Algebraic and combinatorial bounds on the embedding number of distance graphs

Ioannis Emiris "Athena" Research Center, and U. Athens

40th EuroCG, Ioannina, 15 March 2024

Outline

Definitions

Algebraic interlude

Graph orientations

Extensions

Distance graphs

NMR yields distances, hence 3D structure, in solution [Wüthrich, Chemistry Nobel'02]

Definitions

Study simple undirected weighted graphs G: weights are distances.

- A Euclidean embedding ρ: V → ℝ^d of graph G = (V, E, λ) respects edge lengths λ_{u,v} = ||ρ(u) − ρ(v)||, (u, v) ∈ E.
- Complex embedding $\rho: V \to \mathbb{C}^d$: $\lambda_{u,v} = \|\rho(u) - \rho(v)\|, (u,v) \in E.$
- *G* is (generically) rigid if the number of embeddings (for generic lengths) is finite modulo rigid transforms.
- G is minimally rigid if $G \setminus \{e\}, \forall e \in E$, is not rigid (flexible).

Rigid vs flexible graphs

Construction of minimally rigid graphs

*K*_{3,3}

Desargues

Cyclohexane

Given 6 distances and angles, or 12 distances (Laman count). Algebraic bound = 16: tight in \mathbb{R}^3 . 4 conformations in nature [E,Mourrain'99:Algorithmica]

Edge count

Theorem (Maxwell:1864)

If G = (V, E) is generically minimally rigid, and |V| = n, then

•
$$|E| = d \cdot n - {d+1 \choose 2}$$
, and
• $|E'| \le d \cdot |V'| - {d+1 \choose 2}$, \forall vertex-induced subgraph (V'

[Pollaczek-Geiringer] [Laman'70] Equivalence in d = 2, and d = 3 for simplicial polytopes [Gluck'75]

No equivalence generally in d = 3: Double banana, n = 8, |E| = 18.

E').

Further question: count / enumerate the embeddings.

Small cases in \mathbb{R}^2

- The triangle has 2 embeddings (reflections).
- n = 6: two "nontrivial" (H_2) graphs:
 - K_{3,3} has 16 embeddings [Walter-Husty'07]
 - Desargues' graph has 24 (3-prism, planar parallel robot)
 [Hunt'83] [Gosselin,Sefrioui,Richard'91] [Borcea,Streinu'04]

n = 7: 56 conformations in \mathbb{R}^2 [E,Moroz'11]

Algebraic formulation

#embeddings = #solutions of a polynomial system expressing edge lengths, and $\binom{d+1}{2} + 1$ constraints to fix the graph, remove scaling

in
$$\mathbb{R}^2$$
:
$$\begin{cases} x_1 = y_1 = 0, \\ x_2 = 1, y_2 = 0, \\ (x_i - x_j)^2 + (y_i - y_j)^2 = \lambda_{ij}^2, \quad (i, j) \in E. \end{cases}$$
$$\begin{cases} x_1 = y_1 = z_1 = 0, \\ 1 = y_1 = z_1 = 0, \end{cases}$$

$$\ln \mathbb{R}^3: \begin{cases} x_1 = y_1 = z_1 = 0, \\ x_2 = 1, y_2 = z_2 = 0, \\ z_3 = 0, \\ (x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 = \lambda_{ij}^2, \quad (i, j) \in E. \end{cases}$$

Enumeration problem

#complex embeddings bounds #Euclidean embeddings.
 Usually equal, exception is the Jackoson-Owen graph

• Bézout's (trivial) bound on quadratic system implies $O(2^{dn})$.

Enumeration: lower bounds

- ... on real embedding numbers: $\Omega(2.381^n)$ for \mathbb{R}^2 , $\Omega(2.639^n)$ for \mathbb{R}^3 [Bartzos, E, Legersky, Tsigaridas'21]
- ... on complex embedding numbers: $\Omega(2.507^n)$ for \mathbb{C}^2 , $\Omega(3.067^n)$ for \mathbb{C}^3 [Grasegger et al.'20].

Enumeration: upper bounds

- Determinantal varieties [Harris, Tu'84]
- Determinantal variety on distance matrices [Borcea, Streinu'04]
- Mixed volume of Newton polytopes
 [Steffens, Theopald'10] ignores roots at (toric) infinity:
 X²_{i1} + X²_{i2} = s_i, s_i + s_j 2X_{i1}X_{j1} 2X_{i2}X_{j2} = λ²_{ij}.

No asymptotic improvement on Bézout's.

- First improvement for d ≥ 5 [Bartzos,E,Schicho'20] using multi-homogeneous Bézout and permanents.
- State of art: First improvement for all d by graph orientations [Bartzos,E,Vidunas'21-22]; namely $O(3.77^n)$ for d = 2.

Decision problem

- Given *complete* set of exact distances: Embed- $\mathbb{R}^d \in \mathsf{P}$.
- Given incomplete set of exact distances [Saxe'79]: Embed-ℝ ∈ NP-hard. Reduction of set-partition. Embed-ℝ^d ∈ NP-hard, for d ≥ 2, even if lengths ∈ {1,2}.
- Embed- $\mathbb{R}^2 \in NP$ -hard for planar graphs with all lengths = 1 [Cabello,Demaine,Rote'03]
- Given distances ±e, approximate-Embed-ℝ^d ∈ NP-hard [Moré,Wu'96]

Algebraic interlude

Given a square system of *m* polynomials let A_1, \ldots, A_n be a partition of the variables, $m_j = |A_j|$, $m = m_1 + \cdots + m_n$.

The *i*-th polynomial is homogeneous of degree d_{ij} in A_j .

Let y_1, \ldots, y_n be symbolic parameters.

Then, the number of isolated roots in $\mathbb{P}^{m_1} \times \cdots \times \mathbb{P}^{m_n}$ is bounded by the coefficient of $y_1^{m_1} \cdots y_n^{m_n}$ in

$$\prod_{i=1}^m (d_{i1} \cdot y_1 + \cdots + d_{in} \cdot y_n).$$

 $a_1^2 - a_2 + 1$, $a_1a_2 - 2$: $(2y_1 + y_2) \cdot (y_1 + y_2) = 2y_1^2 + 3y_1y_2 + y_2^2$.

Embedding coordinates $X_v \in \mathbb{C}^d$, $v \in V$:

 $\sum_{i=1}^{d} X_{vi}^2 = s_v, \ v \in V; \quad s_u + s_v - 2\langle X_u, X_v \rangle = \lambda_{uv}^2, \ (u, v) \in E.$

n variable subsets $\{X_v, s_v\}$, symbolic parameter y_v .

Fix K_d (*d* vertices) thus defining (V', E').

Then:

$$\prod_{i=1}^{n-d} 2y_i \cdot \prod_{k=1}^{|E'|} (y_{k_1} + y_{k_2}) = 2^{n-d} \prod_{i=1}^{n-d} y_i \cdot \prod_{k=1}^{|E'|} (y_{k_1} + y_{k_2}),$$

m-Bézout = coefficient of $y_1^d \cdots y_{n-d}^d$ in product of sums $\times 2^{n-d}$.

Given $m \times m$ matrix A, per $(A) = \sum_{\sigma \in S_m} \prod_{i=1}^m A_{i,\sigma(i)}$.

Theorem

Let A contain degrees d_{ij} . The m-Bézout bound equals per (A) / ($m_1! \cdots m_n!$).

For rigid graphs this becomes $2^{n-d} \cdot \text{per } (A) / d!^{n-d}$.

Using permanent bounds [Brègman-Minc'63,'73], m-Bézout improves Bézout's bound for $d \ge 5$ [Bartzos,E,Schicho]

Desargues

per	(A) = 32,	actual	embeddings	$c_2(G)$	= 24,	$c_{S^2}(G)$	= 32
-----	-----------	--------	------------	----------	-------	--------------	------

	(1,3)	(2,3)	(1, 5)	(2,6)	(3,4)	(4,5)	(4,6)	(5,6)
<i>X</i> 3	1	1	0	0	1	0	0	0
<i>y</i> 3	1	1	0	0	1	0	0	0
<i>X</i> 4	0	0	0	0	1	1	1	0
<i>Y</i> 4	0	0	0	0	1	1	1	0
X_5	0	0	1	0	0	1	0	1
<i>Y</i> 5	0	0	1	0	0	1	0	1
x_6	0	0	0	1	0	0	1	1
<i>Y</i> 6	0	0	0	1	0	0	1	1

Graph orientations

Observation [Bartzos, E, Schicho'20] For rigid G(V, E), fixed $K_d = (v_1, \dots v_d)$, let $G' = (V, E \setminus E(K_d))$. Set B = #orientations of G', constrained so that:

- the outdegree of v_1, \ldots, v_d is 0,
- the outdegree of every $v_i \in V \setminus V(K_d)$ is d.

Then, *B* equals the coefficient of $y_1^d \cdots y_{n-d}^d$ in

$$\prod_{k=1}^{|E'|} (y_{k_1} + y_{k_2}).$$

Corollary. The embedding number of G in \mathbb{C}^d is bounded by $2^{n-d}B$

d = 2, fixed K_2 is the dashed edge, B = 2 orientations $\Rightarrow 2 \cdot 2^{6-2} = 32$ bound, actually 24 real/complex embeddings [Hunt'83].

Pseudographs

A pseudograph L(U, F, H) is a collection s.t.

- *U* is the set of vertices
- F is a set of (normal) edges (u, v)
- *H* is a set of *hanging* (*half*) *edges* (*u*)

The normal subgraph G'(U, F) is connected.

Example: Fixed $e^* = (v_1, v_2) \in E$. $U = V \setminus \{v_1, v_2\}$, $F = \{e \in E : v_1, v_2 \notin e^*\}$, $H = \{e \in E : v_1 \text{ xor } v_2 \in e^*\}$

Count constrained orientations

- Elimination step removes ℓ ≥ 1 vertices, and 2ℓ adjacent edges, keeping the pseudograph connected.
- Deleted/Hanging edges directed towards removed vertex.
- Cost = #pseudographs generated per step
- The product of costs bounds B = # constrained orientations.
- Vertex and Path elimination steps:

Theorem (Bartzos, E, Vidunas'20)

For pseudographs of n vertices, k hanging edges, $B \leq \alpha_d^n \cdot \beta_d^{k-1}$:

$$\alpha_d = \max_{p \ge d} \left(2^{p-d} \begin{pmatrix} p \\ d \end{pmatrix}^{2d-3} \right)^{1/(2p-3)}, \ \beta_d = \left(2/\binom{p}{d}^2 \right)^{1/(2p-3)}$$

for p maximizing α_d ; note $\beta_d < 1$.

Corollary For Laman graphs, #complex embeddings $\leq (4 \cdot (3/4)^{1/5})^{n-2} = O(3.776^n).$

Complex embedding number $= O(b^n)$, where b is as follows:

<i>d</i> =	2	3	4	5	6
[Bartzos,E,Vidunas'21]	3.776	6.840	12.69	23.90	45.53
[Bartzos,E,Schicho'20]	4.899	8.944	16.73	31.75	60.79
Bézout	4	8	16	32	64

Same results for spherical embeddings.

Extensions

Distance matrix

Square matrix M, with real entries, $M_{ii} = 0$, $M_{ij} = M_{ji} \ge 0$. M is embeddable in \mathbb{R}^d iff \exists points $p_i \in \mathbb{R}^d$: $M_{ij} = \frac{1}{2} \operatorname{dist}(p_i, p_j)^2$. **Theorem (Cayley'41,Menger'28)**

M embeds in \mathbb{R}^d for min d, iff Cayley-Menger (border) matrix has

rank
$$\begin{bmatrix} 0 & 1 \\ 1 & M \end{bmatrix} = d + 2,$$

and, for any $(k + 1) \times (k + 1)$ border minor D:

$$(-1)^k D \ge 0, \quad k = 2, \dots, d+1.$$

The latter are strict inequalities iff d is minimum.

Model noisy distances by intervals.

Improve upper/lower bounds by triangular/tetrangular inequalities. Use graph algorithms (e.g. All-min-paths) [Havel]

Structure-preserving matrix perturbations.

Theorem. [Wicks,Decarlo'95] Given matrix and specific entries allowed to change, we can compute a continuous, locally differentiable function minimizing σ_n .

Method applied for $\sigma_n, \sigma_{n-1}, \ldots, \sigma_{n-5}$ [Nikitopoulos,E'02]

Embedding is equivalent to **completing** an incomplete matrix so as to get a PSD Gram (or distance) matrix: expressed as **feasibility** of a PSD program.

Complexity:

- Solving PSD programs with arbitrary precision ∈ P_ℝ (interior-point or ellipsoid algorithms).
- Recall: interior-point, ellipsoid algorithms for LP are in P_{bit}.
- Open whether LP in $P_{\mathbb{R}}$ (strong polytime).

Chordal Graphs

- A graph is chordal if it contains NO empty cycle of length \geq 4.
- Thm [Grone,Sa,Johnson,Wolkowitz'84] [Bakonyi,Johnson'95] Every partial distance matrix with graph G has valid completion iff G is chordal.
 [⇐] poly-time algorithm [Laurent'98]
- Thm [Laurent] If #edges needed to make G chordal is O(1), then distance-matrix completion ∈ P_{bit}.
- Generally, minimizing #edges to make G chordal is NP-hard.

- First nontrivial upper bounds on embedding number.
- Closed formula of upper bound on graph orientations.
- m-Bézout bound better than by permanent
- Tensegrity: edge weight correspond to intervals
- Specific counts, Global rigidity (unique embedding)
- Polynomial-time cases of permanent

Thank you!

See you in Athens for SoCG / CG-Week 2024