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Abstract
Given an oriented graph −→

G on a set of points P in the Euclidean plane, the oriented dilation of
p, p′ ∈ P is the ratio of the length of the shortest cycle in −→

G through p and p′ to the perimeter of
the smallest triangle in P containing p and p′. The oriented dilation of −→

G is maximum oriented
dilation over all pair of points. We show that given an undirected graph G on P , it is NP-hard to
decide whether the edges can be oriented in way that the oriented dilation of the resulting graph
is below a given threshold. For the case that G is complete, it is known that there is always an
orientation of the edges with oriented dilation at most 2. As a first step towards improving this
bound, we show that for |P | = 4 there is always a tournament, i.e., an oriented complete graph,
with oriented dilation at most 1.5. This holds not only in the Euclidean but more generally in the
metric plane. In the latter the bound is tight.

1 Introduction

Geometric spanners have may applications like wireless ad-hoc networks [4, 10], robot motion
planning [5] and the analysis of road networks [1, 6]. The need to orient edges naturally arise
since edges might only support one-way communication/traffic. Thus, in such applications it
may be necessary to find an orientation of the edges that still provides relatively short paths
between vertices. While undirected spanners are a widely researched topic during the last
decades (see [2, 9] for a survey), oriented spanners have been only introduced recently [3].

Given a point set in the Euclidean plane and a parameter t, an oriented t-spanner−→
G is an oriented subgraph of the complete bi-directed graph, such that for every pair of
points, the shortest cycle in −→

G containing those points is at most a factor t longer than
their smallest triangle in the complete graph. Formally, given a point set P ⊂ Rd and a
parameter t ∈ R+, an oriented graph −→

G = (P,
−→
E ) (thus a graph where (u, v) ∈

−→
E implies

(v, u) /∈
−→
E ) is called oriented t-spanner if for every two points p, p′ ∈ P the oriented dilation

odil(p, p′) = |C−→
G

(p,p′)|
|∆(p,p′)| ≤ t. Here, C−→

G
(p, p′) denotes the shortest oriented cycle containing p

and p′ in −→
G and ∆(p, p′) is the triangle ∆pp′p′′ with p′′ = arg min

p∗∈P
|p − p∗| + |p∗ − p′|.

The problem of finding an oriented t-spanner with at most some fixed number m of edges
is NP-hard [3], thus there is little hope to compute minimum oriented spanners efficiently.
A natural approach for nonetheless computing an oriented spanner is to first compute a
suitable undirected graph and then orienting it. For convex point sets, for instance, one can
obtain an O(1)-spanner by orienting a greedy triangulation [3]. However, no constructions
are known to compute oriented spanners of small size for general point sets.

Here, we show that finding an orientation of an undirected graph such that the oriented
dilation is minimal, is NP-hard even on Euclidean graphs. As our NP-hardness construction
does not hold for complete graphs, we look into the oriented dilation of tournaments. As
first step and potential building block for larger point sets, we show that for every point set
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P with |P | = 4 even in a metric plane there is a tournament −→
K(P ) such that the oriented

dilation of −→
K(P ) is at most 1.5. We further prove this bound to be tight.

2 Hardness

▶ Theorem 2.1. Given an undirected geometric graph G and a parameter t′, it is NP-hard
to decide if there is an orientation −→

G of G with oriented dilation odil(−→G) ≤ t′.

We will give a proof idea which is mainly described graphically here. A detailed proof
with an explanation for the coordinates of every point can be found in the full version.

Proof sketch. We reduce from the NP-complete problem planar 3-SAT [8]. We start with
a planar Boolean formula φ in conjunctive normal form with an incidence graph Gφ that
can be embedded on a polynomial-size 1 × 1-grid [7, 8] as illustrated in Figure 1. We give
a construction for a graph G based on Gφ such that there is an orientation −→

G of G with
dilation odil(−→G) ≤ t′ with t′ := 1.043 if and only if φ is satisfiable.

x1 x2 x3 x4

x1 ∨¬x2 ∨¬x3

x2 ∨ ¬x3 ∨ x4

Figure 1 Example: Incidence graph of a planar 3-SAT formula embedded on a square grid

In the following, every point p = (x, y) on the grid will be replaced by a so-called oriented
point, which is a pair of points P = {t(p), b(p)} with top t(p) = (x, y + ε

2 ) and bottom
b(p) = (x, y − ε

2 ), where ε ≥ 0 is a small constant. We will present the proof with ε = 0, i.e.,
t(p) and b(p) are two points with the same coordinates, while using a small positive ε in all
figures for illustration purposes. This choice of ε simplifies the proof. However, the proof
stays valid for a sufficiently small ε > 0.

We add an edge between t(p) and b(p), its orientation encodes whether this points
represent “true” or “false”. W.l.o.g. we assume that an oriented edge from b(p) to t(p), thus
an upwards edge, represents “true” and a downwards edge represents “false”. When this is
not the case, we can achieve this by flipping the orientation of all edges.

Edges in the plane embedding of our formula graph Gφ will be replaced by wire gadgets.
First, we add (a polynomial number of) grid points on the edge such that all edges have
length 1. Then, we create a wire as in Figure 2. Note that wires propagate the orientation of
oriented points - if two points next to each other on a wire have different orientations, their
dilation would be significantly larger than t′ := 1.043, since the shortest oriented cycle needs
to go through an additional oriented point. If they have the same orientation, their dilation
is 1 (since ε = 0; otherwise slightly larger). To switch a signal (for a negated variable in a
formula), we start the wire as in Figure 3.

To ensure that all clause gadgets encode the same orientation of oriented points as “true”,
we add a tree of knowledge. This is a tree with vertices on the 1 × 1-grid shifted by (0.5, 0.5)
relative to the grid of Gφ and with wires as edges. The tree will have two leaves per clause
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Figure 2 A wire where oriented points are oriented upwards

Figure 3 A wire where the orientation is switched to negate the signal

x1 x2 x3 x4

Figure 4 Gφ (blue) and its underlying grid together with a tree of knowledge (red)

(see Figure 4). W.l.o.g we assume that all oriented points of the tree of knowledge are
oriented upwards (thus “true”).

All oriented points, which are not direct neighbours of a wire, are linked by a K2,2
(compare to Figures 5 and 6). This ensures dilation 1 between those points.

Figure 5 K2,2 be-
tween oriented points
with same orientation

Figure 6 K2,2 be-
tween oriented points
with different orientation

1

ε

≥ 1
2

≥ 1
2

Figure 7 A wire (blue) can not be
shortcut by K2,2s (green)

Let p and p′ be direct neighbours and p∗ a third non-neighbouring point. Since p∗ has
at least distance (0.5, 0.5) to p and p′, the K2,2s between p and p∗ and p′ and p∗ do not
affect that the wire between p and p′ ensures equal orientation of the neighbours (compare
to Figure 7).

The dilation of t(p) and b(p) is bounded by the dilation of p and its closest point p′. That
is 1, both if p, p′ are direct neighbours and not.

The two leaves of the tree of knowledge for every clause are not linked by a K2,2. Figure 8
shows the two leaves of the tree at a clause, and Gφ at the clause. We can assume that Gφ is
embedded as shown, in particular leaving the area directly above the clause empty. The two
leaves are now linked by a clause gadget. We show how such a gadget looks like in Figure 9,
more detailed in Figure 10.

EuroCG’24
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empty area

Figure 8 Embedded clause

L1 L2

L B R

SL SB
SR

Figure 9 Clause gadget

The oriented points L (left), R (right) and B (bottom) are the ends of the variable wires
of a clause. They are placed such that they lie just inside an ellipse with the locations of the
leaves L1 and L2 as foci, and without any other points in the ellipse (compare to Figures 8
and 9). Stated differently, the triangles with endpoints L1, L2 and one of these three points,
have nearly the same size, and any triangle with L1, L2, and a different oriented point has a
larger perimeter. Adding edges as shown in Figure 10 guarantees that to obtain a short cycle
through L1, L2 and one of these points, the orientation of that point has to be the same as
of L1 and L2 (thus, the literal is “true”.)

For each of {L, R, B} there exists a satellite point, which is an oriented point on the
variable wire, which is close but outside the ellipse. Its purpose is to make sure that
the oriented dilation of L1 (and likewise L2) with L, B and R is stays below t′ if if the
corresponding literal does not satisfy the clause. We omitted all K2,2 in the drawing. As
described before, a K2,2 exists between all unrelated oriented points, thus between all oriented
points where there are no edges drawn in the figure.

1
1
2

1
2

δ′
δ

δ′′

L1 L2

L

B

R

SL

SB

SR

Figure 10 Detailed clause gadget

By setting δ = 0.1335, δ′ = 0.0303 and δ′′ = 0.35, we obtain the following properties:
The dilation between one of the points L1, L2 and one of the points L, B, R is lower or
equal t′, as a smallest cycle containing those points can use the related satellite point.
If one of the oriented points L, B, R is oriented upwards, the dilation between L1 and
L2 is smaller than t′ := 1.043
If none of the oriented points L, B, R is oriented upwards, the smallest cycle containing
L1 and L2 either leaves the ellipse or takes at least two points from {L, B, R} and thus
their dilation is greater than t′.
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Thus, formula φ is satisfiable if and only if there exists an orientation of our constructed
graph with dilation at most 1.043. ◀

Following the construction in the proof of Theorem 2.1, Figure 11 illustrates the graph
for the formula φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) (see also Figure 4).

x1 x2 x3 x4

Figure 11 Graph constructed for φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) (compare to Figures 1
and 4): For visibility, oriented points are placed diagonally instead of vertically. Only for one point,
K2,2s are indicated by green parallelograms. If the oriented point at the end of the wire from x1

(blue) is –as indicated– oriented the same way as the tree of knowledge (red), this corresponds to
setting it to true, resulting in an oriented cycle in the clause gadget (purple) that gives a dilation
smaller than 1.043.

3 Bounding the dilation of tournaments

Buchin et al. [3] showed by example that there are (Euclidean) point sets for which no
oriented t-spanner exists for t < 2

√
3 − 2 ≈ 1.46. For every (metric) point set P , they give

an algorithm that returns a tournament −→
K(P ) on P with dilation odil(−→K(P )) ≤ 2.

Our goal is to improve these bounds on the worst-case dilation 2
√

3 − 2 ≤ t ≤ 2 of the
minimum dilation tournament. As a first step, we show a tight bound for sets of four points.

The complete graph on four points and its tournaments satisfy the following properties:

▶ Observation 3.1. For every undirected complete graph K4 holds:
K4 contains

(4
3
)

= 4 triangles.
Every pair of these triangles shares exactly one edge.

EuroCG’24
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Every strongly connected tournament −→
K4 contains exactly two consistently oriented

triangles. This means the triangle is confined by an oriented cycle.

The following theorem gives a tight bound on the dilation of minimum dilation tournament
on any metric point set of size four:

▶ Theorem 3.2. For every point set P of size |P | = 4 embedded in a metric plane there is a
tournament −→

K(P ) with dilation odil(−→K(P )) ≤ 3
2 . This bound is tight.

Proof. We prove that the following algorithm computes an tournament −→
K(P ) with dilation

odil(−→K(P )) ≤ 3
2 for a point set P = {p1, p2, p3, p4} embedded in a metric plane:

1. Let ∆p1p2p3 be the shortest and ∆p1p2p4 the second shortest triangle of the four triangles
in K4. Orient ∆p1p2p3 and ∆p1p2p4 consistently. That is always possible (compare to
observation 3.1).

2. Orient the remaining edge between p3 and p4 such that the shortest oriented cycle
C−→

K(P )(p3, p4) containing p3 and p4 is minimised.
By d(p, p′) we denote the weight of the edge between p and p′. Note that the weights satisfy
triangle inequality.

We distinct cases by the orientation of the edge between p3 and p4, meaning
|C−→

K(P )(p3, p4)| = d(p1, p2) + d(p2, p3) + d(p3, p4) + d(p1, p4) if

d(p1, p3) + d(p2, p4) ≤ d(p2, p3) + d(p1, p4), or (1)

|C−→
K(P )(p3, p4)| = d(p1, p2) + d(p2, p4) + d(p3, p4) + d(p1, p3) if

d(p1, p3) + d(p2, p4) > d(p2, p3) + d(p1, p4). (2)

We show case (1), the other case can be proven analogously.
Since ∆p1p2p3 and ∆p1p2p4 are the shortest triangles and they are oriented consistently,

the dilation of every pair of points is 1, except the pair p3, p4. So, we want to prove

t = odil(p3, p4) = d(p1, p2) + d(p2, p3) + d(p3, p4) + d(p1, p4)
min{|∆p3p4p1 |, |∆p3p4p2 |}

≤ 3
2 .

Assume |∆p3p4p2 | ≤ |∆p3p4p1 | otherwise the names of the points belonging to the shortest
and second shortest triangle can be swapped. Since ∆p1p2p3 and ∆p1p2p4 are the two shortest
triangles, it holds

d(p1, p2) + d(p1, p4) ≤ d(p3, p4) + d(p2, p3), and (3)
d(p1, p2) + d(p1, p3) ≤ d(p3, p4) + d(p2, p4). (4)

Summing up the inequalities 1, 3 and 4 we achieve

2d(p1, p3) + 2d(p1, p2) + d(p2, p4) ≤ 2d(p3, p4) + 2d(p2, p3) + d(p2, p4)
⇔ 2 (d(p1, p3) + d(p1, p2) + d(p2, p4) + d(p3, p4)) ≤ 4d(p3, p4) + 2 (d(p2, p3) + d(p2, p4))

∆-ineq.
≤ 3 (d(p3, p4) + d(p2, p3) + d(p2, p4))

⇔ odil(p3, p4) = d(p3,p4)+d(p1,p3)+d(p1,p2)+d(p2,p4)
d(p3,p4)+d(p2,p3)+d(p2,p4) ≤ 3

2 .

For tightness, we show there is a point set P with |P | = 4, such that every strongly
connected tournament on P has dilation t = 3

2 . The following metric give such an point set:
d(p1, p3) = d(p2, p3) = d(p3, p4) = 1 and d(p1, p2) = d(p1, p4) = d(p2, p4) = 2. Taking into
account mirroring and rotation, Figure 12 lists all strongly connected tournaments on P . We
see that every tournament is a 1.5-spanner. ◀
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Figure 12 A metric point set where every connected tournament is a 1.5-spanner

4 Conclusion

We have shown that orienting a given geometric graph to minimise the oriented dilation is
NP-hard. The complexity of this problem when restricting the graph class remains open. In
particular: Is the problem NP-hard for planar graphs, or for complete graphs?

In the second part of the paper we studied the oriented dilation of metric point sets of
size 4, i.e., with the K4 as underlying graph. We proved that the oriented dilation is at
most 1.5, while there are instances where it is tight. We know that in general the oriented
dilation of Kn on metric instances can be upper-bounded by 2. Is it strictly less than 2 also
for n > 4? Even for Euclidean instances this is open.

As noted in [3], in many applications some bi-directed edges might be allowed. This
opens up a whole new set of questions on the trade-off between dilation and the number of
bi-directed edges. Since this is a generalisation of the oriented case, our hardness proof also
applies to such models.

Acknowledgements. We thank Guangping Li and Marco Ricci for helpful discussions.
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