Algebraic and combinatorial bounds on the embedding number of distance graphs

Ioannis Emiris
"Athena" Research Center, and U. Athens
40th EuroCG, Ioannina, 15 March 2024

Outline

Definitions

Algebraic interlude

Graph orientations

Extensions

Distance graphs

NMR yields distances, hence 3D structure, in solution [Wüthrich, Chemistry Nobel'02]

Definitions

Minimally generically rigid graphs

Study simple undirected weighted graphs G : weights are distances.

- A Euclidean embedding $\rho: V \rightarrow \mathbb{R}^{d}$ of graph $G=(V, E, \lambda)$ respects edge lengths $\lambda_{u, v}=\|\rho(u)-\rho(v)\|,(u, v) \in E$.
- Complex embedding $\rho: V \rightarrow \mathbb{C}^{d}$:
$\lambda_{u, v}=\|\rho(u)-\rho(v)\|,(u, v) \in E$.
- G is (generically) rigid if the number of embeddings (for generic lengths) is finite modulo rigid transforms.
- G is minimally rigid if $G \backslash\{e\}, \forall e \in E$, is not rigid (flexible).

Rigid vs flexible graphs

Construction of minimally rigid graphs

$K_{3,3}$
Desargues

Cyclohexane

Given 6 distances and angles, or 12 distances (Laman count).
Algebraic bound $=16$: tight in \mathbb{R}^{3}.
4 conformations in nature [E,Mourrain'99:Algorithmica]

Edge count

Theorem (Maxwell:1864)

If $G=(V, E)$ is generically minimally rigid, and $|V|=n$, then

- $|E|=d \cdot n-\binom{d+1}{2}$, and
- $\left|E^{\prime}\right| \leq d \cdot\left|V^{\prime}\right|-\binom{d+1}{2}$, \forall vertex-induced subgraph $\left(V^{\prime}, E^{\prime}\right)$.
[Pollaczek-Geiringer] [Laman'70]
Equivalence in $d=2$, and
$d=3$ for simplicial polytopes [Gluck'75]
No equivalence generally in $d=3$:
Double banana, $n=8,|E|=18$.

Further question: count / enumerate the embeddings.

Small cases in \mathbb{R}^{2}

- The triangle has 2 embeddings (reflections).
- $n=6$: two "nontrivial" $\left(H_{2}\right)$ graphs:
- $K_{3,3}$ has 16 embeddings [Walter-Husty'07]
- Desargues' graph has 24 (3-prism, planar parallel robot) [Hunt'83] [Gosselin,Sefrioui,Richard'91] [Borcea,Streinu'04]

$n=7: 56$ conformations in $\mathbb{R}^{2}[\mathrm{E}$, Moroz'11]

Algebraic formulation

\#embeddings = \#solutions of a polynomial system expressing edge lengths, and $\binom{d+1}{2}+1$ constraints to fix the graph, remove scaling

$$
\begin{aligned}
& \text { in } \mathbb{R}^{2}:\left\{\begin{array}{l}
x_{1}=y_{1}=0, \\
x_{2}=1, y_{2}=0, \\
\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}=\lambda_{i j}^{2}, \quad(i, j) \in E .
\end{array}\right. \\
& \text { in } \mathbb{R}^{3}:\left\{\begin{array}{l}
x_{1}=y_{1}=z_{1}=0, \\
x_{2}=1, y_{2}=z_{2}=0, \\
z_{3}=0, \\
\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(z_{i}-z_{j}\right)^{2}=\lambda_{i j}^{2}, \quad(i, j) \in E .
\end{array}\right.
\end{aligned}
$$

Enumeration problem

- \#complex embeddings bounds \#Euclidean embeddings. Usually equal, exception is the Jackoson-Owen graph

- Bézout's (trivial) bound on quadratic system implies $O\left(2^{d n}\right)$.

Enumeration: lower bounds

- ... on real embedding numbers: $\Omega\left(2.381^{n}\right)$ for \mathbb{R}^{2}, $\Omega\left(2.639^{n}\right)$ for \mathbb{R}^{3} [Bartzos,E,Legersky,Tsigaridas'21]
- ... on complex embedding numbers: $\Omega\left(2.507^{n}\right)$ for \mathbb{C}^{2}, $\Omega\left(3.067^{n}\right)$ for \mathbb{C}^{3} [Grasegger et al.'20].

Enumeration: upper bounds

- Determinantal varieties [Harris,Tu'84]
- Determinantal variety on distance matrices [Borcea,Streinu'04]
- Mixed volume of Newton polytopes
[Steffens, Theopald'10] ignores roots at (toric) infinity:
$X_{i 1}^{2}+X_{i 2}^{2}=s_{i}, s_{i}+s_{j}-2 X_{i 1} X_{j 1}-2 X_{i 2} X_{j 2}=\lambda_{i j}^{2}$.
No asymptotic improvement on Bézout's.
- First improvement for $d \geq 5$ [Bartzos,E,Schicho'20] using multi-homogeneous Bézout and permanents.
- State of art: First improvement for all d by graph orientations [Bartzos,E,Vidunas'21-22]; namely $O\left(3.77^{n}\right)$ for $d=2$.

Decision problem

- Given complete set of exact distances: Embed- $\mathbb{R}^{d} \in \mathrm{P}$.
- Given incomplete set of exact distances [Saxe'79]:

Embed- $\mathbb{R} \in$ NP-hard. Reduction of set-partition.
Embed- $\mathbb{R}^{d} \in$ NP-hard, for $d \geq 2$, even if lengths $\in\{1,2\}$.

- Embed- $\mathbb{R}^{2} \in \mathrm{NP}$-hard for planar graphs with all lengths $=1$ [Cabello,Demaine,Rote'03]
- Given distances $\pm \epsilon$, approximate-Embed- $\mathbb{R}^{d} \in$ NP-hard [Moré,Wu'96]

Algebraic interlude

Multihomogeneous Bézout bound

Given a square system of m polynomials let A_{1}, \ldots, A_{n} be a partition of the variables, $m_{j}=\left|A_{j}\right|, m=m_{1}+\cdots+m_{n}$.

The i-th polynomial is homogeneous of degree $d_{i j}$ in A_{j}.
Let y_{1}, \ldots, y_{n} be symbolic parameters.
Then, the number of isolated roots in $\mathbb{P}^{m_{1}} \times \cdots \times \mathbb{P}^{m_{n}}$ is bounded by the coefficient of $y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}$ in

$$
\prod_{i=1}^{m}\left(d_{i 1} \cdot y_{1}+\cdots+d_{i n} \cdot y_{n}\right)
$$

$a_{1}^{2}-a_{2}+1, a_{1} a_{2}-2:\left(2 y_{1}+y_{2}\right) \cdot\left(y_{1}+y_{2}\right)=2 y_{1}^{2}+3 y_{1} y_{2}+y_{2}^{2}$.

Multihomogeneous system

Embedding coordinates $X_{v} \in \mathbb{C}^{d}, v \in V$:
$\sum_{i=1}^{d} X_{v i}^{2}=s_{v}, v \in V_{i} \quad s_{u}+s_{v}-2\left\langle X_{u}, X_{v}\right\rangle=\lambda_{u v}^{2},(u, v) \in E$.
n variable subsets $\left\{X_{v}, s_{v}\right\}$, symbolic parameter y_{v}.
Fix K_{d} (d vertices) thus defining $\left(V^{\prime}, E^{\prime}\right)$.
Then:

$$
\prod_{i=1}^{n-d} 2 y_{i} \cdot \prod_{k=1}^{\left|E^{\prime}\right|}\left(y_{k_{1}}+y_{k_{2}}\right)=2^{n-d} \prod_{i=1}^{n-d} y_{i} \cdot \prod_{k=1}^{\left|E^{\prime}\right|}\left(y_{k_{1}}+y_{k_{2}}\right)
$$

m -Bézout $=$ coefficient of $y_{1}^{d} \cdots y_{n-d}^{d}$ in product of sums $\times 2^{n-d}$.

Permanent method

Given $m \times m$ matrix A, per $(A)=\sum_{\sigma \in S_{m}} \prod_{i=1}^{m} A_{i, \sigma(i)}$.

Theorem

Let A contain degrees $d_{i j}$. The m-Bézout bound equals

$$
\operatorname{per}(A) /\left(m_{1}!\cdots m_{n}!\right) .
$$

For rigid graphs this becomes $2^{n-d} \cdot \operatorname{per}(A) / d!^{n-d}$.
Using permanent bounds [Brègman-Minc'63,'73], m-Bézout improves Bézout's bound for $d \geq 5$ [Bartzos,E,Schicho]

Desargues

per $(A)=32$, actual embeddings $c_{2}(G)=24, c_{S^{2}}(G)=32$

	$(1,3)$	$(2,3)$	$(1,5)$	$(2,6)$	$(3,4)$	$(4,5)$	$(4,6)$	$(5,6)$
x_{3}	1	1	0	0	1	0	0	0
y_{3}	1	1	0	0	1	0	0	0
x_{4}	0	0	0	0	1	1	1	0
y_{4}	0	0	0	0	1	1	1	0
x_{5}	0	0	1	0	0	1	0	1
y_{5}	0	0	1	0	0	1	0	1
x_{6}	0	0	0	1	0	0	1	1
y_{6}	0	0	0	1	0	0	1	1

Graph orientations

Orientations and m-Bézout

Observation [Bartzos,E,Schicho'20]
For rigid $G(V, E)$, fixed $K_{d}=\left(v_{1}, \ldots v_{d}\right)$, let $G^{\prime}=\left(V, E \backslash E\left(K_{d}\right)\right)$.
Set $B=$ \#orientations of G^{\prime}, constrained so that:

- the outdegree of v_{1}, \ldots, v_{d} is 0 ,
- the outdegree of every $v_{i} \in V \backslash V\left(K_{d}\right)$ is d.

Then, B equals the coefficient of $y_{1}^{d} \cdots y_{n-d}^{d}$ in

$$
\prod_{k=1}^{\left|E^{\prime}\right|}\left(y_{k_{1}}+y_{k_{2}}\right)
$$

Corollary. The embedding number of G in \mathbb{C}^{d} is bounded by $2^{n-d} B$

Desargues

$d=2$, fixed K_{2} is the dashed edge,
$B=2$ orientations $\Rightarrow 2 \cdot 2^{6-2}=32$ bound, actually 24 real/complex embeddings [Hunt'83].

Pseudographs

A pseudograph $L(U, F, H)$ is a collection s.t.

- U is the set of vertices
- F is a set of (normal) edges (u, v)
- H is a set of hanging (half) edges (u)

The normal subgraph $G^{\prime}(U, F)$ is connected.

Example: Fixed $e^{*}=\left(v_{1}, v_{2}\right) \in E . U=V \backslash\left\{v_{1}, v_{2}\right\}$, $F=\left\{e \in E: v_{1}, v_{2} \notin e^{*}\right\}, H=\left\{e \in E: v_{1}\right.$ xor $\left.v_{2} \in e^{*}\right\}$

Count constrained orientations

- Elimination step removes $\ell \geq 1$ vertices, and 2ℓ adjacent edges, keeping the pseudograph connected.
- Deleted/Hanging edges directed towards removed vertex.
- Cost = \#pseudographs generated per step
- The product of costs bounds $B=\#$ constrained orientations.
- Vertex and Path elimination steps:

Bound on orientations

Theorem (Bartzos, E,Vidunas'20)

For pseudographs of n vertices, k hanging edges, $B \leq \alpha_{d}^{n} \cdot \beta_{d}^{k-1}$:

$$
\alpha_{d}=\max _{p \geq d}\left(2^{p-d}\binom{p}{d}^{2 d-3}\right)^{1 /(2 p-3)}, \beta_{d}=\left(2 /\binom{p}{d}^{2}\right)^{1 /(2 p-3)}
$$

for p maximizing α_{d}; note $\beta_{d}<1$.
Corollary For Laman graphs, \#complex embeddings
$\leq\left(4 \cdot(3 / 4)^{1 / 5}\right)^{n-2}=O\left(3.776^{n}\right)$.

Asymptotic bounds

Complex embedding number $=O\left(b^{n}\right)$, where b is as follows:

$d=$	2	3	4	5	6
[Bartzos,E,Vidunas'21]	3.776	6.840	12.69	23.90	45.53
[Bartzos,E,Schicho'20]	4.899	8.944	16.73	31.75	60.79
Bézout	4	8	16	32	64

Same results for spherical embeddings.

Extensions

Distance matrix

Square matrix M, with real entries, $M_{i i}=0, M_{i j}=M_{j i} \geq 0$.
M is embeddable in \mathbb{R}^{d} iff \exists points $p_{i} \in \mathbb{R}^{d}: M_{i j}=\frac{1}{2} \operatorname{dist}\left(p_{i}, p_{j}\right)^{2}$.
Theorem (Cayley'41,Menger'28)
M embeds in \mathbb{R}^{d} for min d, iff Cayley-Menger (border) matrix has

$$
\operatorname{rank}\left[\begin{array}{cc}
0 & 1 \\
1 & M
\end{array}\right]=d+2
$$

and, for any $(k+1) \times(k+1)$ border minor D :

$$
(-1)^{k} D \geq 0, \quad k=2, \ldots, d+1 .
$$

The latter are strict inequalities iff d is minimum.

Approximate input

Model noisy distances by intervals.

Improve upper/lower bounds by triangular/tetrangular inequalities. Use graph algorithms (e.g. All-min-paths) [Havel]

Structure-preserving matrix perturbations.

Theorem. [Wicks,Decarlo'95] Given matrix and specific entries allowed to change, we can compute a continuous, locally differentiable function minimizing σ_{n}.

Method applied for $\sigma_{n}, \sigma_{n-1}, \ldots, \sigma_{n-5}$ [Nikitopoulos,E'02]

Incomplete data

Embedding is equivalent to completing an incomplete matrix so as to get a PSD Gram (or distance) matrix: expressed as feasibility of a PSD program.

Complexity:

- Solving PSD programs with arbitrary precision $\in P_{\mathbb{R}}$ (interior-point or ellipsoid algorithms).
- Recall: interior-point, ellipsoid algorithms for LP are in $\mathrm{P}_{\text {bit }}$.
- Open whether LP in $\mathrm{P}_{\mathbb{R}}$ (strong polytime).

Chordal Graphs

- A graph is chordal if it contains NO empty cycle of length ≥ 4.
- Thm [Grone,Sa,Johnson,Wolkowitz' 84] [Bakonyi,Johnson'95] Every partial distance matrix with graph G has valid completion iff G is chordal. $[\Leftarrow]$ poly-time algorithm [Laurent'98]
- Thm [Laurent] If \#edges needed to make G chordal is $O(1)$, then distance-matrix completion $\in \mathrm{P}_{\text {bit }}$.
- Generally, minimizing \#edges to make G chordal is NP-hard.

Contributions / Further questions

- First nontrivial upper bounds on embedding number.
- Closed formula of upper bound on graph orientations.
- m-Bézout bound better than by permanent
- Tensegrity: edge weight correspond to intervals
- Specific counts, Global rigidity (unique embedding)
- Polynomial-time cases of permanent

Thank you!

SoCG

11-14 June
Athens,Greece

See you in Athens for SoCG / CG-Week 2024

