
Orthogonal Graph Drawings and the
Bend Minimization Problem

Walter Didimo
(University of Perugia)

joint work with
Emilio Di Giacomo, Michael Kaufmann,
Giuseppe Liotta, Fabrizio Montecchiani,

Giacomo Ortali, Maurizio Patrignani

Orthogonal drawings: Definition

6

2

3

45

7

1

8

4-graph orthogonal drawing

crossings = 1
bends = 12
max. bends per edge = 3
area = 30

bend

crossing

5

6

1 2

87 5 3

6

4

Orthogonal drawings: Applications

database
design

software
design

circuit design

Orthogonal drawings and hybrid visualizations

collaboration
networks

BGP network

Quality metrics (aesthetics)

• Metrics used to evaluate the "quality" (readability) of a drawing

Quality metrics (aesthetics)

Crossings

Quality metrics (aesthetics)

Crossings Bends

Quality metrics (aesthetics)

Crossings Bends Area

Orthogonal drawings: Comparison

• no crossings
• fewer bends
• smaller area

In this talk: Bend Minimization

Crossings Bends Area

Bend minimization and rectilinear planarity

• Rectilinear drawing = orthogonal drawing without bends

• Rectilinear planarity testing:
– Instance: planar 4-graph G

– Question: does G admit a rectilinear planar drawing?

bend minimization

rectilinear planarity testing

SPECIAL
CASE

Bend minimization and rectilinear planarity

bends = subdivision vertices

3 bends

rectilinear

CORE

bend minimization

rectilinear planarity testing

• Rectilinear drawing = orthogonal drawing without bends

• Rectilinear planarity testing:
– Instance: planar 4-graph G

– Question: does G admit a rectilinear planar drawing?

Fixed and Variable Embedding

• Two possible scenarios

fixed embedding variable embedding

Fixed Embedding: The main result

• O(n2 log n) time for general 4-graphs [Tamassia, SIAM J. Comp. 1987]
– based on an elegant reduction to a min-cost flow problem

90

270

9090

9090

180

180

360

270

90

90
180

90

90 90

270

90

27090

270

270

270

90

orthogonal representation
(angles + bends)

orthogonal drawing
(coordinates)

plane 4-graph
(planar embedding)

O(n2 log n)

O(n)

Flow and orthogonal representations

Flow network orthogonal representations (angles + bends)

1 2

02

1 1

21

0

1

0

-10

-1

1
21

2

2
1

1 2

1

• vertices/faces with deg < 4 supply flow
• faces with deg > 4 demand flow
• adjacent faces can exchange flow
• 1 unit of flow exchanged = 1 bend
• total flow cost = total number of bends

[Tamassia, SIAM J. Comp. 1987]

Fixed Embedding: Further improvements

Improvements of Tamassia’s result derive from subsequent faster
min-cost flow algorithms:

• O(n1.75 log n) time [Garg & Tamassia, GD 1996]

• O(n1.5) time [Cornelsen & Karrenbauer, JGAA 2012]

Fixed Embedding: Open problems

Improvements of Tamassia’s result derive from subsequent faster
min-cost flow algorithms:

• O(n1.75 log n) time [Garg & Tamassia, GD 1996]

• O(n1.5) time [Cornelsen & Karrenbauer, JGAA 2012]

Open Problem 1: Does there exist an O(n)-time bend-minimization
algorithm for plane 4-graphs?

Fixed Embedding: Open problems

• Partial answers:
–O(n)-time algorithm for plane 3-graphs [Rahman & Nishizeki, WG 2002]

• extends an O(n)-time rectilinear planarity testing for plane 3-graphs
[Rahman, Nishizeki, Naznin, GD 2001 & JGAA 2003]

–O(n)-time algorithm for plane series-parallel graphs (SP-graphs)
[D., Kaufmann, Liotta, Ortali, GD 2020 & Algorithmica 2022]

Open Problem 1: Does there exist an O(n)-time bend-minimization
algorithm for plane 4-graphs?

Fixed Embedding: Open problems

• Partial answers:
–O(n)-time algorithm for plane 3-graphs [Rahman & Nishizeki, WG 2002]

• extends an O(n)-time rectilinear planarity testing for plane 3-graphs
[Rahman, Nishizeki, Naznin, GD 2001 & JGAA 2003]

–O(n)-time algorithm for plane series-parallel graphs (SP-graphs)
[D., Kaufmann, Liotta, Ortali, GD 2020 & Algorithmica 2022]

not flow-based!

Open Problem 1: Does there exist an O(n)-time bend-minimization
algorithm for plane 4-graphs?

Open Problem 2: Does there exist an O(n)-time bend-minimization
algorithm for triconnected plane 4-graphs?

Variable Embedding: First overview

planar
3-graphs

SP-graphs

planar 4-graphs

NP-hard (even rectilinear
planarity testing)
[Garg & Tamassia,
SIAM J. Comp. 2001]

Polynomial-time solvable
O(n5 log n) and O(n4) time
[Di Battista, Liotta, Vargiu,
SIAM J. Comp. 1998]

Variable Embedding: First overview

planar
3-graphs

SP-graphs

planar 4-graphs

Polynomial-time solvable
O(n5 log n) and O(n4) time
[Di Battista, Liotta, Vargiu,
SIAM J. Comp. 1998]

NP-hard (even rectilinear
planarity testing)
[Garg & Tamassia,
SIAM J. Comp. 2001]

- «spirality»
- dynamic programming on SPQR-trees introduces

Prominent open problems

Problem A. Establishing the exact time complexity of the bend-
minimization and the rectilinear planarity testing problems for

• SP-graphs

• Planar 3-graphs

Question: Can we find linear-time algorithms?

Prominent open problems

Problem A. Establishing the exact time complexity of the bend
minimization and the rectilinear planarity testing problems for

• SP-graphs

• Planar 3-graphs

Question: Can we find linear-time algorithms?

Problem B. Exponential-time algorithms for general planar 4-graphs

Question: What about the existence of parameterized algorithms?

In the remainder of the talk: Problem A

planar
3-graphs

SP-graphs

planar 4-graphs

we revisit the strategy of
[Di Battista, Liotta, Vargiu,
SIAM J. Comp. 1998]
showing O(n4) complexity- «spirality»

- dynamic programming on SPQR-trees

NP-hard (even rectilinear
planarity testing)
[Garg & Tamassia,
SIAM J. Comp. 2001]

introduces

1

In the remainder of the talk: Problem A

planar
3-graphs

SP-graphs

planar 4-graphs

- «spirality»
- dynamic programming on SPQR-trees

NP-hard (even rectilinear
planarity testing)
[Garg & Tamassia,
SIAM J. Comp. 2001]

introduces

- O(n3) bend minimization
- O(n2) rect. planarity testing
- O(n) rect. planarity testing

for independent-parallel
[D., Kaufmann, Liotta, Ortali,
JGAA 2023]

we discuss recent advances
2

we revisit the strategy of
[Di Battista, Liotta, Vargiu,
SIAM J. Comp. 1998]
showing O(n4) complexity

1

In the remainder of the talk: Problem A

planar
3-graphs

SP-graphs

planar 4-graphs

- «spirality»
- dynamic programming on SPQR-trees

NP-hard (even rectilinear
planarity testing)
[Garg & Tamassia,
SIAM J. Comp. 2001]

introduces

O(n) bend minimization
[D., Liotta, Ortali,
Patrignani, SODA 2020]

we discuss recent advances
2

3

- O(n3) bend minimization
- O(n2) rect. planarity testing
- O(n) rect. planarity testing

for independent-parallel
[D., Kaufmann, Liotta, Ortali,
JGAA 2023]

we revisit the strategy of
[Di Battista, Liotta, Vargiu,
SIAM J. Comp. 1998]
showing O(n4) complexity

1

In the remainder of the talk: Problem A

planar
3-graphs

SP-graphs

planar 4-graphs

- «spirality»
- dynamic programming on SPQR-trees

NP-hard (even rectilinear
planarity testing)
[Garg & Tamassia,
SIAM J. Comp. 2001]

introduces

O(n) bend minimization
[D., Liotta, Ortali,
Patrignani, SODA 2020]

we discuss recent advances
2

Remark: O(n) rect. plan. test.
for outerplanar graphs
[Frati, CGTA 2022]

3

- O(n3) bend minimization
- O(n2) rect. planarity testing
- O(n) rect. planarity testing

for independent-parallel
[D., Kaufmann, Liotta, Ortali,
JGAA 2023]

we revisit the strategy of
[Di Battista, Liotta, Vargiu,
SIAM J. Comp. 1998]
showing O(n4) complexity

1

In the remainder of the talk: Problem B

b (bends) k (deg-2 vert.) tw (treewidth) b+k b+tw k+tw

Para-NP-hard
[Garg & Tamassia,

2001]

Para-NP-hard
[Di Giacomo, D.,

Liotta, Ortali,
Montecchiani, 2023]

W[1]-hard
[Jansen et al., 2023]

XP
[Di Giacomo, Liotta,
Montecchiani, 2022]

FPT
[Di Giacomo,

D., Liotta,
Ortali,

Montecchiani,
2023]

W[1]-hard
[implied]

W[1]-hard
[Di Giacomo,

D., Liotta,
Ortali,

Montecchiani,
2023]

parameterized complexity

4

\begin{SPQR-trees}

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

reference
edge

root

P

S

R

Q-node

parallel

series

rigid

[Di Battista and Tamassia, 1990]

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

P

S

R

Q-node

parallel

series

rigid

14

1

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

P

S

R

Q-node

parallel

series

rigid

14

1

skeleton

poles

pertinent graph
(P-component)

G

pertinent graph
(S-component)

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

P

S

R

Q-node

parallel

series

rigid

skeleton

poles

14

12
3

9

(1,10)

pertinent graph
(R-component)

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

P

S

R

Q-node

parallel

series

rigid

skeleton

3

9
8

4

(1,10)

pertinent graph
(R-component)

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

P

S

R

Q-node

parallel

series

rigid

skeleton

3

9
8

4

SP-graph = no R-nodes

Changing the embedding
P

S S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

14

1

R

S

Changing the embedding
P

S S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

13

11 12

10

6

8

5

7

2

3

4

9

14

1

1

14

R

S

(1,10)

Changing the embedding
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

skeleton

3

9
8

413

11 12

10

6

8

5

7

2

3

4

9

1

14

(1,10)

Changing the embedding
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

skeleton

3

9
4

813

11 12

10

2

6

8

5

7

3

4

9

1

14

SPQ*R-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

reference
edge

root

P

S

R

Q-node

parallel

series

rigid

(9,14)

SPQ*R-trees
P

S S

R

S

P

S

P

S

(1,2) (2,3)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11,13)

(10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

reference
edge

root

P

S

R

Q-node

parallel

series

rigid

(9,14)

Q*-node

SPQ*R-trees
P

S S

R

S

P

S

P

S

(1,2) (2,3)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

reference
edge

root

P

S

R

Q-node

parallel

series

rigid

(9,14)

(10,11,13)

SPQ*R-trees

6

8

5

7

1

2

14

13

11 12

103

4

9

reference
edge

P

S

R

Q-node

parallel

series

rigid

P

S S

R

S

P

P(1,2,3)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7) (5,6,7)

(1,10) (13,14)

(10,12,13)

(1,14)
root

(9,14)

(10,11,13)

SPQ*R-trees
P

S S

R

S

P

P(1,2,3)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7) (5,6,7)

(1,10) (13,14)

(10,12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

reference
chain

root

P

S

R

Q*-node

parallel

series

rigid

(9,14)

(10,11,13)

SPQ*R-trees

(1,2,3)

(3,4)

6

8

5

7

1

2

14

13

11 12

103

4

9 reference
chain

P

S

R

Q*-node

parallel

series

rigid

P

S S

R

S

P

P

(3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7) (5,6,7)

(1,10) (13,14)

(10,12,13)

(1,14)

root

(9,14)

(10,11,13)

SPQ*R-trees

P

S

P

(1,2,3)

(10,1) (14,13)

(10,12,13)

(1,14)
6

8

5

7

1

2

14
13

11
12

10

3

4

9

reference
chain

root

P

S

R

Q*-node

parallel

series

rigid

S

R

S

P

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7) (5,6,7)

(9,14)

(10,11,13)

changing
the root

\end{SPQR-trees}

\begin{Spirality}

Spirality of orthogonal components: Intuition

H

H H’

H’

high spirality low spirality

Spirality of orthogonal components

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 10 1

6

3

9

13 12

14

2

G H

Spirality of orthogonal components

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 10 1

6

3

9

13 12

14

2

G H

G

H

Series (orthogonal) component

= 3

Spirality of orthogonal components

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 10 1

6

3

9

13 12

14

2

G H

G

H

Series (orthogonal) component

= 3

Spirality of orthogonal components

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 10 1

6

3

9

13 12

14

2

G H

G

H

Rigid (orthogonal) component

= 2

alias vertex

Spirality of orthogonal components

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 1

6

3

9

12

14

2

G H

G

H

Parallel (orthogonal) component

10

13

= 1

Spirality: More cases

1
0

= 1/2

1

-1

= 0

The spirality is either an integer or a semi-integer number

H H

Substitution of components

Theorem (substitution). Two orthogonal components with the same
spirality are “interchangeable” (even if they have different embeddings)

H
H'

H'

-2

-2
-2

Substitution of components

Theorem (substitution). Two orthogonal components with the same
spirality are “interchangeable” (even if they have different embeddings)

H'

H

-1

-1
-1

Spirality: Series relationship

1/2

1/2 10

0

= 2

= σi=1
6 i = 2

H

0

S

PR R

1 2 3 4 5

0 1/2 1/2 0 1 0
6

Spirality: Parallel relationship

= 0
H

2 0 -2

 = 1- 2 = 2 = 3+ 2

S

P

1 2 3

2 0 -2

Spirality: Parallel relationship

= 0

2 0 -2

 = 1- 2 = 2 = 3+ 2

S

P

1 2 3

2 0 -2

• For P-nodes with two children
the relationship is a bit more
involved, but similar

H

\end{Spirality}

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

 = optimal set of =
{< , b() > |
 = spirality of a component H;
b() = min. bend for }

S

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

 = optimal set of =
{< , b() > |
 = spirality of a component H;
b() = min. bend for }

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

3

3

 = optimal set of =
{< , b() > |
 = spirality of a component H;
b() = min. bend for }

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

3

34 5

4 5

 = optimal set of =
{< , b() > |
 = spirality of a component H;
b() = min. bend for }

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

3

34 5

4 5

66

 = optimal set of =
{< , b() > |
 = spirality of a component H;
b() = min. bend for }

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

3

34 5

4 5

66

 = optimal set of =
{< , b() > |
 = spirality of a component H;
b() = min. bend for }

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

3

34 5

4 5

66

 = optimal set of =
{< , b() > |
 = spirality of a component H;
b() = min. bend for }

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

3

34 5

4 5

66

 = optimal set of =
{< , b() > |
 = spirality of a component H;
b() = min. bend for }

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

3

34 5

4 5

66

 at the root level,
select the pair { , } such that:
 - = 4 and b()+ b() is minimum

= 3 = -14

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

3

34 5

4 5

66

take the minimum over all roots!

at the root level,
select the pair { , } such that:
 - = 4 and b()+ b() is minimum

= 3 = -14

Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]

P

S S

R

P

P

1
S

2

1 2

3

34 5

4 5

66

take the minimum over all roots!

Question: How can we
efficiently compute the
optimal set of each node?

Optimal sets: Preliminary observations

• A bend-min orthogonal representation has at most 2n-2 bends
[Tamassia, Tollis, Vitter 1991]
 the spirality of a component is in the interval [–3n+2, 3n-2]

• Each bend is along a chain of a Q*-node

Optimal sets: Q*-nodes

= Q*-node whose chain has length k

• consider all possible spirality values [-3n+2, 3n-2]

• for each b() = max{0,|| - k + 1}

b(0) = 0 b(1) = 0 b(2) = 1 b(3) = 2

- O(n) time x node

- O(n2) time all nodes

k=2

Optimal sets: S-nodes

 = S-node

• the spirality values are all possible summations of the values of
the children of

• for each summation b() = sum of the bends of the
children (keep the minimum for)

- O(deg() n2) time x node
- O(n3) time all nodes= σi=1

6 i

S

PR R

1 2 3 4 5 6

Optimal sets: P-nodes

 = P-node

• the spirality values must satisfy the parallel relationship

• for each b() = sum of the bends of the children (keep the
minimum on)

- O(n) time x node
- O(n2) time all nodes

 = 1- 2 = 2 = 3+ 2

S

P

1 2 3

2 0 -2

Optimal sets: R-nodes
 = R-node

• consider all possible values [-3n+2, 3n-2]

• for each b() = constrained min-cost flow with virtual edges
having convex-cost functions (the cost of the corresponding series)

4

3

1

2

5
4

1

2

5
G

skel()

4

1

2

5

1 2

4

5

=1

 = -3

fixed

b()
cost function

10 2

1

Optimal sets: R-nodes

4

3

1

2

5
4

1

2

5
G

skel()

4

1

2

5

1 2

4

5

=1

 = -3

fixed

b()
cost function

10 2

1

3

- O(nT(deg()) time x node
- O(nT(n)) time all nodes

T(.) = min-cost flow time
 = R-node

• consider all possible values [-3n+2, 3n-2]

• for each b() = constrained min-cost flow with virtual edges
having convex-cost functions (the cost of the corresponding series)

Optimal sets: Root level

 = child of the root

• consider all possible values and such that - = 4

• b() = min {b() + b() | - = 4 }

= 3 = -14
- O(n) time

Time complexity: Summary

• For a single rooted tree T

O(n2) + O(n3) + O(n2) + O(nT(n)) + O(n)

Q*-nodes P-nodesS-nodes R-nodes

= O(n3)

assuming T(n) = o(n2)

• For all rooted trees T O(n4)

root

Time complexity: Summary

• For a single rooted tree T

O(n2) + O(n3) + O(n2) + O(nT(n)) + O(n)

Q*-nodes P-nodesS-nodes R-nodes

= O(n3)

assuming T(n) = o(n2)

• For all rooted trees T O(n4)

root

Question: Can we do better?

Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes O(n3) time – can we
reduce the time needed to process S-nodes?

Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes O(n3) time – can we
reduce the time needed to process S-nodes?

2. Can we avoid the O(n) factor caused by exploring all roots?

Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes O(n3) time – can we
reduce the time needed to process S-nodes?

2. Can we avoid the O(n) factor caused by exploring all roots?

3. Can we avoid to solve a min-cost-flow problem in the presence
of R-nodes?

Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes O(n3) time – can we
reduce the time needed to process S-nodes?

2. Can we avoid the O(n) factor caused by exploring all roots?

3. Can we avoid to solve a min-cost-flow problem in the presence
of R-nodes?

SP-graphs

S-nodes – a smarter approach

• Consider normalized SPQ*-trees
–each S-node has two children

S S

1 2 3 S1

2 3

0 0
• The number of S-nodes is still O(n)

and the structure of the tree does not
change when we change the root

S-nodes – a smarter approach

• Consider any ordered sequence of all normalized rooted
SPQ*-trees T1 , T2 , … , Th

S-nodes – a smarter approach

1 2

S

Ti

0

T1 , … Ti , … Tj , … , Th

1

S

Tj

2

0nothing
changes

the parent
changes

case 1

case 2

O(n2) time

1 2

S

Tj

0

O(1) time (just reuse)

• 3 distinct parents per S-node
• O(n3) over all O(n) S-nodes

processed

SP-graphs: improved time complexity

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

SP-graphs: improved time complexity

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Question. Can we further improve the time complexity for the rectilinear
planarity testing problem (0 bends)?

S-nodes: rectilinear planarity testing

Observation. Computing the set of spirality values for an S-node

with two child components of size n1 and n2 take O(n1 n2) time

.. because in a rectilinear drawing the
absolute spirality of a component with k
vertices is at most k-2

S

0

n1

n2

S-nodes: rectilinear planarity testing

Lemma. The sum of the products of the sizes of the pertinent graphs
of all S-node children in a normalized rooted SPQ*-tree is O(n2)

μ

O(n1 n2)= O(n2)
S

0

n1 n2

S-nodes: rectilinear planarity testing

μ
S

0

s() =

μ∈{S−nodes in T ν }

n1 n2 4m
2

Lemma. The sum of the products of the sizes of the pertinent graphs
of all S-node children in a normalized rooted SPQ*-tree is O(n2)

O(n1 n2)= O(n2)
proved by induction on
the depth of the subtree
T() rooted at

n1 n2

SP-graphs

Lemma. Processing an S-node in each
tree Tj does not cost more than in T1

+

Lemma. The sum of the products of the sizes of the pertinent graphs
of all S-node children in a normalized rooted SPQ*-tree is O(n2)

S

n1

n2

n0

min{n1n2, n2n0, n0n1}

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time

Question. Can we achieve linear time?

Strive for linear time

• The given approach stores O(n) spirality values per node

• This does not allow us to achieve O(n) time complexity in total!

Question: is there any constant upper bound on the maximum
spirality of a component?

Strive for linear time

Answer: this is not always the case!

• The given approach stores O(n) spirality values per node

• This does not allow us to achieve O(n) time complexity in total!

Question: is there any constant upper bound on the maximum
spirality of a component?

Spirality – Logarithmic lower bound

• N ≥ 2 (even)

• n = (3N)

• L = N/2+1

one of the three
series of G1 will
have spirality
 = N+2

N = 4, L=3, = 6

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time

Theorem 3. There exist infinitely many SP-graphs that require components
with spirality (log n) in any given rectilinear planar representation

Let’s not lose hope

Even if we must handle sets of spirality of non-constant size …

Question: can we represent them in O(1) space?

Let’s not lose hope

Even if we must handle sets of spirality of non-constant size …

Question: can we represent them in O(1) space?

Answers:

1) possible for a meaningful subclass of SP-graphs, called
independent-parallel SP-graphs

2) unclear for general SP-graphs (probably not)

Independent-parallel SP-graphs

Independent-parallel means “no two P-nodes share a pole”

P

P

P

P

forbidden

P

P

allowed

P

Independent-parallel SP-graphs

• Rectilinear planarity testing of independent-parallel SP-graphs can be
executed in O(n) time

• Main ingredients:
– each component has one of the following sets of spirality values:

• {0};

• {-1, 1};

• {-2, -1, 1, 2};

• {-M, -M+1,…, 0,…, M-1, M};

• {-M, -M+2, -M+4,…., M-4, M-2, M}

Independent-parallel SP-graphs

• Rectilinear planarity testing of independent-parallel SP-graphs can be
executed in O(n) time

• Main ingredients:
– dynamic programming on (not normalized) SPQ*-trees

– the set of each Q*-node and of each P-node is computed in O(1) time

– the set of each S-node is computed in O(deg()) time in the first tree and in
O(1) time in the remaining trees

– rectilinear planarity at the root level is tested in O(1) time

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time

Theorem 3. There exist infinitely many SP-graphs that require components
with spirality (log n) in any given rectilinear planar representation

Theorem 4. Let G be an n-vertex independent-parallel SP-graph. There exists
an algorithm that tests whether G is rectilinear planar in O(n) time

SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time

Theorem 3. There exist infinitely many SP-graphs that require components
with spirality (log n) in any given rectilinear planar representation

Theorem 4. Let G be an n-vertex independent-parallel SP-graph. There exists
an algorithm that tests whether G is rectilinear planar in O(n) time

[D., Kaufmann, Liotta, Ortali, JGAA 2023]

Non-independent-parallel SP-graphs may be irregular

0 1 2
bend

3 4 5

0 1 2

3 4 5

Non-independent-parallel SP-graphs may be irregular

bend

bend

bend

0 1 2

3 4 5

we cannot
generalize the
approach used for
independent-
parallel SP-graphs

Non-independent-parallel SP-graphs may be irregular

bend

bend

bend

SP-graphs: Open Problems

Open Problem 3: Can we improve the complexity of the bend-minimization
problem for SP-graphs?

Recall: The best bound is O(n3)

SP-graphs: Open Problems

Open Problem 3: Can we improve the complexity of the bend-minimization
problem for SP-graphs?

Recall: The best bound is O(n3)

Open Problem 4: Can we improve the complexity of rectilinear planarity
testing for (general) SP-graphs?

Recall: The best bound is O(n2)

Planar 3-graphs: A long history

O(n5 log n)
Di Battista,

Liotta,Vargiu

1998
1998

O(n4)
with a finer analysis

O(n2.43 logk n)
Chang and Yen

2017
2018

O(n2)
D.,Liotta,Patrignani

O(n) time
D.,Liotta,Ortali,

Patrignani

2020

Planar 3-graphs in linear time
[D., Liotta, Ortali, Patrignani, SODA 2020]

Theorem 5. Let G be an n-vertex planar 3-graph. There exists an algorithm
that computes a bend-minimum orthogonal drawing of G in O(n) time.
Also, if G is not K4, the drawing has at most one bend per edge

Planar 3-graphs in linear time

Theorem 5. Let G be an n-vertex planar 3-graph. There exists an algorithm
that computes a bend-minimum orthogonal drawing of G in O(n) time.
Also, if G is not K4, the drawing has at most one bend per edge

Optimal in terms of:
– time complexity

– total number of bends

– number of bends per edge

[D., Liotta, Ortali, Patrignani, SODA 2020]

Planar 3-graphs in linear time

Theorem 5. Let G be an n-vertex planar 3-graph. There exists an algorithm
that computes a bend-minimum orthogonal drawing of G in O(n) time.
Also, if G is not K4, the drawing has at most one bend per edge

Main ingredients:
– constant number of “shapes” (related to spirality) for each type of node

– efficient processing of R-nodes without flow-based techniques
• in particular, we can find in O(n) time the optimal solution for triconnected planar 3

graphs (over all choices of the external face)

– update of the optimal set of each type of node in O(1) time

[D., Liotta, Ortali, Patrignani, SODA 2020]

Shape-Lemma. Every biconnected planar 3-graph distinct from K4 admits a
bend-minimum orthogonal representation such that:

O1. every edge has at most one bend

O2. every P- and R-component is D-, X-, L-, or C-shaped

O3. every S-component has absolute spirality k 4

O4. every component is optimal within its shape
(thanks to substitution)

Constant number of “shapes”

D X

0 1 2 3 4

L C

Triconnected Graphs: Open Problems

Open Problem 5: Does there exist an o(nT(n)) algorithm for planar
triconnected 4-graphs?

T(n) = time needed to solve a min-cost-flow problem

In particular: Can we find an O(n2)-time algorithm (or better)?

Recall: For triconnected planar 3-graphs we can solve the problem in O(n) time
[D., Liotta, Patrignani, SODA 2020]

FPT Algorithm for planar 4-graphs

Theorem 6. Let G be an n-vertex planar 4-graph with k vertices of degree at
most two, let b be a non-negative integer, and let p = b+k. There exists an
O(2p log p)nO(1)–time algorithm that tests whether G admits an orthogonal
representation with at most b bends, and that computes one if it exists

Bounding the spirality

Lemma. For any node of a rooted SPQ*R-tree T of G, the absolute value of
the spirality of any orthogonal representation of G is at most p+2

Intuition: right (left) turns on the external left (right) path must be either
bends or degree-2 vertices

u

v

Bounding the spirality: Q*-, S-, P-nodes

Lemma. For any node of a rooted SPQ*R-tree T of G, the absolute value of
the spirality of any orthogonal representation of G is at most p+2

• The optimal set of a Q*-node is computed in O(p) time

• The optimal set of an S-node is computed in O(p2) time from those of its children

• The optimal set of a P-node is computed in O(p) time from those of its children

u

v

Intuition: right (left) turns on the external left (right) path must be either
bends or degree-2 vertices

R-nodes

……

R

1 d……

S/P/R-nodes Q*-nodes

<G, >

u

v

1

2

d

<G, >

u

v

1

2

d

 - 4

constrained min-cost-flow

d p O(pp)=O(2p log p)
combinations of target
spirality values

Hd

H1

H2

Extension to non-biconnected graphs

The presented results can be extended to 1-connected graphs

Main ingredients:

• use the block-cutvertex tree of the graph

• angle constraints at the cutvertices (representations that share a cutvertex
must be glued together)

Concluding remarks
constrained scenarios and some more problems

Constrained scenarios: HV-drawings

• Problem HV-PLANARITYTESTING. Rectilinear planarity testing where each edge is
assigned a “direction”, i. e., horizontal (H) or vertical (V)

positive instance

Constrained scenarios: HV-drawings

• Problem HV-PLANARITYTESTING. Rectilinear planarity testing where each edge is
assigned a “direction”, i. e., horizontal (H) or vertical (V)

negative instance

Constrained scenarios: HV-drawings

• HV-PLANARITYTESTING is NP-complete even for planar 3-graphs
[D., Liotta, Patrignani – JCSS 2019]

• HV-PLANARITYTESTING is polynomial-time solvable for SP-graphs
–O(n4)-time for SP-graphs [D., Liotta, Patrignani – JCSS 2019]

• exploiting SPQ*-trees and spirality

–O(n2)-time for SP-graphs
• improving the time required by S-nodes as in

[D., Kaufmann, Liotta, Ortali – JGAA 2023]

Constrained scenarios: HV-drawings

• HV-PLANARITYTESTING is NP-complete even for planar 3-graphs
[D., Liotta, Patrignani – JCSS 2019]

• HV-PLANARITYTESTING is polynomial-time solvable for SP-graphs
–O(n4)-time for SP-graphs [D., Liotta, Patrignani – JCSS 2019]

• exploiting SPQ*-trees and spirality

–O(n2)-time for SP-graphs
• improving the time required by S-nodes as in

[D., Kaufmann, Liotta, Ortali – JGAA 2023]

Open Problem 6: Study the parametrized complexity of HV-PLANARITYTESTING

for planar 4-graphs (with rigid components)

Constrained scenarios: Rectilinear-Upward

• Problem RU-PLANARITYTESTING. Rectilinear planarity testing where each edge
cannot point downward

positive instance negative instance

8

7

1

4

2

3

5

6
8

7

1

4

2

3

5

6

5 6

3 4 8

2 1 7

5 6

3 4 8

2 1 7

Constrained scenarios: Rectilinear-Upward

[D., Kaufmann, Liotta, Ortali, Patrignani – ISAAC 2023 + advances]

• RU-PLANARITYTESTING is NP-complete

• RU-PLANARITYTESTING is O(n)-time solvable for upward-plane digraphs
– based on a 2-SAT formulation

• RU-PLANARITYTESTING is O(n2)-time solvable for biconnected SP-digraphs
– based on spirality + SPQ-trees

• RU-PLANARITYTESTING is FPT, parameterized by k= # of switches (sources/sinks)
– O(2k log k+2k n)-time algorithm, based on spirality + SPQR-trees + 2-SAT

Open Problem 7: Can we solve RU-PLANARITYTESTING in polynomial time for
any plane digraph

Constrained scenarios: Rectilinear-Upward

[D., Kaufmann, Liotta, Ortali, Patrignani – ISAAC 2023 + advances]

• RU-PLANARITYTESTING is NP-complete

• RU-PLANARITYTESTING is O(n)-time solvable for upward-plane digraphs
– based on a 2-SAT formulation

• RU-PLANARITYTESTING is O(n2)-time solvable for biconnected SP-digraphs
– based on spirality + SPQ-trees

• RU-PLANARITYTESTING is FPT, parameterized by k= # of switches (sources/sinks)
– O(2k log k+2k n)-time algorithm, based on spirality + SPQR-trees + 2-SAT

Open Problem 8: Can we solve RU-PLANARITYTESTING in O(n2) time for any
directed partial 2-tree (“1-connected” SP-digraphs)

Constrained scenarios: Rectilinear-Upward

[D., Kaufmann, Liotta, Ortali, Patrignani – ISAAC 2023 + advances]

• RU-PLANARITYTESTING is NP-complete

• RU-PLANARITYTESTING is O(n)-time solvable for upward-plane digraphs
– based on a 2-SAT formulation

• RU-PLANARITYTESTING is O(n2)-time solvable for biconnected SP-digraphs
– based on spirality + SPQ-trees

• RU-PLANARITYTESTING is FPT, parameterized by k= # of switches (sources/sinks)
– O(2k log k+2k n)-time algorithm, based on spirality + SPQR-trees + 2-SAT

Open Problem 9: Can we find FPT/XP algorithms with respect to other
parameters (i.e., other than the number of switches)?

Thank you for your attention!

Additional details

Fixed Embedding: State-of-the-art

Remark: for rectilinear planarity testing the min-cost flow problem is reduced to a
max-flow problem (faces cannot exchange flow); O(n log3 n) time
[Borradaile, Klein, Mozes, Nussbaum, Wulff- Nilsen, SIAM J. Comp. 2017]

Improvements of Tamassia’s result derive from subsequent faster
min-cost flow algorithms:

• O(n1.75 log n) time [Garg & Tamassia, GD 1996]

• O(n1.5) time [Cornelsen & Karrenbauer, JGAA 2012]

Fixed Embedding: State-of-the-art

Remark: for bend minimization we could use in principle a recent “almost-linear
time” min-cost-flow algorithm - O(n1+o(1) log n) time
[Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva, FOCS 2022, Comm. ACM 2023]

Improvements of Tamassia’s result derive from subsequent faster
min-cost flow algorithms:

• O(n1.75 log n) time [Garg & Tamassia, GD 1996]

• O(n1.5) time [Cornelsen & Karrenbauer, JGAA 2012]

“For now, the new algorithms introduced by Prof. Kyng, Dr. Probst Gutenberg, and their co-authors remain
impractical, as they rely on a theoretical analysis of algorithm performance on networks larger than
anything even giant corporations like Google would ever consider. But, the race is now on to simplify and
improve the algorithm to make it work well in practice.”

	Diapositiva 1: Orthogonal Graph Drawings and the Bend Minimization Problem
	Diapositiva 2: Orthogonal drawings: Definition
	Diapositiva 3: Orthogonal drawings: Applications
	Diapositiva 4: Orthogonal drawings and hybrid visualizations
	Diapositiva 5: Quality metrics (aesthetics)
	Diapositiva 6: Quality metrics (aesthetics)
	Diapositiva 7: Quality metrics (aesthetics)
	Diapositiva 8: Quality metrics (aesthetics)
	Diapositiva 9: Orthogonal drawings: Comparison
	Diapositiva 10: In this talk: Bend Minimization
	Diapositiva 11: Bend minimization and rectilinear planarity
	Diapositiva 12: Bend minimization and rectilinear planarity
	Diapositiva 13: Fixed and Variable Embedding
	Diapositiva 14: Fixed Embedding: The main result
	Diapositiva 15: Flow and orthogonal representations
	Diapositiva 16: Fixed Embedding: Further improvements
	Diapositiva 17: Fixed Embedding: Open problems
	Diapositiva 18: Fixed Embedding: Open problems
	Diapositiva 19: Fixed Embedding: Open problems
	Diapositiva 20: Variable Embedding: First overview
	Diapositiva 21: Variable Embedding: First overview
	Diapositiva 22: Prominent open problems
	Diapositiva 23: Prominent open problems
	Diapositiva 24: In the remainder of the talk: Problem A
	Diapositiva 25: In the remainder of the talk: Problem A
	Diapositiva 26: In the remainder of the talk: Problem A
	Diapositiva 27: In the remainder of the talk: Problem A
	Diapositiva 28: In the remainder of the talk: Problem B
	Diapositiva 29: \begin{SPQR-trees}
	Diapositiva 30: SPQR-trees
	Diapositiva 31: SPQR-trees
	Diapositiva 32: SPQR-trees
	Diapositiva 33: SPQR-trees
	Diapositiva 34: SPQR-trees
	Diapositiva 35: SPQR-trees
	Diapositiva 36: Changing the embedding
	Diapositiva 37: Changing the embedding
	Diapositiva 38: Changing the embedding
	Diapositiva 39: Changing the embedding
	Diapositiva 40: SPQ*R-trees
	Diapositiva 41: SPQ*R-trees
	Diapositiva 42: SPQ*R-trees
	Diapositiva 43: SPQ*R-trees
	Diapositiva 44: SPQ*R-trees
	Diapositiva 45: SPQ*R-trees
	Diapositiva 46: SPQ*R-trees
	Diapositiva 47: \end{SPQR-trees}
	Diapositiva 48: \begin{Spirality}
	Diapositiva 49: Spirality of orthogonal components: Intuition
	Diapositiva 50: Spirality of orthogonal components
	Diapositiva 51: Spirality of orthogonal components
	Diapositiva 52: Spirality of orthogonal components
	Diapositiva 53: Spirality of orthogonal components
	Diapositiva 54: Spirality of orthogonal components
	Diapositiva 55: Spirality: More cases
	Diapositiva 56: Substitution of components
	Diapositiva 57: Substitution of components
	Diapositiva 58: Spirality: Series relationship
	Diapositiva 59: Spirality: Parallel relationship
	Diapositiva 60: Spirality: Parallel relationship
	Diapositiva 61: \end{Spirality}
	Diapositiva 62: Bend-min algorithm: General strategy
	Diapositiva 63: Bend-min algorithm: General strategy
	Diapositiva 64: Bend-min algorithm: General strategy
	Diapositiva 65: Bend-min algorithm: General strategy
	Diapositiva 66: Bend-min algorithm: General strategy
	Diapositiva 67: Bend-min algorithm: General strategy
	Diapositiva 68: Bend-min algorithm: General strategy
	Diapositiva 69: Bend-min algorithm: General strategy
	Diapositiva 70: Bend-min algorithm: General strategy
	Diapositiva 71: Bend-min algorithm: General strategy
	Diapositiva 72: Bend-min algorithm: General strategy
	Diapositiva 73: Optimal sets: Preliminary observations
	Diapositiva 74: Optimal sets: Q*-nodes
	Diapositiva 75: Optimal sets: S-nodes
	Diapositiva 76: Optimal sets: P-nodes
	Diapositiva 77: Optimal sets: R-nodes
	Diapositiva 78: Optimal sets: R-nodes
	Diapositiva 79: Optimal sets: Root level
	Diapositiva 80: Time complexity: Summary
	Diapositiva 81: Time complexity: Summary
	Diapositiva 82: Time complexity: Bottlenecks
	Diapositiva 83: Time complexity: Bottlenecks
	Diapositiva 84: Time complexity: Bottlenecks
	Diapositiva 85: Time complexity: Bottlenecks
	Diapositiva 86: S-nodes – a smarter approach
	Diapositiva 87: S-nodes – a smarter approach
	Diapositiva 88: S-nodes – a smarter approach
	Diapositiva 89: SP-graphs: improved time complexity
	Diapositiva 90: SP-graphs: improved time complexity
	Diapositiva 91: S-nodes: rectilinear planarity testing
	Diapositiva 92: S-nodes: rectilinear planarity testing
	Diapositiva 93: S-nodes: rectilinear planarity testing
	Diapositiva 94: SP-graphs
	Diapositiva 95: SP-graphs
	Diapositiva 96: SP-graphs
	Diapositiva 97: Strive for linear time
	Diapositiva 98: Strive for linear time
	Diapositiva 99: Spirality – Logarithmic lower bound
	Diapositiva 100: SP-graphs
	Diapositiva 101: Let’s not lose hope
	Diapositiva 102: Let’s not lose hope
	Diapositiva 103: Independent-parallel SP-graphs
	Diapositiva 104: Independent-parallel SP-graphs
	Diapositiva 105: Independent-parallel SP-graphs
	Diapositiva 106: SP-graphs
	Diapositiva 107: SP-graphs
	Diapositiva 108: Non-independent-parallel SP-graphs may be irregular
	Diapositiva 109
	Diapositiva 110: Non-independent-parallel SP-graphs may be irregular
	Diapositiva 111: SP-graphs: Open Problems
	Diapositiva 112: SP-graphs: Open Problems
	Diapositiva 113: Planar 3-graphs: A long history
	Diapositiva 114: Planar 3-graphs in linear time
	Diapositiva 115: Planar 3-graphs in linear time
	Diapositiva 116: Planar 3-graphs in linear time
	Diapositiva 117: Constant number of “shapes”
	Diapositiva 118: Triconnected Graphs: Open Problems
	Diapositiva 119: FPT Algorithm for planar 4-graphs
	Diapositiva 120: Bounding the spirality
	Diapositiva 121: Bounding the spirality: Q*-, S-, P-nodes
	Diapositiva 122: R-nodes
	Diapositiva 123: Extension to non-biconnected graphs
	Diapositiva 124: Concluding remarks constrained scenarios and some more problems
	Diapositiva 125: Constrained scenarios: HV-drawings
	Diapositiva 126: Constrained scenarios: HV-drawings
	Diapositiva 127: Constrained scenarios: HV-drawings
	Diapositiva 128: Constrained scenarios: HV-drawings
	Diapositiva 129: Constrained scenarios: Rectilinear-Upward
	Diapositiva 130: Constrained scenarios: Rectilinear-Upward
	Diapositiva 131: Constrained scenarios: Rectilinear-Upward
	Diapositiva 132: Constrained scenarios: Rectilinear-Upward
	Diapositiva 133: Thank you for your attention!
	Diapositiva 134: Additional details
	Diapositiva 135: Fixed Embedding: State-of-the-art
	Diapositiva 136: Fixed Embedding: State-of-the-art

