# Oriented dilation of undirected graphs 

Kevin Buchin ${ }^{1}$, Antonia Kalb ${ }^{1}$, Carolin Rehs ${ }^{1}$, and Andre Schulz ${ }^{2}$

1 Technical University of Dortmund<br>kevin.buchin, antonia.kalb, carolin.rehs@tu-dortmund.de<br>2 FernUniversität in Hagen<br>andre.schulz@fernuni-hagen.de


#### Abstract

Given an oriented graph $\vec{G}$ on a set of points $P$ in the Euclidean plane, the oriented dilation of $p, p^{\prime} \in P$ is the ratio of the length of the shortest cycle in $\vec{G}$ through $p$ and $p^{\prime}$ to the perimeter of the smallest triangle in $P$ containing $p$ and $p^{\prime}$. The oriented dilation of $\vec{G}$ is maximum oriented dilation over all pair of points. We show that given an undirected graph $G$ on $P$, it is NP-hard to decide whether the edges can be oriented in way that the oriented dilation of the resulting graph is below a given threshold. For the case that $G$ is complete, it is known that there is always an orientation of the edges with oriented dilation at most 2. As a first step towards improving this bound, we show that for $|P|=4$ there is always a tournament, i.e., an oriented complete graph, with oriented dilation at most 1.5 . This holds not only in the Euclidean but more generally in the metric plane. In the latter the bound is tight.


## 1 Introduction

Geometric spanners have may applications like wireless ad-hoc networks [4, 10], robot motion planning [5] and the analysis of road networks $[1,6]$. The need to orient edges naturally arise since edges might only support one-way communication/traffic. Thus, in such applications it may be necessary to find an orientation of the edges that still provides relatively short paths between vertices. While undirected spanners are a widely researched topic during the last decades (see [2, 9] for a survey), oriented spanners have been only introduced recently [3].

Given a point set in the Euclidean plane and a parameter $t$, an oriented $t$-spanner $\vec{G}$ is an oriented subgraph of the complete bi-directed graph, such that for every pair of points, the shortest cycle in $\vec{G}$ containing those points is at most a factor $t$ longer than their smallest triangle in the complete graph. Formally, given a point set $P \subset \mathbb{R}^{d}$ and a parameter $t \in \mathbb{R}^{+}$, an oriented graph $\vec{G}=(P, \vec{E})$ (thus a graph where $(u, v) \in \vec{E}$ implies $(v, u) \notin \vec{E})$ is called oriented $t$-spanner if for every two points $p, p^{\prime} \in P$ the oriented dilation $\operatorname{odil}\left(p, p^{\prime}\right)=\frac{\left|C_{\vec{G}}\left(p, p^{\prime}\right)\right|}{\left|\Delta\left(p, p^{\prime}\right)\right|} \leq t$. Here, $C_{\vec{G}}\left(p, p^{\prime}\right)$ denotes the shortest oriented cycle containing $p$ and $p^{\prime}$ in $\vec{G}$ and $\Delta\left(p, p^{\prime}\right)$ is the triangle $\Delta p p^{\prime} p^{\prime \prime}$ with $p^{\prime \prime}=\underset{p^{*} \in P}{\arg \min }\left|p-p^{*}\right|+\left|p^{*}-p^{\prime}\right|$.

The problem of finding an oriented $t$-spanner with at most some fixed number $m$ of edges is NP-hard [3], thus there is little hope to compute minimum oriented spanners efficiently. A natural approach for nonetheless computing an oriented spanner is to first compute a suitable undirected graph and then orienting it. For convex point sets, for instance, one can obtain an $\mathcal{O}(1)$-spanner by orienting a greedy triangulation [3]. However, no constructions are known to compute oriented spanners of small size for general point sets.

Here, we show that finding an orientation of an undirected graph such that the oriented dilation is minimal, is NP-hard even on Euclidean graphs. As our NP-hardness construction does not hold for complete graphs, we look into the oriented dilation of tournaments. As first step and potential building block for larger point sets, we show that for every point set

[^0]$P$ with $|P|=4$ even in a metric plane there is a tournament $\vec{K}(P)$ such that the oriented dilation of $\vec{K}(P)$ is at most 1.5. We further prove this bound to be tight.

## 2 Hardness

- Theorem 2.1. Given an undirected geometric graph $G$ and a parameter $t^{\prime}$, it is $N P$-hard to decide if there is an orientation $\vec{G}$ of $G$ with oriented dilation odil $(\vec{G}) \leq t^{\prime}$.

We will give a proof idea which is mainly described graphically here. A detailed proof with an explanation for the coordinates of every point can be found in the full version.

Proof sketch. We reduce from the NP-complete problem planar 3-SAT [8]. We start with a planar Boolean formula $\varphi$ in conjunctive normal form with an incidence graph $G_{\varphi}$ that can be embedded on a polynomial-size $1 \times 1$-grid [7, 8] as illustrated in Figure 1. We give a construction for a graph $G$ based on $G_{\varphi}$ such that there is an orientation $\vec{G}$ of $G$ with dilation $\operatorname{odil}(\vec{G}) \leq t^{\prime}$ with $t^{\prime}:=1.043$ if and only if $\varphi$ is satisfiable.


Figure 1 Example: Incidence graph of a planar 3-SAT formula embedded on a square grid

In the following, every point $p=(x, y)$ on the grid will be replaced by a so-called oriented point, which is a pair of points $P=\{t(p), b(p)\}$ with top $t(p)=\left(x, y+\frac{\varepsilon}{2}\right)$ and bottom $b(p)=\left(x, y-\frac{\varepsilon}{2}\right)$, where $\varepsilon \geq 0$ is a small constant. We will present the proof with $\varepsilon=0$, i.e., $t(p)$ and $b(p)$ are two points with the same coordinates, while using a small positive $\varepsilon$ in all figures for illustration purposes. This choice of $\varepsilon$ simplifies the proof. However, the proof stays valid for a sufficiently small $\varepsilon>0$.

We add an edge between $t(p)$ and $b(p)$, its orientation encodes whether this points represent "true" or "false". W.l.o.g. we assume that an oriented edge from $b(p)$ to $t(p)$, thus an upwards edge, represents "true" and a downwards edge represents "false". When this is not the case, we can achieve this by flipping the orientation of all edges.

Edges in the plane embedding of our formula graph $G_{\varphi}$ will be replaced by wire gadgets. First, we add (a polynomial number of) grid points on the edge such that all edges have length 1. Then, we create a wire as in Figure 2. Note that wires propagate the orientation of oriented points - if two points next to each other on a wire have different orientations, their dilation would be significantly larger than $t^{\prime}:=1.043$, since the shortest oriented cycle needs to go through an additional oriented point. If they have the same orientation, their dilation is 1 (since $\varepsilon=0$; otherwise slightly larger). To switch a signal (for a negated variable in a formula), we start the wire as in Figure 3.

To ensure that all clause gadgets encode the same orientation of oriented points as "true", we add a tree of knowledge. This is a tree with vertices on the $1 \times 1$-grid shifted by $(0.5,0.5)$ relative to the grid of $G_{\varphi}$ and with wires as edges. The tree will have two leaves per clause

$\square$ Figure 2 A wire where oriented points are oriented upwards

$\square$ Figure 3 A wire where the orientation is switched to negate the signal


Figure $4 G_{\varphi}$ (blue) and its underlying grid together with a tree of knowledge (red)
(see Figure 4). W.l.o.g we assume that all oriented points of the tree of knowledge are oriented upwards (thus "true").

All oriented points, which are not direct neighbours of a wire, are linked by a $K_{2,2}$ (compare to Figures 5 and 6 ). This ensures dilation 1 between those points.


Figure $5 \quad K_{2,2}$ between oriented points with same orientation


Figure $6 K_{2,2}$ between oriented points with different orientation


Figure 7 A wire (blue) can not be shortcut by $K_{2,2}$ S (green)

Let $p$ and $p^{\prime}$ be direct neighbours and $p^{*}$ a third non-neighbouring point. Since $p^{*}$ has at least distance $(0.5,0.5)$ to $p$ and $p^{\prime}$, the $K_{2,2}$ s between $p$ and $p^{*}$ and $p^{\prime}$ and $p^{*}$ do not affect that the wire between $p$ and $p^{\prime}$ ensures equal orientation of the neighbours (compare to Figure 7).

The dilation of $t(p)$ and $b(p)$ is bounded by the dilation of $p$ and its closest point $p^{\prime}$. That is 1 , both if $p, p^{\prime}$ are direct neighbours and not.

The two leaves of the tree of knowledge for every clause are not linked by a $K_{2,2}$. Figure 8 shows the two leaves of the tree at a clause, and $G_{\varphi}$ at the clause. We can assume that $G_{\varphi}$ is embedded as shown, in particular leaving the area directly above the clause empty. The two leaves are now linked by a clause gadget. We show how such a gadget looks like in Figure 9, more detailed in Figure 10.


Figure 8 Embedded clause


Figure 9 Clause gadget

The oriented points $L$ (left), $R$ (right) and $B$ (bottom) are the ends of the variable wires of a clause. They are placed such that they lie just inside an ellipse with the locations of the leaves $L_{1}$ and $L_{2}$ as foci, and without any other points in the ellipse (compare to Figures 8 and 9). Stated differently, the triangles with endpoints $L_{1}, L_{2}$ and one of these three points, have nearly the same size, and any triangle with $L_{1}, L_{2}$, and a different oriented point has a larger perimeter. Adding edges as shown in Figure 10 guarantees that to obtain a short cycle through $L_{1}, L_{2}$ and one of these points, the orientation of that point has to be the same as of $L_{1}$ and $L_{2}$ (thus, the literal is "true".)

For each of $\{L, R, B\}$ there exists a satellite point, which is an oriented point on the variable wire, which is close but outside the ellipse. Its purpose is to make sure that the oriented dilation of $L_{1}$ (and likewise $L_{2}$ ) with $L, B$ and $R$ is stays below $t^{\prime}$ if if the corresponding literal does not satisfy the clause. We omitted all $K_{2,2}$ in the drawing. As described before, a $K_{2,2}$ exists between all unrelated oriented points, thus between all oriented points where there are no edges drawn in the figure.


Figure 10 Detailed clause gadget

By setting $\delta=0.1335, \delta^{\prime}=0.0303$ and $\delta^{\prime \prime}=0.35$, we obtain the following properties:

- The dilation between one of the points $L_{1}, L_{2}$ and one of the points $L, B, R$ is lower or equal $t^{\prime}$, as a smallest cycle containing those points can use the related satellite point.
- If one of the oriented points $L, B, R$ is oriented upwards, the dilation between $L_{1}$ and $L_{2}$ is smaller than $t^{\prime}:=1.043$
- If none of the oriented points $L, B, R$ is oriented upwards, the smallest cycle containing $L_{1}$ and $L_{2}$ either leaves the ellipse or takes at least two points from $\{L, B, R\}$ and thus their dilation is greater than $t^{\prime}$.

Thus, formula $\varphi$ is satisfiable if and only if there exists an orientation of our constructed graph with dilation at most 1.043.

Following the construction in the proof of Theorem 2.1, Figure 11 illustrates the graph for the formula $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right)$ (see also Figure 4).


Figure 11 Graph constructed for $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right)$ (compare to Figures 1 and 4): For visibility, oriented points are placed diagonally instead of vertically. Only for one point, $K_{2,2 \mathrm{~S}}$ are indicated by green parallelograms. If the oriented point at the end of the wire from $x_{1}$ (blue) is -as indicated- oriented the same way as the tree of knowledge (red), this corresponds to setting it to true, resulting in an oriented cycle in the clause gadget (purple) that gives a dilation smaller than 1.043.

## 3 Bounding the dilation of tournaments

Buchin et al. [3] showed by example that there are (Euclidean) point sets for which no oriented $t$-spanner exists for $t<2 \sqrt{3}-2 \approx 1.46$. For every (metric) point set $P$, they give an algorithm that returns a tournament $\vec{K}(P)$ on $P$ with dilation odil $(\vec{K}(P)) \leq 2$.

Our goal is to improve these bounds on the worst-case dilation $2 \sqrt{3}-2 \leq t \leq 2$ of the minimum dilation tournament. As a first step, we show a tight bound for sets of four points.

The complete graph on four points and its tournaments satisfy the following properties:

- Observation 3.1. For every undirected complete graph $K_{4}$ holds:
- $K_{4}$ contains $\binom{4}{3}=4$ triangles.
- Every pair of these triangles shares exactly one edge.
- Every strongly connected tournament $\vec{K}_{4}$ contains exactly two consistently oriented triangles. This means the triangle is confined by an oriented cycle.

The following theorem gives a tight bound on the dilation of minimum dilation tournament on any metric point set of size four:

- Theorem 3.2. For every point set $P$ of size $|P|=4$ embedded in a metric plane there is a tournament $\vec{K}(P)$ with dilation $\operatorname{odil}(\vec{K}(P)) \leq \frac{3}{2}$. This bound is tight.
Proof. We prove that the following algorithm computes an tournament $\vec{K}(P)$ with dilation $\operatorname{odil}(\vec{K}(P)) \leq \frac{3}{2}$ for a point set $P=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ embedded in a metric plane:

1. Let $\Delta_{p_{1} p_{2} p_{3}}$ be the shortest and $\Delta_{p_{1} p_{2} p_{4}}$ the second shortest triangle of the four triangles in $K_{4}$. Orient $\Delta_{p_{1} p_{2} p_{3}}$ and $\Delta_{p_{1} p_{2} p_{4}}$ consistently. That is always possible (compare to observation 3.1).
2. Orient the remaining edge between $p_{3}$ and $p_{4}$ such that the shortest oriented cycle $C_{\vec{K}(P)}\left(p_{3}, p_{4}\right)$ containing $p_{3}$ and $p_{4}$ is minimised.
By $d\left(p, p^{\prime}\right)$ we denote the weight of the edge between $p$ and $p^{\prime}$. Note that the weights satisfy triangle inequality.

We distinct cases by the orientation of the edge between $p_{3}$ and $p_{4}$, meaning

- $\left|C_{\vec{K}(P)}\left(p_{3}, p_{4}\right)\right|=d\left(p_{1}, p_{2}\right)+d\left(p_{2}, p_{3}\right)+d\left(p_{3}, p_{4}\right)+d\left(p_{1}, p_{4}\right)$ if

$$
\begin{equation*}
d\left(p_{1}, p_{3}\right)+d\left(p_{2}, p_{4}\right) \leq d\left(p_{2}, p_{3}\right)+d\left(p_{1}, p_{4}\right), \text { or } \tag{1}
\end{equation*}
$$

- $\left|C_{\vec{K}(P)}\left(p_{3}, p_{4}\right)\right|=d\left(p_{1}, p_{2}\right)+d\left(p_{2}, p_{4}\right)+d\left(p_{3}, p_{4}\right)+d\left(p_{1}, p_{3}\right)$ if

$$
\begin{equation*}
d\left(p_{1}, p_{3}\right)+d\left(p_{2}, p_{4}\right)>d\left(p_{2}, p_{3}\right)+d\left(p_{1}, p_{4}\right) \tag{2}
\end{equation*}
$$

We show case (1), the other case can be proven analogously.
Since $\Delta_{p_{1} p_{2} p_{3}}$ and $\Delta_{p_{1} p_{2} p_{4}}$ are the shortest triangles and they are oriented consistently, the dilation of every pair of points is 1 , except the pair $p_{3}, p_{4}$. So, we want to prove

$$
t=\operatorname{odil}\left(p_{3}, p_{4}\right)=\frac{d\left(p_{1}, p_{2}\right)+d\left(p_{2}, p_{3}\right)+d\left(p_{3}, p_{4}\right)+d\left(p_{1}, p_{4}\right)}{\min \left\{\left|\Delta_{p_{3} p_{4} p_{1}}\right|,\left|\Delta_{p_{3} p_{4} p_{2}}\right|\right\}} \leq \frac{3}{2}
$$

Assume $\left|\Delta_{p_{3} p_{4} p_{2}}\right| \leq\left|\Delta_{p_{3} p_{4} p_{1}}\right|$ otherwise the names of the points belonging to the shortest and second shortest triangle can be swapped. Since $\Delta_{p_{1} p_{2} p_{3}}$ and $\Delta_{p_{1} p_{2} p_{4}}$ are the two shortest triangles, it holds

$$
\begin{array}{r}
d\left(p_{1}, p_{2}\right)+d\left(p_{1}, p_{4}\right) \leq d\left(p_{3}, p_{4}\right)+d\left(p_{2}, p_{3}\right), \text { and } \\
d\left(p_{1}, p_{2}\right)+d\left(p_{1}, p_{3}\right) \leq d\left(p_{3}, p_{4}\right)+d\left(p_{2}, p_{4}\right) . \tag{4}
\end{array}
$$

Summing up the inequalities 1,3 and 4 we achieve

$$
\begin{aligned}
2 d\left(p_{1}, p_{3}\right)+2 d\left(p_{1}, p_{2}\right)+d\left(p_{2}, p_{4}\right) & \leq 2 d\left(p_{3}, p_{4}\right)+2 d\left(p_{2}, p_{3}\right)+d\left(p_{2}, p_{4}\right) \\
\Leftrightarrow \quad 2\left(d\left(p_{1}, p_{3}\right)+d\left(p_{1}, p_{2}\right)+d\left(p_{2}, p_{4}\right)+d\left(p_{3}, p_{4}\right)\right) & \leq 4 d\left(p_{3}, p_{4}\right)+2\left(d\left(p_{2}, p_{3}\right)+d\left(p_{2}, p_{4}\right)\right) \\
& \Delta \text {-ineq. } \\
& \leq 3\left(d\left(p_{3}, p_{4}\right)+d\left(p_{2}, p_{3}\right)+d\left(p_{2}, p_{4}\right)\right) \\
\Leftrightarrow \quad \operatorname{odil}\left(p_{3}, p_{4}\right)=\frac{d\left(p_{3}, p_{4}\right)+d\left(p_{1}, p_{3}\right)+d\left(p_{1}, p_{2}\right)+d\left(p_{2}, p_{4}\right)}{d\left(p_{3}, p_{4}\right)+d\left(p_{2}, p_{3}\right)+d\left(p_{2}, p_{4}\right)} & \leq \frac{3}{2} .
\end{aligned}
$$

For tightness, we show there is a point set $P$ with $|P|=4$, such that every strongly connected tournament on $P$ has dilation $t=\frac{3}{2}$. The following metric give such an point set: $d\left(p_{1}, p_{3}\right)=d\left(p_{2}, p_{3}\right)=d\left(p_{3}, p_{4}\right)=1$ and $d\left(p_{1}, p_{2}\right)=d\left(p_{1}, p_{4}\right)=d\left(p_{2}, p_{4}\right)=2$. Taking into account mirroring and rotation, Figure 12 lists all strongly connected tournaments on $P$. We see that every tournament is a 1.5 -spanner.


Figure 12 A metric point set where every connected tournament is a 1.5 -spanner

## 4 Conclusion

We have shown that orienting a given geometric graph to minimise the oriented dilation is NP-hard. The complexity of this problem when restricting the graph class remains open. In particular: Is the problem NP-hard for planar graphs, or for complete graphs?

In the second part of the paper we studied the oriented dilation of metric point sets of size 4 , i.e., with the $K_{4}$ as underlying graph. We proved that the oriented dilation is at most 1.5, while there are instances where it is tight. We know that in general the oriented dilation of $K_{n}$ on metric instances can be upper-bounded by 2 . Is it strictly less than 2 also for $n>4$ ? Even for Euclidean instances this is open.

As noted in [3], in many applications some bi-directed edges might be allowed. This opens up a whole new set of questions on the trade-off between dilation and the number of bi-directed edges. Since this is a generalisation of the oriented case, our hardness proof also applies to such models.

Acknowledgements. We thank Guangping Li and Marco Ricci for helpful discussions.

- References

1 Boris Aronov, Kevin Buchin, Maike Buchin, Bart Jansen, Tom De Jong, Marc van Kreveld, Maarten Löffler, Jun Luo, Bettina Speckmann, and Rodrigo Ignacio Silveira. Connect the dot: Computing feed-links for network extension. J. Spatial Information Science, 3:3-31, 2011. doi:10.5311/JOSIS.2011.3.47.

2 Prosenjit Bose and Michiel Smid. On plane geometric spanners: A survey and open problems. Comput. Geom. Theory Appl., 46(7):818-830, 2013. doi:10.1016/j.comgeo.2013.04.002.
3 Kevin Buchin, Joachim Gudmundsson, Antonia Kalb, Aleksandr Popov, Carolin Rehs, André van Renssen, and Sampson Wong. Oriented spanners. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 26:1-26:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ESA.2023.26.

4 Martin Burkhart, Pascal Von Rickenbach, Rogert Wattenhofer, and Aaron Zollinger. Does topology control reduce interference? In Proc. 5th ACM Internat. Sympos. Mobile Ad Hoc Networking and Computing, pages 9-19, 2004. doi:10.1145/989459.989462.
5 Andrew Dobson and Kostas E. Bekris. Sparse roadmap spanners for asymptotically nearoptimal motion planning. Internat. J. Robotics Research, 33(1):18-47, 2014. doi:10.1177/ 0278364913498.

6 David Eppstein. Spanning trees and spanners. In Handbook of Computational Geometry, pages 425-461. Elsevier, 2000. doi:h10.1016/B978-044482537-7/50010-3.

## 65:8 Oriented dilation of undirected graphs

7 Michael Godau. On the complexity of measuring the similarity between geometric objects in higher dimensions. Dissertation, Free University Berlin, 1999. doi:10.17169/ refubium-7780.
8 David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329343, 1982. doi:10.1137/0211025.
9 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University Press, 2007. doi:10.1017/CBO9780511546884.
10 Christian Schindelhauer, Klaus Volbert, and Martin Ziegler. Geometric spanners with applications in wireless networks. Comput. Geom. Theory Appl., 36(3):197-214, 2007. doi:10.1016/j.comgeo.2006.02.001.


[^0]:    40th European Workshop on Computational Geometry, Ioannina, Greece, March 13-15, 2024.
    This is an extended abstract of a presentation given at EuroCG'24. It has been made public for the benefit of the community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

