Orthogonal Graph Drawings and the Bend Minimization Problem

Walter Didimo
(University of Perugia)

joint work with
Emilio Di Giacomo, Michael Kaufmann, Giuseppe Liotta, Fabrizio Montecchiani, Giacomo Ortali, Maurizio Patrignani

Orthogonal drawings: Definition

Orthogonal drawings: Applications

Orthogonal drawings and hybrid visualizations

Quality metrics (aesthetics)

- Metrics used to evaluate the "quality" (readability) of a drawing

Quality metrics (aesthetics)

Quality metrics (aesthetics)

Bends

Quality metrics (aesthetics)

Area

Orthogonal drawings: Comparison

- no crossings
- fewer bends
- smaller area

In this talk: Bend Minimization

Bend minimization and rectilinear planarity

- Rectilinear drawing = orthogonal drawing without bends
- Rectilinear planarity testing:
- Instance: planar 4-graph G
- Question: does G admit a rectilinear planar drawing?

Bend minimization and rectilinear planarity

- Rectilinear drawing = orthogonal drawing without bends
- Rectilinear planarity testing:
- Instance: planar 4-graph G
- Question: does G admit a rectilinear planar drawing?

Fixed and Variable Embedding

- Two possible scenarios

Fixed Embedding: The main result

- O($\left.\mathrm{n}^{2} \log \mathrm{n}\right)$ time for general 4-graphs [Tamassia, SIAM J. Comp. 1987]
- based on an elegant reduction to a min-cost flow problem

plane 4-graph
(planar embedding)

$$
O\left(n^{2} \log n\right)
$$ (angles + bends)

$$
\sqrt{b} O(n)
$$

orthogonal drawing (coordinates)

Flow and orthogonal representations

Flow network \Leftrightarrow orthogonal representations (angles + bends)

[Tamassia, SIAM J. Comp. 1987]

- vertices/faces with deg < 4 supply flow
- faces with deg >4 demand flow
- adjacent faces can exchange flow
- 1 unit of flow exchanged = 1 bend
- total flow cost = total number of bends

Fixed Embedding: Further improvements

Improvements of Tamassia's result derive from subsequent faster min-cost flow algorithms:

- O($\left.\mathrm{n}^{1.75} \log \mathrm{n}\right)$ time [Garg \& Tamassia, GD 1996]
- O($\mathrm{n}^{1.5}$) time [Cornelsen \& Karrenbauer, JGAA 2012]

Fixed Embedding: Open problems

Improvements of Tamassia's result derive from subsequent faster min-cost flow algorithms:

- O($\left.\mathrm{n}^{1.75} \log \mathrm{n}\right)$ time [Garg \& Tamassia, GD 1996]
- O($\mathrm{n}^{1.5}$) time [Cornelsen \& Karrenbauer, JGAA 2012]

Open Problem 1: Does there exist an $\mathrm{O}(\mathrm{n})$-time bend-minimization algorithm for plane 4-graphs?

Fixed Embedding: Open problems

- Partial answers:
- O(n)-time algorithm for plane 3-graphs [Rahman \& Nishizeki, WG 2002]
- extends an O(n)-time rectilinear planarity testing for plane 3-graphs [Rahman, Nishizeki, Naznin, GD 2001 \& JGAA 2003]
- O(n)-time algorithm for plane series-parallel graphs (SP-graphs) [D., Kaufmann, Liotta, Ortali, GD 2020 \& Algorithmica 2022]

Open Problem 1: Does there exist an $\mathrm{O}(\mathrm{n})$-time bend-minimization algorithm for plane 4-graphs?

Fixed Embedding: Open problems

not flow-based!

- Partial answers:
- O(n)-time algorithm for plane 3-graphs [Rahman \& Nishizeki, WG 2002]
- extends an O(n)-time rectilinear planarity testing for plane 3-graphs [Rahman, Nishizeki, Naznin, GD 2001 \& JGAA 2003]
- O(n)-time algorithm for plane series-parallel graphs (SP-graphs)
[D., Kaufmann, Liotta, Ortali, GD 2020 \& Algorithmica 2022]

Open Problem 1: Does there exist an O(n)-time bend-minimization algorithm for plane 4-graphs?

Open Problem 2: Does there exist an O(n)-time bend-minimization algorithm for triconnected plane 4-graphs?

Variable Embedding: First overview

NP-hard (even rectilinear planarity testing) [Garg \& Tamassia, SIAM J. Comp. 2001]
planar 4-graphs

Polynomial-time solvable $O\left(n^{5} \log n\right)$ and $O\left(n^{4}\right)$ time [Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

Variable Embedding: First overview

NP-hard (even rectilinear planarity testing) [Garg \& Tamassia, SIAM J. Comp. 2001]

planar 4-graphs

Polynomial-time solvable $\mathrm{O}\left(\mathrm{n}^{5} \log \mathrm{n}\right)$ and $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time [Di Battista, Liotta, Vargiu,

- «spirality»
- dynamic programming on SPQR-trees
introduces SIAM J. Comp. 1998]

Prominent open problems

Problem A. Establishing the exact time complexity of the bendminimization and the rectilinear planarity testing problems for

- SP-graphs
- Planar 3-graphs

Question: Can we find linear-time algorithms?

Prominent open problems

Problem A. Establishing the exact time complexity of the bend minimization and the rectilinear planarity testing problems for

- SP-graphs
- Planar 3-graphs

Question: Can we find linear-time algorithms?

Problem B. Exponential-time algorithms for general planar 4-graphs Question: What about the existence of parameterized algorithms?

In the remainder of the talk: Problem A

NP-hard (even rectilinear planarity testing) [Garg \& Tamassia, SIAM J. Comp. 2001] planar 4-graphs

In the remainder of the talk: Problem A

NP-hard (even rectilinear planarity testing) [Garg \& Tamassia, SIAM J. Comp. 2001]
we discuss recent advances

- $\mathrm{O}\left(\mathrm{n}^{3}\right)$ bend minimization
- $O\left(n^{2}\right)$ rect. planarity testing
- $\mathrm{O}(\mathrm{n})$ rect. planarity testing for independent-parallel [D., Kaufmann, Liotta, Ortali, JGAA 2023]
- «spirality»
- dynamic programming on SPQR-trees
introduces
we revisit the strategy of
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998] showing $\mathrm{O}\left(\mathrm{n}^{4}\right)$ complexity

In the remainder of the talk: Problem A

NP-hard (even rectilinear planarity testing) [Gars \& Tamassia, SIAM J. Comp. 2001]
we discuss recent advances

- $\mathrm{O}\left(\mathrm{n}^{3}\right)$ bend minimization
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ rect. planarity testing
- On) rect. planarity testing for independent-parallel [D., Kaufmann, Lota, Ortali, JGAA 2023]
planar 4-graphs
$\mathrm{O}(\mathrm{n})$ bend minimization [D., Liotta, Ortali, Patrignani, SODA 2020]
- «spirality»
- dynamic programming on SPQR-trees
introduces
we revisit the strategy of
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998] showing $\mathrm{O}\left(\mathrm{n}^{4}\right)$ complexity

NP-hard (even rectilinear planarity testing) [Gars \& Tamassia, SIAM J. Comp. 2001]

In the remainder of the talk: Problem A

- dynamic programming on SPQR-trees
introduces

In the remainder of the talk: Problem B

parameterized complexity

b (bends)	k (deg-2 vert.)	tw (treewidth)	$b+k$	b+tw	k+tw
Para-NP-hard [Garg \& Tamassia, 2001]	Para-NP-hard [Di Giacomo, D., Liotta, Ortali, Montecchiani, 2023]	W[1]-hard [Jansen et al., 2023] XP [Di Giacomo, Liotta, Montecchiani, 2022]	FPT [Di Giacomo, D., Liotta, Ortali, Montecchiani, 2023]	W[1]-hard [implied]	W[1]-hard [Di Giacomo, D., Liotta, Ortali, Montecchiani, 2023]

\begin\{SPQR-trees\} }

0
 SPQR-trees

SPQR-trees

SPQR-trees

SPQR-trees

SPQR-trees

Changing the embedding

Changing the embedding

Changing the embedding

Changing the embedding

00
 SPQ*R-trees

00
 SPQ*R-trees

00
 SPQ*R-trees

SPQ*R-trees

SPQ*R-trees

SPQ*R-trees

$(1,14)$

root

\end\{SPQR-trees\} }
\begin\{Spirality\} }

Spirality of orthogonal components: Intuition

Spirality of orthogonal components

Spirality of orthogonal components

Spirality of orthogonal components

Spirality of orthogonal components

Spirality of orthogonal components

Parallel (orthogonal) component

Spirality: More cases

$$
\sigma_{\mu}=0
$$

The spirality is either an integer or a semi-integer number

Substitution of components

Theorem (substitution). Two orthogonal components with the same spirality are "interchangeable" (even if they have different embeddings)

Substitution of components

Theorem (substitution). Two orthogonal components with the same spirality are "interchangeable" (even if they have different embeddings)

Spirality: Series relationship

Spirality: Parallel relationship

Spirality: Parallel relationship

- For P-nodes with two children the relationship is a bit more involved, but similar

$$
\sigma_{\mu}=\sigma_{\mu 1}-2=\sigma_{\mu 2}=\sigma_{\mu 3}+2
$$

\end\{Spirality\} }

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

$$
\begin{aligned}
& \sum_{\mu}=\text { optimal set of } \mu= \\
& \left\{<\sigma_{\mu}, b\left(\sigma_{\mu}\right)>\mid\right.
\end{aligned}
$$

$$
\sigma_{\mu}=\text { spirality of a component } H_{\mu} \text {; }
$$

$$
\left.\mathrm{b}\left(\sigma_{\mu}\right)=\min . \text { bend for } \sigma_{\mu}\right\}
$$

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

$$
\begin{aligned}
& \sum_{\mu}=\text { optimal set of } \mu= \\
& \left\{<\sigma_{\mu}, b\left(\sigma_{\mu}\right)>\mid\right.
\end{aligned}
$$

$$
\sigma_{\mu}=\text { spirality of a component } H_{\mu} \text {; }
$$

$$
\left.\mathrm{b}\left(\sigma_{\mu}\right)=\min . \text { bend for } \sigma_{\mu}\right\}
$$

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

$$
\begin{aligned}
& \sum_{\mu}=\text { optimal set of } \mu= \\
& \left\{<\sigma_{\mu}, b\left(\sigma_{\mu}\right)>\mid\right.
\end{aligned}
$$

$$
\sigma_{\mu}=\text { spirality of a component } H_{\mu} \text {; }
$$

$$
\left.\mathrm{b}\left(\sigma_{\mu}\right)=\min . \text { bend for } \sigma_{\mu}\right\}
$$

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

$$
\begin{aligned}
& \sum_{\mu}=\text { optimal set of } \mu= \\
& \left\{<\sigma_{\mu}, b\left(\sigma_{\mu}\right)>\mid\right.
\end{aligned}
$$

$$
\sigma_{\mu}=\text { spirality of a component } H_{\mu} \text {; }
$$

$$
\left.\mathrm{b}\left(\sigma_{\mu}\right)=\min . \text { bend for } \sigma_{\mu}\right\}
$$

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

$$
\begin{aligned}
& \sum_{\mu}=\text { optimal set of } \mu= \\
& \left\{<\sigma_{\mu}, b\left(\sigma_{\mu}\right)>\mid\right.
\end{aligned}
$$

$\sigma_{\mu}=$ spirality of a component H_{μ}; $\mathrm{b}\left(\sigma_{\mu}\right)=\mathrm{min}$. bend for $\left.\sigma_{\mu}\right\}$

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

$$
\begin{aligned}
& \sum_{\mu}=\text { optimal set of } \mu= \\
& \left\{<\sigma_{\mu}, b\left(\sigma_{\mu}\right)>\mid\right.
\end{aligned}
$$

$\sigma_{\mu}=$ spirality of a component H_{μ}; $\mathrm{b}\left(\sigma_{\mu}\right)=\mathrm{min}$. bend for $\left.\sigma_{\mu}\right\}$

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

$$
\begin{aligned}
& \sum_{\mu}=\text { optimal set of } \mu= \\
& \left\{<\sigma_{\mu}, b\left(\sigma_{\mu}\right)>\mid\right.
\end{aligned}
$$

$\sigma_{\mu}=$ spirality of a component H_{μ}; $\mathrm{b}\left(\sigma_{\mu}\right)=\mathrm{min}$. bend for $\left.\sigma_{\mu}\right\}$

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

$$
\begin{aligned}
& \sum_{\mu}=\text { optimal set of } \mu= \\
& \left\{<\sigma_{\mu}, b\left(\sigma_{\mu}\right)>1\right.
\end{aligned}
$$

$\sigma_{\mu}=$ spirality of a component H_{μ}; $\mathrm{b}\left(\sigma_{\mu}\right)=\mathrm{min}$. bend for $\left.\sigma_{\mu}\right\}$

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

at the root level, select the pair $\left\{\sigma_{\mu}, \sigma_{\rho}\right\}$ such that: $\sigma_{\mu}-\sigma_{\rho}=4$ and $b\left(\sigma_{\mu}\right)+b\left(\sigma_{\rho}\right)$ is minimum

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

at the root level, select the pair $\left\{\sigma_{\mu}, \sigma_{\rho}\right\}$ such that: $\sigma_{\mu}-\sigma_{\rho}=4$ and $b\left(\sigma_{\mu}\right)+b\left(\sigma_{\rho}\right)$ is minimum

take the minimum over all roots!

Bend-min algorithm: General strategy

[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

take the minimum over all roots!

Optimal sets: Preliminary observations

- A bend-min orthogonal representation has at most $2 n-2$ bends [Tamassia, Tollis, Vitter 1991]
\Rightarrow the spirality of a component is in the interval $[-3 n+2,3 n-2]$
- Each bend is along a chain of a Q^{*}-node

Optimal sets: Q*-nodes

$\mu=\mathrm{Q}^{*}$-node whose chain has length k

- consider all possible spirality values $\sigma_{\mu} \in[-3 n+2,3 n-2]$
- for each $\sigma_{\mu} \Rightarrow \mathrm{b}\left(\sigma_{\mu}\right)=\max \left\{0,\left|\sigma_{\mu}\right|-\mathrm{k}+1\right\}$
$b(0)=0$

$b(1)=0$
$b(2)=1$
$b(3)=2$

- O(n) time x node
- $O\left(n^{2}\right)$ time all nodes

$$
\mathrm{k}=2
$$

Optimal sets: S-nodes

$\mu=S$-node

- the spirality values σ_{μ} are all possible summations of the values of the children of μ
- for each summation $\sigma_{\mu} \Rightarrow b\left(\sigma_{\mu}\right)=$ sum of the bends of the children (keep the minimum for σ_{μ})
- O(deg(μ) n^{2}) time x node

Optimal sets: P-nodes

$\mu=$ P-node

- the spirality values σ_{μ} must satisfy the parallel relationship
- for each $\sigma_{\mu} \Rightarrow b\left(\sigma_{\mu}\right)=$ sum of the bends of the children (keep the minimum on σ_{μ})

- O(n) time x node
- $O\left(n^{2}\right)$ time all nodes

$$
\sigma_{\mu}=\sigma_{\mu 1^{-}} 2=\sigma_{\mu 2}=\sigma_{\mu 3}+2
$$

Optimal sets: R-nodes

$\mu=$ R-node

- consider all possible values $\sigma_{\mu} \in[-3 n+2,3 n-2]$
- for each $\sigma_{\mu} \Rightarrow b\left(\sigma_{\mu}\right)=$ constrained min-cost flow with virtual edges having convex-cost functions (the cost of the corresponding series)

Optimal sets: R-nodes

- O(nT(deg(μ)) time x node
- $\mathrm{O}(\mathrm{nT}(\mathrm{n})$) time all nodes
$\mu=$ R-node
- consider all possible values $\sigma_{\mu} \in[-3 n+2,3 n-2]$
$T()=$. min-cost flow time
- for each $\sigma_{\mu} \Rightarrow \mathrm{b}\left(\sigma_{\mu}\right)=$ constrained min-cost flow with virtual edges having convex-cost functions (the cost of the corresponding series)

Optimal sets: Root level

$\mu=$ child of the root

- consider all possible values σ_{μ} and σ_{ρ} such that $\sigma_{\mu}-\sigma_{\rho}=4$
- $\mathrm{b}(\rho)=\min \left\{\mathrm{b}\left(\sigma_{\mu}\right)+\mathrm{b}\left(\sigma_{\rho}\right) \mid \sigma_{\mu}-\sigma_{\rho}=4\right\}$

- O(n) time

Time complexity: Summary

- For a single rooted tree T_{ρ} assuming $T(n)=o\left(n^{2}\right)$

- For all rooted trees $T_{\rho} O\left(n^{4}\right)$

Time complexity: Summary

- For a single rooted tree T_{ρ}

$$
\text { assuming } T(n)=o\left(n^{2}\right)
$$

- For all rooted trees $T_{\rho} O\left(n^{4}\right)$

Question: Can we do better?

Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes $O\left(n^{3}\right)$ time - can we reduce the time needed to process S-nodes?

Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes $O\left(n^{3}\right)$ time - can we reduce the time needed to process S-nodes?
2. Can we avoid the $O(n)$ factor caused by exploring all roots?

Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes $O\left(n^{3}\right)$ time - can we reduce the time needed to process S-nodes?
2. Can we avoid the $O(n)$ factor caused by exploring all roots?
3. Can we avoid to solve a min-cost-flow problem in the presence of R-nodes?

Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes $O\left(n^{3}\right)$ time - can we reduce the time needed to process S-nodes?
2. Can we avoid the $O(n)$ factor caused by exploring all roots?
3. Can we avoid to solve a min-cost-flow problem in the presence of R-nodes?

SP-graphs

S-nodes - a smarter approach

- Consider normalized SPQ*-trees
- each S-node has two children

- The number of S-nodes is still $O(n)$ and the structure of the tree does not change when we change the root

S-nodes - a smarter approach

- Consider any ordered sequence of all normalized rooted $S P Q^{*}$-trees $T_{\rho 1}, T_{\rho 2}, \ldots, T_{\rho h}$

S-nodes - a smarter approach

case 2 the parent changes
case 1

- 3 distinct parents per S-node
- O(n ${ }^{3}$) over all O(n) S-nodes

SP-graphs: improved time complexity

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time

SP-graphs: improved time complexity

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time

Question. Can we further improve the time complexity for the rectilinear planarity testing problem (0 bends)?

S-nodes: rectilinear planarity testing

Observation. Computing the set of spirality values for an S-node μ with two child components of size $n_{\mu 1}$ and $n_{\mu 2}$ take $O\left(n_{\mu 1} n_{\mu 2}\right)$ time

.. because in a rectilinear drawing the absolute spirality of a component with k vertices is at most k -2

S-nodes: rectilinear planarity testing

Lemma. The sum of the products of the sizes of the pertinent graphs of all S-node children in a normalized rooted SPQ*-tree is $O\left(n^{2}\right)$

$$
\sum_{\mu} \mathrm{O}\left(\mathrm{n}_{\mu 1} \mathrm{n}_{\mu 2}\right)=\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

S-nodes: rectilinear planarity testing

Lemma. The sum of the products of the sizes of the pertinent graphs of all S-node children in a normalized rooted SPQ*-tree is $O\left(n^{2}\right)$

$$
\begin{aligned}
& \sum_{\mu} \mathrm{O}\left(\mathrm{n}_{\mu 1} \mathrm{n}_{\mu 2}\right)=\mathrm{O}\left(\mathrm{n}^{2}\right) \quad \begin{array}{l}
\text { proved by induction on } \\
\text { the depth of the subtre } \\
\mathrm{T}(v) \text { rooted at } v
\end{array} \\
& \mathrm{~s}(v)=\sum_{\mu \in\{\mathrm{S}-\text { nodes in } \mathrm{T}(v)\}} \mathrm{n}_{\mu 1} \mathrm{n}_{\mu 2} \leq 4 \mathrm{~m}_{v}{ }^{2}
\end{aligned}
$$

the depth of the subtree

SP-graphs

Lemma. The sum of the products of the sizes of the pertinent graphs of all S-node children in a normalized rooted SPQ*-tree is $O\left(n^{2}\right)$

$+$

Lemma. Processing an S-node μ in each tree $T_{\rho j}$ does not cost more than in $T_{\rho 1}$

$\min \left\{n_{\mu 1} n_{\mu 2}, n_{\mu 2} n_{\mu 0}, n_{\mu 0} n_{\mu 1}\right\}$

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that tests whether G is rectilinear planar in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that tests whether G is rectilinear planar in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Question. Can we achieve linear time?

Strive for linear time

- The given approach stores $O(n)$ spirality values per node
- This does not allow us to achieve $\mathrm{O}(\mathrm{n})$ time complexity in total!

Question: is there any constant upper bound on the maximum spirality of a component?

Strive for linear time

- The given approach stores $O(n)$ spirality values per node
- This does not allow us to achieve $\mathrm{O}(\mathrm{n})$ time complexity in total!

Question: is there any constant upper bound on the maximum spirality of a component?

Answer: this is not always the case!

Spirality - Logarithmic lower bound

(a)

(b)

(c)

(d)

(e)

- $\mathrm{N} \geq 2$ (even)
- $L=N / 2+1$
- $\mathrm{n}=\theta\left(3^{N}\right)$
one of the three series of G_{1} will have spirality $\sigma=N+2$

$$
N=4, L=3, \sigma=6
$$

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that tests whether G is rectilinear planar in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Theorem 3. There exist infinitely many SP-graphs that require components with spirality $\Omega(\log n)$ in any given rectilinear planar representation

Let's not lose hope

Even if we must handle sets of spirality of non-constant size ...

Question: can we represent them in O(1) space?

Let's not lose hope

Even if we must handle sets of spirality of non-constant size ...

Question: can we represent them in O(1) space?

Answers:

1) possible for a meaningful subclass of SP-graphs, called independent-parallel SP-graphs
2) unclear for general SP-graphs (probably not)

Independent-parallel SP-graphs

Independent-parallel means "no two P-nodes share a pole"

Independent-parallel SP-graphs

- Rectilinear planarity testing of independent-parallel SP-graphs can be executed in O(n) time
- Main ingredients:
- each component has one of the following sets of spirality values:
- $\{0\}$;
- $\{-1,1\}$;
- $\{-2,-1,1,2\}$;
- $\{-M,-M+1, \ldots, 0, \ldots, M-1, M\}$;
- $\{-M,-M+2,-M+4, \ldots ., M-4, M-2, M\}$

Independent-parallel SP-graphs

- Rectilinear planarity testing of independent-parallel SP-graphs can be executed in O(n) time

- Main ingredients:

- dynamic programming on (not normalized) SPQ*-trees
- the set of each Q^{*}-node and of each P-node is computed in $O(1)$ time
- the set of each S -node μ is computed in $\mathrm{O}(\operatorname{deg}(\mu))$ time in the first tree and in $\mathrm{O}(1)$ time in the remaining trees
- rectilinear planarity at the root level is tested in O(1) time

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that tests whether G is rectilinear planar in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Theorem 3. There exist infinitely many SP-graphs that require components with spirality $\Omega(\log n)$ in any given rectilinear planar representation

Theorem 4. Let G be an n -vertex independent-parallel SP-graph. There exists an algorithm that tests whether G is rectilinear planar in $\mathrm{O}(\mathrm{n})$ time

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that tests whether G is rectilinear planar in $O\left(n^{2}\right)$ time

Theorem 3. There exist infinitely many SP-graphs that require components with spirality $\Omega(\log n)$ in any given rectilinear planar representation

Theorem 4. Let G be an n -vertex independent-parallel SP-graph. There exists an algorithm that tests whether G is rectilinear planar in $\mathrm{O}(\mathrm{n})$ time

Non-independent-parallel SP-graphs may be irregular

Non-independent-parallel SP-graphs may be irregular

Non-independent-parallel SP-graphs may be irregular

we cannot generalize the approach used for
5 independentparallel SP-graphs

SP-graphs: Open Problems

Open Problem 3: Can we improve the complexity of the bend-minimization problem for SP-graphs?

Recall: The best bound is $\mathrm{O}\left(\mathrm{n}^{3}\right)$

SP-graphs: Open Problems

Open Problem 3: Can we improve the complexity of the bend-minimization problem for SP-graphs?

Recall: The best bound is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
Open Problem 4: Can we improve the complexity of rectilinear planarity testing for (general) SP-graphs?

Recall: The best bound is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Planar 3-graphs: A long history

				2020
	1998	2017	2018	*
1998	*	是	1	1
$\mathrm{O}\left(\mathrm{n}^{5} \log \mathrm{n}\right)$	$\mathrm{O}\left(\mathrm{n}^{4}\right)$	$\mathrm{O}\left(\mathrm{n}^{2.43} \log ^{\mathrm{k}} \mathrm{n}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$ time
Di Battista,	with a finer analysis	Chang and Yen	D.,Liotta, Patrignani	D.,Liotta, Ortali,
Liotta,Vargiu				Patrignani

Planar 3-graphs in linear time

[D., Liotta, Ortali, Patrignani, SODA 2020]
Theorem 5. Let G be an n-vertex planar 3-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $O(n)$ time. Also, if G is not K_{4}, the drawing has at most one bend per edge

Planar 3-graphs in linear time

[D., Liotta, Ortali, Patrignani, SODA 2020]
Theorem 5. Let G be an n-vertex planar 3-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $O(n)$ time. Also, if G is not K_{4}, the drawing has at most one bend per edge

Optimal in terms of:

- time complexity
- total number of bends
- number of bends per edge

Planar 3-graphs in linear time

[D., Liotta, Ortali, Patrignani, SODA 2020]
Theorem 5. Let G be an n -vertex planar 3-graph. There exists an algorithm that computes a bend-minimum orthogonal drawing of G in $\mathrm{O}(\mathrm{n})$ time. Also, if G is not K_{4}, the drawing has at most one bend per edge

Main ingredients:

- constant number of "shapes" (related to spirality) for each type of node - efficient processing of R-nodes without flow-based techniques
- in particular, we can find in $\mathrm{O}(\mathrm{n})$ time the optimal solution for triconnected planar 3 graphs (over all choices of the external face)
- update of the optimal set of each type of node in O(1) time

Constant number of "shapes"

Shape-Lemma. Every biconnected planar 3-graph distinct from K_{4} admits a bend-minimum orthogonal representation such that:
O1. every edge has at most one bend

O2. every P - and R -component is $\mathrm{D}-, \mathrm{X}-\mathrm{L}$-, or C -shaped

O3. every S-component has absolute spirality $\mathrm{k} \leq 4$

O4. every component is optimal within its shape (thanks to substitution)

Triconnected Graphs: Open Problems

Open Problem 5: Does there exist an o(nT(n)) algorithm for planar triconnected 4-graphs?
$\mathrm{T}(\mathrm{n})=$ time needed to solve a min-cost-flow problem

In particular: Can we find an $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time algorithm (or better)?
Recall: For triconnected planar 3-graphs we can solve the problem in $O(n)$ time [D., Liotta, Patrignani, SODA 2020]

FPT Algorithm for planar 4-graphs

Theorem 6. Let G be an n -vertex planar 4-graph with k vertices of degree at most two, let b be a non-negative integer, and let $p=b+k$. There exists an $\mathrm{O}\left(2^{\mathrm{p} \log \mathrm{p}}\right) \mathrm{n}^{\mathrm{O}(1)}$-time algorithm that tests whether G admits an orthogonal representation with at most b bends, and that computes one if it exists

Bounding the spirality

Lemma. For any node μ of a rooted SPQ^{*} R-tree T of G , the absolute value of the spirality of any orthogonal representation of G_{μ} is at most $p+2$
Intuition: right (left) turns on the external left (right) path must be either bends or degree-2 vertices

Bounding the spirality: $\mathrm{Q}^{*}-, \mathrm{S}-\mathrm{P}$-nodes

Lemma. For any node μ of a rooted SPQ*R-tree T of G , the absolute value of the spirality of any orthogonal representation of G_{μ} is at most $\mathrm{p}+2$
Intuition: right (left) turns on the external left (right) path must be either bends or degree-2 vertices

- The optimal set of a Q^{*}-node is computed in $O(p)$ time

- The optimal set of an S -node is computed in $\mathrm{O}\left(\mathrm{p}^{2}\right)$ time from those of its children
- The optimal set of a P-node is computed in $\mathrm{O}(\mathrm{p})$ time from those of its children

R-nodes

constrained min-cost-flow

Extension to non-biconnected graphs

The presented results can be extended to 1-connected graphs

Main ingredients:

- use the block-cutvertex tree of the graph
- angle constraints at the cutvertices (representations that share a cutvertex must be glued together)

Concluding remarks

 constrained scenarios and some more problems
Constrained scenarios: HV-drawings

- Problem HV-PlanarityTesting. Rectilinear planarity testing where each edge is assigned a "direction", i. e., horizontal (H) or vertical (V)

positive instance

Constrained scenarios: HV-drawings

- Problem HV-PlanarityTesting. Rectilinear planarity testing where each edge is assigned a "direction", i. e., horizontal (H) or vertical (V)
negative instance

Constrained scenarios: HV-drawings

- HV-PlanarityTesting is NP-complete even for planar 3-graphs [D., Liotta, Patrignani - JCSS 2019]
- HV-PlanarityTesting is polynomial-time solvable for SP-graphs
- O(n^{4})-time for SP-graphs [D., Liotta, Patrignani - JCSS 2019]
- exploiting SPQ*-trees and spirality
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time for SP-graphs
- improving the time required by S-nodes as in [D., Kaufmann, Liotta, Ortali - JGAA 2023]

Constrained scenarios: HV-drawings

- HV-PlanarityTesting is NP-complete even for planar 3-graphs [D., Liotta, Patrignani - JCSS 2019]
- HV-PlanarityTesting is polynomial-time solvable for SP-graphs
- O(n²)-time for SP-graphs [D., Liotta, Patrignani - JCSS 2019]
- exploiting SPQ*-trees and spirality
$-\mathrm{O}\left(\mathrm{n}^{2}\right)$-time for SP-graphs
- improving the time required by S-nodes as in
[D., Kaufmann, Liotta, Ortali - JGAA 2023]
Open Problem 6: Study the parametrized complexity of HV-PlanarityTesting for planar 4-graphs (with rigid components)

Constrained scenarios: Rectilinear-Upward

- Problem RU-PlanarityTesting. Rectilinear planarity testing where each edge cannot point downward

positive instance

negative instance

Constrained scenarios: Rectilinear-Upward

[D., Kaufmann, Liotta, Ortali, Patrignani - ISAAC 2023 + advances]

- RU-PlanarityTesting is NP-complete

RU-PLANARITYTESTING is O(n)-time solvable for upward-plane digraphs - based on a 2-SAT formulation

- RU-PLANARITYTESting is $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time solvable for biconnected SP-digraphs
- based on spirality + SPQ-trees
- RU-PLANARITYTESTING is FPT, parameterized by $k=$ \# of switches (sources/sinks)
$-O\left(2^{\mathrm{k} \log \mathrm{k}+2 \mathrm{k}} \mathrm{n}\right)$-time algorithm, based on spirality + SPQR-trees +2 -SAT
Open Problem 7: Can we solve RU-PLANARITYTESTING in polynomial time for any plane digraph

Constrained scenarios: Rectilinear-Upward

[D., Kaufmann, Liotta, Ortali, Patrignani - ISAAC 2023 + advances]

- RU-PlanarityTesting is NP-complete
- RU-PLANARITYTESTING is O(n)-time solvable for upward-plane digraphs
- based on a 2-SAT formulation

RU-PLANARITYTESTING is $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time solvable for biconnected SP-digraphs

- based on spirality + SPQ-trees
- RU-PLANARITYTESTING is FPT, parameterized by $\mathrm{k}=$ \# of switches (sources/sinks)
$-O\left(2^{\mathrm{k} \log \mathrm{k}+2 \mathrm{k}} \mathrm{n}\right)$-time algorithm, based on spirality + SPQR-trees +2 -SAT
Open Problem 8: Can we solve RU-PlanarityTesting in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time for any directed partial 2-tree ("1-connected" SP-digraphs)

Constrained scenarios: Rectilinear-Upward

[D., Kaufmann, Liotta, Ortali, Patrignani - ISAAC 2023 + advances]

- RU-PlanarityTesting is NP-complete
- RU-PLANARITYTESTING is O(n)-time solvable for upward-plane digraphs
- based on a 2-SAT formulation
- RU-PlanarityTesting is $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time solvable for biconnected SP-digraphs
- based on spirality + SPQ-trees

RU-PLANARITYTESTING is FPT, parameterized by $\mathrm{k}=$ \# of switches (sources/sinks)
$-\mathrm{O}\left(2^{\mathrm{k} \log \mathrm{k}+2 \mathrm{k}} \mathrm{n}\right)$-time algorithm, based on spirality + SPQR-trees + 2-SAT
Open Problem 9: Can we find FPT/XP algorithms with respect to other parameters (i.e., other than the number of switches)?

Thank you for your attention!

Additional details

Fixed Embedding: State-of-the-art

Improvements of Tamassia's result derive from subsequent faster min-cost flow algorithms:

- O($\left.\mathrm{n}^{1.75} \log \mathrm{n}\right)$ time [Garg \& Tamassia, GD 1996]
- O($\mathrm{n}^{1.5}$) time [Cornelsen \& Karrenbauer, JGAA 2012]

Remark: for rectilinear planarity testing the min-cost flow problem is reduced to a max-flow problem (faces cannot exchange flow); O(n $\log ^{3} n$) time [Borradaile, Klein, Mozes, Nussbaum, Wulff- Nilsen, SIAM J. Comp. 2017]

Fixed Embedding: State-of-the-art

Improvements of Tamassia's result derive from subsequent faster min-cost flow algorithms:

- O($\left.\mathrm{n}^{1.75} \log \mathrm{n}\right)$ time [Garg \& Tamassia, GD 1996]
- O($\mathrm{n}^{1.5}$) time [Cornelsen \& Karrenbauer, JGAA 2012]

Remark: for bend minimization we could use in principle a recent "almost-linear time" min-cost-flow algorithm - $\mathrm{O}\left(\mathrm{n}^{1+o(1)} \log \mathrm{n}\right)$ time [Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva, FOCS 2022, Comm. ACM 2023]
"For now, the new algorithms introduced by Prof. Kyng, Dr. Probst Gutenberg, and their co-authors remain impractical, as they rely on a theoretical analysis of algorithm performance on networks larger than anything even giant corporations like Google would ever consider. But, the race is now on to simplify and improve the algorithm to make it work well in practice."

