dot
product of each layer.

The effectiveness of the model in accurately identifying and approximating the nearest
neighbor is demonstrated in the results presented in Table 2. These results affirm the model’s
proficiency across various shapes, underscoring its strong generalization and scalability.
Further, the data shown in Fig. 5 reinforces our assertion that the model efficiently captures
the k-nearest neighbors, even when k is small, showcasing its robustness in neighbor detection.

k = 1 k = 2 k = 5 k = 10 k = 1% k = 5% k = 10% Layers

Squares 77.3 ± 2.3 79.1 ± 1.8 81.7 ± 2.4 83.4 ± 2.1 90.9 ± 2.0 99.7 ± 0.3 99.9 ± 0.1 5
Cuboids 61.9 ± 2.0 73.3 ± 1.6 85.3 ± 2.0 91.0 ± 1.2 99.0 ± 0.7 100 100 7
Ellipses 76.9 ± 1.6 79.3 ± 1.7 81.5 ± 1.8 83.8 ± 2.1 91.0 ± 0.9 98.4 ± 0.1 99.6 ± 0.4 5
Table 2 This table shows the accuracy of leaf nodes in the hierarchical structure for each shape

in the dataset, with each shape having 10k instances. Here, “k” represents the number of top results
considered for a successful search, indicating accurate neighbor detection among the first k results.

The results are also showcased for a soft-accuracy in non-randomly placed 2D data. The
distance D(q, O∗), given a query q and its nearest neighbor O∗ is measured. Then a relaxed
criterion, that the nearest neighbor we find Ō is in a radius of O∗, is calculated. As shown

EuroCG’24

64:6 GeoCluster

Figure 5 Cuboids: Mean Percentage of Correct Predictions per Layer for Different k-nearest
neighbor Values.

in Fig. 6, a twofold increase in ball radius ration the accuracy converges, with a low mean
bound of 95%.

Figure 6 Soft-Accuracy tests different kind of structured 2D data, 1000 in number with 4 layers
and width factor k=3. As ball radius ratio D(q, Ō)/D(q, O∗), where Ō is the nearest neighbor found
by our method and O∗ is the true nearest neighbor, increases, accuracy converges.

Fig. 7 illustrates the model’s superior performance in comparison to traditional serial
search methods. Specifically, Fig. 7a highlights the model’s adeptness at parallelization,
a direct benefit of utilizing batching techniques. For a single node, as the quantity of
query points escalates, our model consistently operates averagely at just p = 1/100th of the
time required by linear search methods, denoted as N · τ1. This efficiency underscores the
stark contrast in performance scalability, particularly in handling large volumes of queries.
Furthermore, Fig. 7b reveals that expanding the width factor k—which could potentially
complicate the search process—does not detrimentally affect the model’s performance.
This observation confirms the model’s robust scalability concerning data size, effectively
demonstrating that its empirical average computational complexity remains practical and
manageable, best captured by the expression O(⌈ |Q|

p ⌉ logk n), where Q is a set of queries, n

the data objects and p an observed random value characterizing parallelization due to neural
networks, shown in Fig. 7a. This notation adeptly reflects the combined influence of batching,
hardware acceleration, and the model’s algorithmic design on enhancing processing efficiency
beyond simple linear expectations. Worst case complexity still remains O(|Q| logk n), when
no parallelization takes place.

3.3 Robustness
The robustness of our method is evaluated using various structured 2D data sets, as illustrated
in Fig. 8. Although accuracy initially drops with high variance when the test set deviates from

M. Dioletis et al. 64:7

Figure 7 Performance (in seconds), in log scale, for a number of query points and one layer. τ1

denotes a query pass and thus Nτ1 can be regarded as O(n). (a) shows the difference between O(n)
and our method, while (b) shows for different width factors (k).

the trained area, it quickly converges, demonstrating the network’s effective extrapolation
capabilities. Additionally, Table 1 further corroborates the method’s robustness, highlighting
its consistent performance across a diverse range of shapes and dimensions.

Figure 8 Robustness tests for different structured 2D data in one layer hierarchy. Eight columns
show different areas, D for Data-trained area, OOD IM for data inside data manifold with trained
area and OOM*a for outside manifold area scaled with a. Accuracy converges outside manifold
rapidly but displays high variance for different structure

4 Conclusions

In this study, we leverage neural networks, specifically a latent variable generative model, to
construct a tree. This is coupled with a critic mechanism to weight the edges, streamlining
the nearest neighbor search across various domains and metrics. Addressing the challenge of
point-to-shape nearest neighbor in 3D, even for simple shapes, our model stands out for its
domain-agnostic nature. It requires only the definition of an embedding and a metric for
divergence, demonstrating its versatility and effectiveness in simplifying complex geometric
computations, while its inherent design makes it scalable.

5 Acknowledgment

This work has been partially co-financed by the European Union and the “Greece 2.0”
national recovery and resilience plan, under the call "RESEARCH-CREATE-INNOVATE"
(Code: ΤΑΕΔΚ-06168).

EuroCG’24

64:8 GeoCluster

References
1 Ahmed Abdelkader and David M Mount. Approximate nearest-neighbor search for line

segments. In 37th International Symposium on Computational Geometry, 2021.
2 Yannis Avrithis, Yannis Kalantidis, Evangelos Anagnostopoulos, and Ioannis Z Emiris.

Web-scale image clustering revisited. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1502–1510, 2015.

3 Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

4 Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.
5 Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for

generic similarity measures. In Proceedings of the 20th international conference on World
wide web, pages 577–586, 2011.

6 Ioannis Z Emiris and Christina Katsamaki. Voronoi diagram of orthogonal polyhedra in
two and three dimensions. In International Symposium on Experimental Algorithms, pages
1–20. Springer, 2019.

7 Ioannis Z Emiris, Elias P Tsigaridas, and George M Tzoumas. The predicates for the
exact voronoi diagram of ellipses under the euclidiean metric. International Journal of
Computational Geometry & Applications, 18(06):567–597, 2008.

8 Greg Hamerly and Charles Elkan. Learning the k in k-means. Advances in neural information
processing systems, 16, 2003.

9 John T Hancock and Taghi M Khoshgoftaar. Survey on categorical data for neural networks.
Journal of Big Data, 7(1):1–41, 2020.

10 Sariel Har-Peled. A replacement for voronoi diagrams of near linear size. In Proceedings
42nd IEEE Symposium on Foundations of Computer Science, pages 94–103. IEEE, 2001.

11 Sariel Har-Peled and Nirman Kumar. Approximating minimization diagrams and generalized
proximity search. SIAM Journal on Computing, 44(4):944–974, 2015.

12 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 604–613, 1998.

13 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

14 Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

15 Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27.
Open Review, 62(1), 2022.

16 Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high dimensional
data. IEEE transactions on pattern analysis and machine intelligence, 36(11):2227–2240,
2014.

17 Shi Na, Liu Xumin, and Guan Yong. Research on k-means clustering algorithm: An improved
k-means clustering algorithm. In 2010 Third International Symposium on intelligent
information technology and security informatics, pages 63–67. Ieee, 2010.

18 E. Papadopoulou and D. T. Lee. The L∞ Voronoi diagram of segments and VLSI applications.
International Journal of Computational Geometry and Applications, 11(5):503–528, 2001.
doi:10.1142/S0218195901000626.

19 Kristina P Sinaga and Miin-Shen Yang. Unsupervised k-means clustering algorithm. IEEE
access, 8:80716–80727, 2020.

20 Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances
in neural information processing systems, 33:19667–19679, 2020.

21 Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big
data - A survey. Proc. IEEE, 104(1):34–57, 2016. doi:10.1109/JPROC.2015.2487976.

https://doi.org/10.1142/S0218195901000626
https://doi.org/10.1109/JPROC.2015.2487976

M. Dioletis et al. 64:9

22 Jyoti Yadav and Monika Sharma. A review of k-mean algorithm. Int. J. Eng. Trends
Technol, 4(7):2972–2976, 2013.

EuroCG’24

	Introduction
	Method
	Architecture
	Detailed Description

	Experimental Results
	Representation Evaluation
	Search Precision and Parallelization
	Robustness

	Conclusions
	Acknowledgment

