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Distance graphs

NMR vyields distances, hence 3D structure, in solution
[Wiithrich, Chemistry Nobel'02]



Definitions




Minimally generically rigid graphs

Study simple undirected weighted graphs G: weights are distances.

e A Euclidean embedding p: V — RY of graph G = (V, E, \)
respects edge lengths A, , = ||p(u) — p(v)||, (u,v) € E.

e Complex embedding p: V — C¢:
Auy = [lp(u) = p(V)II, (v, v) € E.

e G is (generically) rigid if the number of embeddings (for
generic lengths) is finite modulo rigid transforms.

e G is minimally rigid if G\ {e}, Ve € E, is not rigid (flexible).



Rigid vs flexible graphs

Ks3 Desargues



Cyclohexane

Given 6 distances and angles, or 12 distances (Laman count).
Algebraic bound = 16: tight in R3.
4 conformations in nature [E,Mourrain'99:Algorithmica]



Theorem (Maxwell:1864)
IfG=(V,E)is , and |V| = n, then

o [E|=d n— ("], and
o [E'|<d-|V|- (dgl), Vvertex-induced subgraph (V', E').

[Pollaczek-Geiringer] [Laman'70]
Equivalence in d = 2, and
d = 3 for simplicial polytopes [Gluck'75]

No equivalence generally in d = 3:
Double banana, n =8, |E| = 18.

Further question: count / enumerate the embeddings.



Small cases in R?

e The triangle has 2 embeddings (reflections).

e 1 = 6: two "nontrivial" (H>) graphs:
— K33 has 16 embeddings [Walter-Husty'07]
— Desargues’ graph has 24 (3-prism, planar parallel robot)
[Hunt'83] [Gosselin,Sefrioui,Richard'91] [Borcea,Streinu'04]




7: 56 conformations
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Algebraic formulation

#embeddings = #£solutions of a polynomial system expressing edge

d+1

lengths, and (%

) + 1 constraints to fix the graph, remove scaling

X1 =W :0,
inNR?:{ x=1,y»p =0,
(Xi _Xj)2 +(Yi _yj)2 = )‘37 (’71) cE.

X1:y1221:0,
RS - xx =1,y =2 =0,
. 23207

(i = %)* + (vi = %) + (21— z)? = AF, (i) € E.




Enumeration problem

e Fcomplex embeddings bounds #Euclidean embeddings.
Usually equal, exception is the Jackoson-Owen graph

/
T
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e Bézout's (trivial) bound on quadratic system implies O(29").
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Enumeration: lower bounds

e ...on real embedding numbers: Q(2.381") for R?,
Q(2.639") for R3 [Bartzos,E,Legersky, Tsigaridas'21]

e ...on complex embedding numbers: Q(2.507") for C2,
Q(3.067") for C3 [Grasegger et al.20].
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Enumeration: upper bounds

e Determinantal varieties [Harris, Tu'84]
e Determinantal variety on distance matrices [Borcea,Streinu’04]

e Mixed volume of Newton polytopes
[Steffens, Theopald'10] ignores roots at (toric) infinity:
XA + X5 = si, si+ 55— 2Xin Xj1 — 2XinXj2 = Aj.

No asymptotic improvement on Bézout's.

e First improvement for d > 5 [Bartzos,E,Schicho'20] using
multi-homogeneous Bézout and permanents.

e State of art: First improvement for all d by graph orientations
[Bartzos,E,Vidunas'21-22]; namely O(3.77") for d = 2.
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Decision problem

e Given complete set of exact distances: Embed-RY & P.

e Given incomplete set of exact distances [Saxe'79]:
Embed-R &€ NP-hard. Reduction of set-partition.
Embed-R? € NP-hard, for d > 2, even if lengths € {1,2}.

Embed-R? € NP-hard for planar graphs with all lengths = 1
[Cabello,Demaine,Rote’03]

Given distances +¢, approximate-Embed-R? & NP-hard
[Moré,Wu'96]
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Algebraic interlude




Multihomogeneous Bézout bound

Given a square system of m polynomials let A;,..., A, be a
partition of the variables, m; = |A;

, m=my +---+ mp.
The i-th polynomial is homogeneous of degree dj; in A;.
Let y1,...,y, be symbolic parameters.

Then, the number of isolated roots in P™ x ... x P™ is bounded
mq

by the coefficient of y;™ --- y/™ in

m

H(dil o WAL AF oo TF din '_)/n)-
i=1

@ —a+1 am—2 21 +y) (1 +y2) =2y2+3y1ys + y3.
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Multihomogeneous system

Embedding coordinates X, € C9, v € V:

d

2 ~\/. 2
> Xo=s,veV;, s,+s,—2(X,, Xy) = A5,
i=1

(u,v) € E.

n variable subsets {X,, s, }, symbolic parameter y, .

Fix Ky (d vertices) thus defining (V' E).

Then:
|E| n—d [E’|
H2yl H Ykl +yk2):2nidH.yi' H(Ykl +Yk2)7
k=1 i=1 k=1

m-Bézout = coefficient of y{ - -y,‘Ld in product of sums x2"9.
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Permanent method

m
Given mxm matrix A, per (A) = Z H Aj o) -
O'GSm i=1

Theorem

Let A contain degrees djj. The m-Bézout bound equals

per (A) / (mi!---my!).

For rigid graphs this becomes 279 - per (A) / d1"~9.

Using permanent bounds [Brégman-Minc'63,'73], m-Bézout
improves Bézout's bound for d > 5 [Bartzos,E,Schicho]
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Desargues

per (A) = 32, actual embeddings c(G) = 24, c52(G) = 32

(1,3) (2,3) (1,5) (2,6) (3,4) (4,5 (4,6) (5,6)
xs | 1 1 0 0 1 0 0 0
v | 1 1 0 0 1 0 0 0
xx | 0 0 0 0 1 1 1 0
va | 0 0 0 0 1 1 1 0
x| 0 0 1 0 0 1 0 1
yvs | 0 0 1 0 0 1 0 1
X | O 0 0 1 0 0 1 1
Yo | 0 0 0 1 0 0 1 1
1 5

AN

Nk
/
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Graph orientations




Orientations and m-Bézout

Observation [Bartzos,E,Schicho'20]
For rigid G(V/, E), fixed Ky = (v1,...vq), let G' = (V, E\E(Ky)).
Set B = #orientations of G’, constrained so that:

e the outdegree of vq,...,vy is 0,

e the outdegree of every v; € V\V/(Ky) is d.
Then, B equals the coefficient of yld .- -yg_d in

|E’|
H(y/q + ykz)'
k=1

Corollary. The embedding number of G in C? is bounded by 2"~9B

18



Desargues

d = 2, fixed K5 is the dashed edge,
B = 2 orientations = 2 - 26=2 = 32 bound,
actually 24 real/complex embeddings [Hunt'83].
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Pseudographs

A pseudograph L(U, F, H) is a collection s.t.

e U is the set of vertices
e F is a set of (normal) edges (u, v)
e His a set of hanging (half) edges (u)

i

1 — o1 The normal subgraph

29 6\ G'(U, F) is connected.

Example: Fixed e* = (vi,wn) € E. U = V\{v1, na},
F={ecE:vi,v»¢e} H={ecE:vixorv;ce}

® T
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Count constrained orientations

e Elimination step removes £ > 1 vertices, and 2¢ adjacent
edges, keeping the pseudograph connected.

Deleted /Hanging edges directed towards removed vertex.

e Cost = #pseudographs generated per step
e The product of costs bounds B = #constrained orientations.
e Vertex and Path elimination steps:
//6 .\\» _
U / P 7T ///\\\
PR \\!~’/ PN / ’.\, / /‘\, / [}
. N // \.\ " 7/ ) " ) " )
RN AY
‘,/ \/. \\y //. ° \) ’/ X ~ \‘ \\‘7// \\‘7// \\‘7//
\ | U / \ ’ PETON e PETaN
\ / \\. % \ // 7 .\ 7 ‘\ 2 N
N / < _- N / X / /
o7 L \@\/ o NV o { " ' d d’
/2 N o= \ / \ / \ /
{. .\\ . ' - NP
‘ot /
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Bound on orientations

Theorem (Bartzos,E,Vidunas’20)

For pseudographs of n vertices, k hanging edges, B < o - 65_1:

2d—3\ 1/(2p—3) o\ 1/(2p—3)
- p—d (P - P
arg = max (2 < d) ) , Bd (2/ < d> )

for p maximizing ay; note By < 1.

Corollary For Laman graphs, #complex embeddings
2
< (4-(3/9°)" " = 0(3.776").
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Asymptotic bounds

Complex embedding number = O(b"), where b is as follows:

| d = | 2 [ s [ 4[5 [ 6 |

[Bartzos,E,Vidunas'21] || 3.776 | 6.840 | 12.69 | 23.90 | 45.53

[Bartzos,E,Schicho'20] || 4.899 | 8.944 | 16.73 | 31.75 | 60.79
Bézout 4 8 16 32 64

Same results for spherical embeddings.
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Extensions




Distance matrix

Square matrix M, with real entries, M;; =0, M;; = M;; > 0.

M is embeddable in R iff 3 points p; € R? : M = % dist(p;, p;)°.
Theorem (Cayley’41,Menger’28)

M embeds in RY for min d, iff Cayley-Menger (border) matrix has

1

rank :
1 M

] —dto,
and, for any (k + 1) x (k + 1) border minor D:

(-1)*D>0, k=2,...,d+1.

The latter are strict inequalities iff d is minimum.
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Approximate input

Model noisy distances by intervals.
Improve upper/lower bounds by triangular/tetrangular inequalities.
Use graph algorithms (e.g. All-min-paths) [Havel]

Structure-preserving matrix perturbations.
Theorem. [Wicks,Decarlo'95] Given matrix and specific entries
allowed to change, we can compute a continuous, locally

differentiable function minimizing o,.

Method applied for o, 04-1,...,0,—5 [Nikitopoulos,E'02]
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Incomplete data

Embedding is equivalent to completing an incomplete matrix so as
to get a PSD Gram (or distance) matrix: expressed as feasibility of
a PSD program.

Complexity:

e Solving PSD programs with arbitrary precision € Py
(interior-point or ellipsoid algorithms).

e Recall: interior-point, ellipsoid algorithms for LP are in Pp;;.

e Open whether LP in Pr (strong polytime).
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Chordal Graphs

A graph is chordal if it contains NO empty cycle of length > 4.

Thm [Grone,Sa,Johnson,Wolkowitz'84] [Bakonyi,Johnson'95]
Every partial distance matrix with graph G has valid
completion iff G is chordal.

[«<] poly-time algorithm [Laurent'98]

Thm [Laurent] If #edges needed to make G chordal is O(1),
then distance-matrix completion € Pp;;.

Generally, minimizing #edges to make G chordal is NP-hard.
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Contributions /

e First nontrivial upper bounds on embedding number.
e Closed formula of upper bound on graph orientations.

e m-Bézout bound better than by permanent

e Tensegrity: edge weight correspond to intervals
e Specific counts, Global rigidity (unique embedding)

e Polynomial-time cases of permanent
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Thank you!

See you in Athens for SoCG / CG-Week 2024

11-14 June
Athens,Greece
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