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Distance graphs

NMR yields distances, hence 3D structure, in solution
[Wüthrich, Chemistry Nobel’02]
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Definitions



Minimally generically rigid graphs

Study simple undirected weighted graphs G : weights are distances.

• A Euclidean embedding ρ : V → Rd of graph G = (V ,E , λ)
respects edge lengths λu,v = ‖ρ(u)− ρ(v)‖ , (u, v) ∈ E .

• Complex embedding ρ : V → Cd :
λu,v = ‖ρ(u)− ρ(v)‖ , (u, v) ∈ E .

• G is (generically) rigid if the number of embeddings (for
generic lengths) is finite modulo rigid transforms.

• G is minimally rigid if G \ {e}, ∀e ∈ E , is not rigid (flexible).
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Rigid vs flexible graphs

Construction of minimally rigid graphs

K3,3 Desargues
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Cyclohexane

Given 6 distances and angles, or 12 distances (Laman count).
Algebraic bound = 16: tight in R3.

4 conformations in nature [E,Mourrain’99:Algorithmica]
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Edge count

Theorem (Maxwell:1864)

If G = (V ,E ) is generically minimally rigid, and |V | = n, then

• |E | = d · n −
(d+1

2
)
, and

• |E ′| ≤ d · |V ′| −
(d+1

2
)
, ∀vertex-induced subgraph (V ′,E ′).

[Pollaczek-Geiringer] [Laman’70]
Equivalence in d = 2, and
d = 3 for simplicial polytopes [Gluck’75]

No equivalence generally in d = 3:
Double banana, n = 8, |E | = 18.

Further question: count / enumerate the embeddings.
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Small cases in R2

• The triangle has 2 embeddings (reflections).

• n = 6: two "nontrivial" (H2) graphs:
– K3,3 has 16 embeddings [Walter-Husty’07]
– Desargues’ graph has 24 (3-prism, planar parallel robot)
[Hunt’83] [Gosselin,Sefrioui,Richard’91] [Borcea,Streinu’04]
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n = 7: 56 conformations in R2 [E,Moroz’11]
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Algebraic formulation

#embeddings = #solutions of a polynomial system expressing edge
lengths, and

(d+1
2
)

+ 1 constraints to fix the graph, remove scaling

in R2 :


x1 = y1 = 0,
x2 = 1, y2 = 0,
(xi − xj)2 + (yi − yj)2 = λ2

ij , (i , j) ∈ E .

in R3 :


x1 = y1 = z1 = 0,
x2 = 1, y2 = z2 = 0,
z3 = 0,
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 = λ2

ij , (i , j) ∈ E .
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Enumeration problem

• #complex embeddings bounds #Euclidean embeddings.
Usually equal, exception is the Jackoson-Owen graph

• Bézout’s (trivial) bound on quadratic system implies O(2dn).
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Enumeration: lower bounds

• . . . on real embedding numbers: Ω(2.381n) for R2,
Ω(2.639n) for R3 [Bartzos,E,Legersky,Tsigaridas’21]

• . . . on complex embedding numbers: Ω(2.507n) for C2,
Ω(3.067n) for C3 [Grasegger et al.’20].
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Enumeration: upper bounds

• Determinantal varieties [Harris,Tu’84]
• Determinantal variety on distance matrices [Borcea,Streinu’04]
• Mixed volume of Newton polytopes
[Steffens,Theopald’10] ignores roots at (toric) infinity:
X 2

i1 + X 2
i2 = si , si + sj − 2Xi1Xj1 − 2Xi2Xj2 = λ2

ij .

No asymptotic improvement on Bézout’s.

• First improvement for d ≥ 5 [Bartzos,E,Schicho’20] using
multi-homogeneous Bézout and permanents.

• State of art: First improvement for all d by graph orientations
[Bartzos,E,Vidunas’21-22]; namely O(3.77n) for d = 2.
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Decision problem

• Given complete set of exact distances: Embed-Rd ∈ P.

• Given incomplete set of exact distances [Saxe’79]:
Embed-R ∈ NP-hard. Reduction of set-partition.
Embed-Rd ∈ NP-hard, for d ≥ 2, even if lengths ∈ {1, 2}.

• Embed-R2 ∈ NP-hard for planar graphs with all lengths = 1
[Cabello,Demaine,Rote’03]

• Given distances ±ε, approximate-Embed-Rd ∈ NP-hard
[Moré,Wu’96]
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Algebraic interlude



Multihomogeneous Bézout bound

Given a square system of m polynomials let A1, . . . ,An be a
partition of the variables, mj = |Aj |, m = m1 + · · ·+ mn.

The i-th polynomial is homogeneous of degree dij in Aj .

Let y1, . . . , yn be symbolic parameters.

Then, the number of isolated roots in Pm1 × · · · × Pmn is bounded
by the coefficient of ym1

1 · · · ymn
n in

m∏
i=1

(di1 · y1 + · · ·+ din · yn).

a2
1 − a2 + 1, a1a2 − 2: (2y1 + y2) · (y1 + y2) = 2y2

1 + 3y1y2 + y2
2 .
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Multihomogeneous system

Embedding coordinates Xv ∈ Cd , v ∈ V :
d∑

i=1
X 2

vi = sv , v ∈ V ; su + sv − 2〈Xu,Xv 〉 = λ2
uv , (u, v) ∈ E .

n variable subsets {Xv , sv}, symbolic parameter yv .

Fix Kd (d vertices) thus defining (V ′,E ′).

Then:

n−d∏
i=1

2yi ·
|E ′|∏
k=1

(yk1 + yk2) = 2n−d
n−d∏
i=1

yi ·
|E ′|∏
k=1

(yk1 + yk2),

m-Bézout = coefficient of yd
1 · · · yd

n−d in product of sums ×2n−d .
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Permanent method

Given m×m matrix A, per (A) =
∑
σ∈Sm

m∏
i=1

Ai ,σ(i) .

Theorem
Let A contain degrees dij . The m-Bézout bound equals

per (A) / (m1! · · ·mn!).

For rigid graphs this becomes 2n−d · per (A) / d!n−d .

Using permanent bounds [Brègman-Minc’63,’73], m-Bézout
improves Bézout’s bound for d ≥ 5 [Bartzos,E,Schicho]
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Desargues

per (A) = 32, actual embeddings c2(G) = 24, cS2(G) = 32

(1, 3) (2, 3) (1, 5) (2, 6) (3, 4) (4, 5) (4, 6) (5, 6)
x3 1 1 0 0 1 0 0 0
y3 1 1 0 0 1 0 0 0
x4 0 0 0 0 1 1 1 0
y4 0 0 0 0 1 1 1 0
x5 0 0 1 0 0 1 0 1
y5 0 0 1 0 0 1 0 1
x6 0 0 0 1 0 0 1 1
y6 0 0 0 1 0 0 1 1

5

3

2 6

4

1
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Graph orientations



Orientations and m-Bézout

Observation [Bartzos,E,Schicho’20]
For rigid G(V ,E ), fixed Kd = (v1, . . . vd ), let G ′ = (V ,E\E (Kd )).
Set B = #orientations of G ′, constrained so that:

• the outdegree of v1, . . . , vd is 0,
• the outdegree of every vi ∈ V \V (Kd ) is d .

Then, B equals the coefficient of yd
1 · · · yd

n−d in

|E ′|∏
k=1

(yk1 + yk2).

Corollary. The embedding number of G in Cd is bounded by 2n−dB
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Desargues

d = 2, fixed K2 is the dashed edge,
B = 2 orientations⇒ 2 · 26−2 = 32 bound,

actually 24 real/complex embeddings [Hunt’83].
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Pseudographs

A pseudograph L(U,F ,H) is a collection s.t.

• U is the set of vertices
• F is a set of (normal) edges (u, v)
• H is a set of hanging (half) edges (u)

4

3

5

6
1

2
The normal subgraph
G ′(U,F ) is connected.

Example: Fixed e∗ = (v1, v2) ∈ E . U = V \{v1, v2},
F = {e ∈ E : v1, v2 /∈ e∗}, H = {e ∈ E : v1 xor v2 ∈ e∗}
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Count constrained orientations

• Elimination step removes ` ≥ 1 vertices, and 2` adjacent
edges, keeping the pseudograph connected.

• Deleted/Hanging edges directed towards removed vertex.
• Cost = #pseudographs generated per step
• The product of costs bounds B = #constrained orientations.
• Vertex and Path elimination steps:
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Bound on orientations

Theorem (Bartzos,E,Vidunas’20)

For pseudographs of n vertices, k hanging edges, B ≤ αn
d · β

k−1
d :

αd = max
p≥d

2p−d
(
p
d

)2d−3
1/(2p−3)

, βd =

2/(pd
)2
1/(2p−3)

for p maximizing αd ; note βd < 1.

Corollary For Laman graphs, #complex embeddings
≤
(
4 · (3/4)1/5

)n−2
= O (3.776n).
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Asymptotic bounds

Complex embedding number = O(bn), where b is as follows:

d = 2 3 4 5 6
[Bartzos,E,Vidunas’21] 3.776 6.840 12.69 23.90 45.53
[Bartzos,E,Schicho’20] 4.899 8.944 16.73 31.75 60.79

Bézout 4 8 16 32 64

Same results for spherical embeddings.

23



Extensions



Distance matrix

Square matrix M, with real entries, Mii = 0, Mij = Mji ≥ 0.

M is embeddable in Rd iff ∃ points pi ∈ Rd : Mij = 1
2 dist(pi , pj)2.

Theorem (Cayley’41,Menger’28)

M embeds in Rd for min d, iff Cayley-Menger (border) matrix has

rank
[
0 1
1 M

]
= d + 2,

and, for any (k + 1)× (k + 1) border minor D:

(−1)k D ≥ 0, k = 2, . . . , d + 1 .

The latter are strict inequalities iff d is minimum.
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Approximate input

Model noisy distances by intervals.
Improve upper/lower bounds by triangular/tetrangular inequalities.
Use graph algorithms (e.g. All-min-paths) [Havel]

Structure-preserving matrix perturbations.
Theorem. [Wicks,Decarlo’95] Given matrix and specific entries
allowed to change, we can compute a continuous, locally
differentiable function minimizing σn.

Method applied for σn, σn−1, . . . , σn−5 [Nikitopoulos,E’02]
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Incomplete data

Embedding is equivalent to completing an incomplete matrix so as
to get a PSD Gram (or distance) matrix: expressed as feasibility of
a PSD program.

Complexity:

• Solving PSD programs with arbitrary precision ∈ PR

(interior-point or ellipsoid algorithms).
• Recall: interior-point, ellipsoid algorithms for LP are in Pbit .
• Open whether LP in PR (strong polytime).
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Chordal Graphs

• A graph is chordal if it contains NO empty cycle of length ≥ 4.

• Thm [Grone,Sa,Johnson,Wolkowitz’84] [Bakonyi,Johnson’95]
Every partial distance matrix with graph G has valid
completion iff G is chordal.
[⇐] poly-time algorithm [Laurent’98]

• Thm [Laurent] If #edges needed to make G chordal is O(1),
then distance-matrix completion ∈ Pbit .

• Generally, minimizing #edges to make G chordal is NP-hard.
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Contributions / Further questions

• First nontrivial upper bounds on embedding number.
• Closed formula of upper bound on graph orientations.
• m-Bézout bound better than by permanent

• Tensegrity: edge weight correspond to intervals
• Specific counts, Global rigidity (unique embedding)
• Polynomial-time cases of permanent
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Thank you!

See you in Athens for SoCG / CG-Week 2024

29


	Definitions
	Algebraic interlude
	Graph orientations
	Extensions

