
Pairwise Triangles Intersections in a Query
Rectangle

Waseem Akram1 and Sanjeev Saxena 2

1 Indian Institute of Technology, Kanpur(India)
akram@iitk.ac.in

2 Indian Institute of Technology, Kanpur(India)
ssax@iitk.ac.in

Abstract
The range searching problem is one of the most studied problems in computational geometry. In this
paper, we study the following range-searching problem. Given a set of n homothetic right-angled
triangles in the plane, we want to compute the pairs of triangles intersecting inside an axis-aligned
query rectangle. A triangle T is said to be homothetic to another triangle T ′ if T can be obtained
from T ′ using scaling and translation operations. We show that after preprocessing the given set in
O(n log n)-space and time, each subsequent query can be answered in O(log n + k)-time, where k is
the number of reported pairs.

1 Introduction

Range searching problems are fundamental in computational geometry and find applications
in numerous domains, including motion planning, robotics, and spatial databases [2, 4, 5].
The range searching problems involving orthogonal objects (points, line segments, rectangles)
have been well explored [3, 4, 7]. In this paper, we study a range-searching problem that
considers a class of non-orthogonal objects (homothetic triangles). A triangle T is said to be
homothetic to another triangle T ′ if T can be obtained from T ′ using scaling and translation
operations. The problem is defined as follows.

Given a set of n homothetic right-angled triangles with perpendicular sides parallel
to the coordinate axes, we want to preprocess the set so that, given an axis-aligned
query rectangle Q, all the pair of triangles (Ti, Tj) intersecting inside the rectangle Q

(i.e. Ti ∩ Tj ∩ Q ̸= ∅) can be reported efficiently.

This problem is a generalization of the problem studied in [4, 5], which asks to compute
all pairs of rectangles intersecting inside a query rectangle. Mark de Berg et al. [4] solved
the problem using O(n log n) space and O(log n log∗ n + k log n) query time, where k is the
output size. Oh and Ahn [5] improved the query time to O(log n + k) without aggravating
the space bound. The problem finds application in motion planning. A common application
scenario for such problems is described next. We can think that geometric objects are the
trajectories of moving objects (drones/airplanes in the sky or robots in a factory), and we
would like to know parts of trajectories where two entities may collide so that one can take
appropriate measures to avoid collisions. Furthermore, we likely want to ask this question
for a particular small region only.

Our Result: We show that after preprocessing in O(n log n)-space and time, each query
can be answered in O(log n + k)-time, where k is the number of reported pairs of triangles.
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

66:2 A Contribution to EuroCG 2024

Definitions and Notations

Let S = {T1, T2, . . . , Tn} be a set of n homothetic right-angled triangles in the plane such
that their orthogonal sides are parallel to the coordinate axes. Without loss of generality, we
assume that all the triangles are present in the first quadrant and their right-angled vertices
are at the bottom-left position (i.e., minimum x and minimum y coordinates). Let m be the
slope of the hypotenuses of the triangles in S. The horizontal, vertical, and hypotenuse sides
of a triangle Ti are denoted by hi, vi, and hyi respectively.

Let li be the line containing the segment hyi, and let l0 be the line passing through the
origin (0, 0) with slope m. For each i ∈ {1, 2, . . . , n}, we define the distance of the segment
hyi from the line l0, denoted by di, as the Euclidean distance between the parallel lines l0
and li. We say that Ti ⪯ Tj if di ≤ dj .

Let ab be a side of a triangle T ∈ S (with a and b as its endpoints). The stretch of ab,
denoted by a′b′, is the smallest segment of ab which contains all the intersection points of
the side ab with sides of other triangles of S. If ab has no intersection point, then stretch of
ab is undefined. Thus, a triangle in S can have at most three stretches, one for each side.
Let P ′ be the set of their endpoints. Note that |P ′| ≤ 6n. We say that a line segment s

crosses a rectangle Q if s ∩ Q ̸= ∅ and each endpoint lies outside Q (see Figure 1).

(b)(a) (c)

Figure 1 Segments s1 and s2 do not cross Q, while the segment s3 does.

2 Proposed Solution

We design a space-efficient data structure that supports queries in optimal time. Our
approach is similar to the one used in [5]. For a given query rectangle Q, we need to compute
all the pairs (Ti, Tj) of S such that Ti and Tj intersect each other inside Q. Observe that the
intersection of Ti and Tj , denoted by I(i, j), is also a triangle homothetic to the triangles in
S. We identify a few configurations for a given Q, which will be used to compute the output
set U(Q). The size of the set U(Q) is denoted by k(Q). For any pair (Ti, Tj) of triangles of
S with I(i, j) ∩ Q ̸= ∅, it can be seen that at least one of the following conditions holds. The
configurations have been depicted in Figure 2.

C1: Ti contains Q and Tj intersects Q or vice-versa.
C2: An endpoint of a stretch l of Ti (or Tj) lies in Q, and Tj (or Ti) intersects l ∩ Q.
C3: A stretch li of Ti and a stretch lj of Tj cross Q and intersect each other inside Q.
C4: I(i, j) contains a vertex of Q.
C5: The vertical sides of Q intersect the horizontal and hypotenuse sides of I(i, j), or the
horizontal sides of Q intersect the vertical and hypotenuse sides of I(i, j).

2.1 Data structures
We now build a set of data structures that will be used to compute the pairs of the
configurations mentioned above.

W. Akram and S. Saxena 66:3

Figure 2 The gray region denotes the intersection I(i, j) of Ti and Tj in each configuration. The
bold segment of a side denotes its stretch.

Enclosure Searching Problem: Given a set of geometric objects, the problem is to find the
objects o enclosing a query object q (i.e., q ∈ o). We preprocess the set S of triangles for
enclosure searching queries as described in [1]. Let Denc denotes the built data structure.
The structure Denc supports enclosure searching queries for points, line segments, and
trapezoids in O(log n + t)-time, where t is the number of reported triangles.
The Orthogonal Range Searching Problem: Given a set of points in the d-dimensional
space and an orthogonal rectangle, the problem is to find all the points lying inside the
rectangle. Chazelle [3] gave an optimal solution to the problem in the 2-dimensional
space, which takes O(log n + #output)-query time and O(n log n/ log log n)-space. We
build an orthogonal range reporting data structure for the set P ′ of stretch endpoints
using Chazelle’s method [3] and denote it by D′

r.
The Segment Intersection Problem: Given a set of line segments and a line segment q,
the segment intersection problem is to find the segments s intersected by the segment q

(i.e., s ∩ q ̸= ∅). The following result is due to Chazelle [3].

Theorem 1 in [3]: It is possible to preprocess n segments in O(n log n) time and
O(n)-space so that computing their intersections with a query segment that either
has a fixed slope or has its supporting line passing through a fixed point can be
done in O(k + log n) time, where k is the number of intersections to be reported. It
is assumed that the interior of the segments are pairwise disjoint.

We now describe an overview of the Chazelle’s solution. Given a set of pairwise (interior)
disjoint line segments, a planar subdivision is built. The subdivision is then preprocessed
for point location queries, which, given a point in the plane, finds the face of the subdivision
containing the point. Given a query segment, the face containing an endpoint of the
segment is located and one moves towards the other endpoint along the query segment.
The segments encountered on the way are exactly those which are intersected by the
query segment. The query takes O(log n + t)-time, where t is the output size: O(log n)
time for locating the face and O(t) time for reporting the segments. Note that if we know
the face containing an endpoint of the query segment, then query time would be O(t).
For more details, please see [3].
Let H ′ be the set of all horizontal stretches. We build two data structures Dv

h and Dhy
h

EuroCG’24

66:4 A Contribution to EuroCG 2024

over the set H ′ using Chazelle’s method [3]: Dv
h supports queries with vertical segments,

and Dhy
h supports queries with segments along the hypotenuse-sides. Similarly, we build

the structures Dh
v and Dhy

v over the set V ′ of all vertical stretches, and Dv
hy and Dh

hy over
the set H ′

y of all stretches with slope m. We keep two pointers with each stretch-endpoint
a′ ∈ P ′ to save time while answering a query. If a′ is an endpoint of a vertical stretch,
we store two pointers pointing to the faces of Dv

h and Dv
hy containing the endpoint a′.

Analogously, we store pointers for the endpoints of the other types of stretches.

2.2 Query Algorithms
Let Q be the query rectangle. A pair (Ti, Tj) with I(i, j) ∩ Q ̸= ∅ may belong to more than
one configurations. We denote by ki the number of Ci-pairs not belonging to any other
configuration Cj with j < i.
Reporting C1-pairs: We find the set E of the triangles enclosing Q by querying the data
structure Denc in O(log n+ |E|)-time. For each triangle Ti ∈ E, a triangle Tj ∈ S intersecting
Q would form a C1-pair with Ti. If the set E is empty, then no C1-pair exists. The triangles
Ti ∈ S intersecting Q can be computed in O(log n + #output)-time due to the Lemma 2.1.

▶ Lemma 2.1. We can preprocess the set S in O(n log n)-time and space so that given a query
rectangle Q, the triangles T ∈ S with T ∩ Q ̸= ∅ can be computed in O(log n + #output)-time.

▶ Corollary 2.2. Given a query rectangle Q, we can compute the C1-pairs for Q in O(log n +
k1)-time and O(n log n)-space.

Reporting C2-pairs: We find the stretches with an endpoint inside Q by querying the
structure D′

r. For each reported stretch l, we compute the triangles intersecting l ∩ Q using
the segment intersection structures. If l is the stretch of the vertical side of a triangle Ti,
we can compute the horizontal and hypotenuse sides intersecting l ∩ Q using Dv

h and Dv
hy,

respectively. The details are omitted due to the space limitations.

▶ Lemma 2.3. We can compute all C2-pairs for Q in O(log n + k2)-time.

Reporting C3-pairs: We first consider the simpler case of orthogonal stretches: a vertical
stretch li and a horizontal stretch lj crossing Q. We can compute such pairs of stretches in
O(log n + t)-time using 3-d range reporting queries [4, 6], where t is the number of reported
pairs. The space used is O(n log n/ log log n).

We now consider the case of computing all pairs (s1, s2), s1 ∈ H ′ and s2 ∈ H ′
y, such that

both stretches cross Q and intersect each other inside Q; the symmetric case of vertical and
hypotenuse stretches is analogous. We design a segment tree-based data structure and give
an algorithm that takes O(log n + #output)-time to find all such pairs. The space used by
the structure is O(n log n).

▶ Lemma 2.4. All the C3-pairs for Q can be computed in O(log n + k3)-time. The space
used is O(n log n).

Reporting C4-pairs: For each vertex of Q, we find the set of the triangles enclosing the
vertex using the structure Denc. If the set size is less than two, no pair of triangles enclosing
the vertex exists. Otherwise, every possible pair of triangles would be a C4-pair. Of course,
we make sure that each pair is reported once.

▶ Lemma 2.5. One can compute all C4-pairs for Q in O(log n + k4)-time.

W. Akram and S. Saxena 66:5

Reporting C5-pairs: We show how to find the C5-pairs (Ti, Tj) not belonging to any other
configuration such that the non-vertical sides of I(i, j) are intersected by the vertical sides of
Q. The C5-pairs of the other type can be computed analogously.

We build a segment tree T over S along the x-axis. Each node v ∈ T stores a vertical slab
SL(v) = [x, x′] × R2 such that the vertical slabs corresponding to the nodes of a particular
level form a partition of R2. We say that a triangle T ∈ S spans a slab SL(v) if T ∩SL(v) ̸= ∅
and none of its vertex lies in SL(v). We store two sets Sc(v) and Sb(v) at node v. The set
Sc(v) consists of the triangles T ∈ S such that T spans the slab SL(v) but not the slab of v’s
parent node. The set Sb(v) consists of the triangles T ∈ S such that one or both endpoints
of its horizontal side lies in SL(v). We denote by S(v) the union of the sets Sc(v) and Sb(v).
The segment tree T can be built in O(n log n)-time and space.

Consider a pair (Ti, Tj) of triangles of S with Ti ∩ Tj ∩ Q ̸= ∅. A node v in the tree T is
said to be a canonical node of (i, j, Q) if the left side lQ of the rectangle Q lies in the interior
or on the left side of SL(v), and Ti, Tj ∈ S(v) such that Ti ∈ Sc(v) or Tj ∈ Sc(v). We have
the following results related to the canonical nodes.

▶ Lemma 2.6. For each C5-pair (Ti, Tj) of Q such that the non-vertical sides of I(i, j)
intersect the vertical sides of Q, there is a canonical node of (i, j, Q) in T .

Proof. The proof is analogous to that of Lemma 3 in [5]. ◀

▶ Lemma 2.7. For any rectangle Q and any pair (Ti, Tj) of rectangles of S with I(i, j)∩Q ≠ ∅,
there is at most one canonical node of (i, j, Q) in T .

Proof. The proof is analogous to that of Lemma 4 in [5]. ◀

We have the following corollary from Lemma 2.6 and Lemma 2.7.

▶ Corollary 2.8. The total number of canonical nodes for a query rectangle Q is O(k(Q)).

▶ Remark. A node in T could be the canonical node for more than one pair (Ti, Tj) ∈ U(Q).
Given a rectangle Q, we compute a set of nodes of T that includes the unique canonical
node of (i, j, Q) for each C5-pair (Ti, Tj) not belonging to any other configuration such that
the non-vertical sides of Ti ∩ Tj intersect the vertical sides of Q. For each such node v, we
find all C5-pairs such that v is the canonical node of (i, j, Q).

Finding all canonical nodes for C5-pairs: We compute a set VQ of canonical nodes which
contains the canonical node of (i, j, Q) for every C5-pair (Ti, Tj). For computing such a set,
we define the trimmed polygon for a pair (T, v), T ∈ S(v), as the smallest simple polygon
containing the region T ∩ SL(v) ∩ U(v). Here, U(v) is the union of all the triangles in Sc(v)
except T if T ∈ Sc(v). See Figure 3 for examples. The trimmed polygon for (T, v) has at
most two sides with slope m; the number of horizontal and vertical sides are bounded above
by 2 and 3, respectively. We compute the required set VQ by finding the sides of all trimmed
polygons intersected by the left side Q (the details are omitted).

▶ Lemma 2.9. Given a query rectangle Q, we can find a set of at most k nodes containing
all canonical nodes of C5-pairs not belonging to any other configuration in O(log n + k) time.

Handling each canonical node to find all C5-pairs: Let VQ be the set of canonical nodes for
Q computed due to Lemma 2.9. We now compute all C5-pairs present at each node v ∈ VQ.
For this, we have the following lemma.

▶ Lemma 2.10. For each v ∈ VQ, we can compute all C5-pairs (Ti, Tj) such that v is the
canonical node of (i, j, Q) in O(k5)-time. The preprocessing takes O(n log n)-time and space.

EuroCG’24

66:6 A Contribution to EuroCG 2024

Figure 3 The trimmed polygon (dotted region) for (Tj , v) when (a) Tj ∈ Sb(v) and (b) Tj ∈ Sc(v).

We finally put together the results for all configurations and got the following theorem.

▶ Theorem 2.11. Given a set of n right-angled homothetic triangles, one can preprocess so
that all pairs of triangles intersecting inside a query rectangle can be computed in O(log n +
#output)-time. The space complexity is O(n log n).

References
1 Waseem Akram and Sanjeev Saxena. Dominance for containment problems. arXiv preprint

arXiv:2212.10247, 2022.
2 Kreveld Overmars Berg, Cheong. More Geometric Data Structures, pages 219–241. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-77974-2_10.
3 Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM Journal on

Computing, 15(3):703–724, 1986. doi:10.1137/0215051.
4 Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi. Finding pairwise intersec-

tions inside a query range. Algorithmica, 80(11):3253–3269, Nov 2018. doi:10.1007/
s00453-017-0384-3.

5 Eunjin Oh and Hee-Kap Ahn. Finding pairwise intersections of rectangles in a query rectangle.
Computational Geometry, 85:101576, 2019. doi:10.1016/j.comgeo.2019.101576.

6 Kalina Petrova and Robert Tarjan. A dynamic data structure for segment in-tersection
queries. URL: http://www.moi.math.bas.bg/moiuser/~ACCT2016/a41.pdf.

7 Saladi Rahul, Ananda Swarup Das, K. S. Rajan, and Kannan Srinathan. Range-aggregate
queries involving geometric aggregation operations. In WALCOM: Algorithms and Compu-
tation, pages 122–133, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-77974-2_10
https://doi.org/10.1137/0215051
https://doi.org/10.1007/s00453-017-0384-3
https://doi.org/10.1007/s00453-017-0384-3
https://doi.org/10.1016/j.comgeo.2019.101576
http://www.moi.math.bas.bg/moiuser/~ACCT2016/a41.pdf

	Introduction
	Proposed Solution
	Data structures
	Query Algorithms

