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Orthogonal drawings: Definition
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Orthogonal drawings: Applications

database 
design

software 
design

circuit design



Orthogonal drawings and hybrid visualizations

collaboration 
networks

BGP network



Quality metrics (aesthetics)

• Metrics used to evaluate the "quality" (readability) of a drawing
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Crossings Bends



Quality metrics (aesthetics)

Crossings Bends Area



Orthogonal drawings: Comparison

• no crossings
• fewer bends
• smaller area



In this talk: Bend Minimization

Crossings Bends Area



Bend minimization and rectilinear planarity

• Rectilinear drawing = orthogonal drawing without bends

• Rectilinear planarity testing:
– Instance: planar 4-graph G

– Question: does G admit a rectilinear planar drawing?

bend minimization

rectilinear planarity testing

SPECIAL 
CASE



Bend minimization and rectilinear planarity

bends = subdivision vertices

3 bends

rectilinear

CORE

bend minimization

rectilinear planarity testing

• Rectilinear drawing = orthogonal drawing without bends

• Rectilinear planarity testing:
– Instance: planar 4-graph G

– Question: does G admit a rectilinear planar drawing?



Fixed and Variable Embedding

• Two possible scenarios

fixed embedding variable embedding



Fixed Embedding: The main result

• O(n2 log n) time for general 4-graphs [Tamassia, SIAM J. Comp. 1987]
– based on an elegant reduction to a min-cost flow problem
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Flow and orthogonal representations

Flow network  orthogonal representations (angles + bends)
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• vertices/faces with deg < 4 supply flow
• faces with deg > 4 demand flow
• adjacent faces can exchange flow
• 1 unit of flow exchanged = 1 bend
• total flow cost = total number of bends 

[Tamassia, SIAM J. Comp. 1987]



Fixed Embedding: Further improvements

Improvements of Tamassia’s result derive from subsequent faster 
min-cost flow algorithms:

• O(n1.75 log n) time [Garg & Tamassia, GD 1996]

• O(n1.5 ) time [Cornelsen & Karrenbauer, JGAA 2012]



Fixed Embedding: Open problems

Improvements of Tamassia’s result derive from subsequent faster 
min-cost flow algorithms:

• O(n1.75 log n) time [Garg & Tamassia, GD 1996]

• O(n1.5 ) time [Cornelsen & Karrenbauer, JGAA 2012]

Open Problem 1: Does there exist an O(n)-time bend-minimization 
algorithm for plane 4-graphs?



Fixed Embedding: Open problems

• Partial answers:
–O(n)-time algorithm for plane 3-graphs [Rahman & Nishizeki, WG 2002]

• extends an O(n)-time rectilinear planarity testing for plane 3-graphs 
[Rahman, Nishizeki, Naznin, GD 2001 & JGAA 2003]

–O(n)-time algorithm for plane series-parallel graphs (SP-graphs) 
[D., Kaufmann, Liotta, Ortali, GD 2020 & Algorithmica 2022]

Open Problem 1: Does there exist an O(n)-time bend-minimization 
algorithm for plane 4-graphs?



Fixed Embedding: Open problems

• Partial answers:
–O(n)-time algorithm for plane 3-graphs [Rahman & Nishizeki, WG 2002]

• extends an O(n)-time rectilinear planarity testing for plane 3-graphs 
[Rahman, Nishizeki, Naznin, GD 2001 & JGAA 2003]

–O(n)-time algorithm for plane series-parallel graphs (SP-graphs) 
[D., Kaufmann, Liotta, Ortali, GD 2020 & Algorithmica 2022]

not flow-based!

Open Problem 1: Does there exist an O(n)-time bend-minimization 
algorithm for plane 4-graphs?

Open Problem 2: Does there exist an O(n)-time bend-minimization 
algorithm for triconnected plane 4-graphs?



Variable Embedding: First overview

planar 
3-graphs

SP-graphs

planar 4-graphs

NP-hard (even rectilinear 
planarity testing) 
[Garg & Tamassia, 
SIAM J. Comp. 2001]

Polynomial-time solvable
O(n5 log n) and O(n4) time
[Di Battista, Liotta, Vargiu, 
SIAM J. Comp. 1998]
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[Di Battista, Liotta, Vargiu, 
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Prominent open problems

Problem A. Establishing the exact time complexity of the bend-
minimization and the rectilinear planarity testing problems for

• SP-graphs

• Planar 3-graphs

Question: Can we find linear-time algorithms?



Prominent open problems

Problem A. Establishing the exact time complexity of the bend 
minimization and the rectilinear planarity testing problems for

• SP-graphs

• Planar 3-graphs

Question: Can we find linear-time algorithms?

Problem B. Exponential-time algorithms for general planar 4-graphs

Question: What about the existence of parameterized algorithms?



In the remainder of the talk: Problem A

planar 
3-graphs

SP-graphs

planar 4-graphs

we revisit the strategy of
[Di Battista, Liotta, Vargiu, 
SIAM J. Comp. 1998]
showing O(n4) complexity- «spirality» 

- dynamic programming on SPQR-trees
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In the remainder of the talk: Problem B

b (bends) k (deg-2 vert.) tw (treewidth) b+k b+tw k+tw

Para-NP-hard
[Garg & Tamassia, 

2001]

Para-NP-hard
[Di Giacomo, D., 

Liotta, Ortali, 
Montecchiani, 2023]

W[1]-hard
[Jansen et al., 2023]

XP
[Di Giacomo, Liotta, 
Montecchiani, 2022]

FPT
[Di Giacomo, 

D., Liotta, 
Ortali, 

Montecchiani, 
2023]

W[1]-hard
[implied]

W[1]-hard
[Di Giacomo, 

D., Liotta, 
Ortali, 

Montecchiani, 
2023]

parameterized complexity
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Changing the embedding
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SPQ*R-trees
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\begin{Spirality}



Spirality of orthogonal components: Intuition
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Spirality of orthogonal components
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Spirality of orthogonal components
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Spirality of orthogonal components
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Spirality of orthogonal components

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 10 1

6

3

9

13 12

14

2

G H

G

H

Rigid (orthogonal) component

= 2

alias vertex



Spirality of orthogonal components
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Spirality: More cases

1
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The spirality is either an integer or a semi-integer number 
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Substitution of components

Theorem (substitution). Two orthogonal components with the same 
spirality are “interchangeable” (even if they have different embeddings)

H
H'

H'

-2

-2
-2



Substitution of components

Theorem (substitution). Two orthogonal components with the same 
spirality are “interchangeable” (even if they have different embeddings)

H'

H

-1

-1
-1



Spirality: Series relationship
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Spirality: Parallel relationship
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Spirality: Parallel relationship
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 = 1- 2 = 2 =  3+ 2
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• For P-nodes with two children 
the relationship is a bit more 
involved, but similar
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\end{Spirality}



Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]
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Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]
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 at the root level, 
select the pair { , } such that:
 - = 4 and b()+ b() is minimum

= 3 = -14



Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]
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take the minimum over all roots!

at the root level, 
select the pair { , } such that:
 - = 4 and b()+ b() is minimum

= 3 = -14



Bend-min algorithm: General strategy
[Di Battista, Liotta, Vargiu, SIAM J. Comp. 1998]
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take the minimum over all roots!

Question: How can we 
efficiently compute the 
optimal set of each node?



Optimal sets: Preliminary observations

• A bend-min orthogonal representation has at most 2n-2 bends 
[Tamassia, Tollis, Vitter 1991]
 the spirality of a component is in the interval [–3n+2, 3n-2] 

• Each bend is along a chain of a Q*-node



Optimal sets: Q*-nodes

= Q*-node whose chain has length k

• consider all possible spirality values   [-3n+2, 3n-2]

• for each   b() = max{0,|| - k + 1}

b(0) = 0 b(1) = 0 b(2) = 1 b(3) = 2

- O(n) time x node

- O(n2) time all nodes

k=2



Optimal sets: S-nodes

 = S-node

• the spirality values  are all possible summations of the values of 
the children of  

• for each summation   b() = sum of the bends of the 
children (keep the minimum for ) 

- O(deg() n2) time x node
- O(n3) time all nodes= σi=1

6 i 


S

PR R

1 2 3 4 5 6



Optimal sets: P-nodes

 = P-node

• the spirality values  must satisfy the parallel relationship 

• for each   b() = sum of the bends of the children (keep the 
minimum on ) 

- O(n) time x node
- O(n2) time all nodes

 = 1- 2 = 2 =  3+ 2

S

P 

1 2 3

2 0 -2



Optimal sets: R-nodes
 = R-node

• consider all possible values   [-3n+2, 3n-2]

• for each   b() = constrained min-cost flow with virtual edges 
having convex-cost functions (the cost of the corresponding series)
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5
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Optimal sets: R-nodes
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b()
cost function
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- O(nT(deg()) time x node
- O(nT(n)) time all nodes

T(.) = min-cost flow time
 = R-node

• consider all possible values   [-3n+2, 3n-2]

• for each   b() = constrained min-cost flow with virtual edges 
having convex-cost functions (the cost of the corresponding series)



Optimal sets: Root level

 = child of the root

• consider all possible values  and  such that  -  = 4 

• b() = min {b() + b() |  -  = 4 }

= 3 = -14
- O(n) time



Time complexity: Summary

• For a single rooted tree T

O(n2) + O(n3) + O(n2) + O(nT(n)) + O(n)

Q*-nodes P-nodesS-nodes R-nodes

= O(n3)

assuming T(n) = o(n2) 

• For all rooted trees T O(n4)

root



Time complexity: Summary

• For a single rooted tree T

O(n2) + O(n3) + O(n2) + O(nT(n)) + O(n)

Q*-nodes P-nodesS-nodes R-nodes

= O(n3)

assuming T(n) = o(n2) 

• For all rooted trees T O(n4)

root

Question: Can we do better?



Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes O(n3) time – can we 
reduce the time needed to process S-nodes?
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2. Can we avoid the O(n) factor caused by exploring all roots?  



Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes O(n3) time – can we 
reduce the time needed to process S-nodes?

2. Can we avoid the O(n) factor caused by exploring all roots?  

3. Can we avoid to solve a min-cost-flow problem in the presence 
of R-nodes? 



Time complexity: Bottlenecks

1. Processing all S-nodes for a single tree takes O(n3) time – can we 
reduce the time needed to process S-nodes?

2. Can we avoid the O(n) factor caused by exploring all roots?  

3. Can we avoid to solve a min-cost-flow problem in the presence 
of R-nodes? 

SP-graphs



S-nodes – a smarter approach

• Consider normalized SPQ*-trees
–each S-node has two children

S S

1 2 3 S1

2 3

0 0
• The number of S-nodes is still O(n) 

and the structure of the tree does not 
change when we change the root



S-nodes – a smarter approach

• Consider any ordered sequence of all normalized rooted 
SPQ*-trees T1 , T2 , … , Th



S-nodes – a smarter approach

1 2

S

Ti



0

T1 , … Ti , … Tj , … , Th

1

S

Tj



2

0nothing 
changes

the parent 
changes

case 1

case 2

O(n2) time

1 2

S

Tj



0

O(1) time (just reuse)

• 3 distinct parents per S-node
• O(n3) over all O(n) S-nodes

processed



SP-graphs: improved time complexity

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time



SP-graphs: improved time complexity

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Question. Can we further improve the time complexity for the rectilinear 
planarity testing problem (0 bends)?



S-nodes: rectilinear planarity testing 

Observation. Computing the set of spirality values for an S-node 

with two child components of size n1 and n2 take O(n1 n2) time 

.. because in a rectilinear drawing the 
absolute spirality of a component with k 
vertices is at most k-2 

S

0

n1



n2



S-nodes: rectilinear planarity testing 

Lemma. The sum of the products of the sizes of the pertinent graphs 
of all S-node children in a normalized rooted SPQ*-tree is O(n2) 



μ 

O(n1 n2)= O(n2)
S

0



n1 n2



S-nodes: rectilinear planarity testing 



μ 
S

0



s() = 

μ∈{S−nodes in T ν }

n1 n2   4m
2

Lemma. The sum of the products of the sizes of the pertinent graphs 
of all S-node children in a normalized rooted SPQ*-tree is O(n2) 

O(n1 n2)= O(n2)
proved by induction on 
the depth of the subtree 
T() rooted at 

n1 n2



SP-graphs

Lemma. Processing an S-node  in each 
tree Tj does not cost more than in T1

+

Lemma. The sum of the products of the sizes of the pertinent graphs 
of all S-node children in a normalized rooted SPQ*-tree is O(n2) 

S

n1



n2



n0

min{n1n2, n2n0, n0n1}
 



SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time



SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time

Question. Can we achieve linear time?



Strive for linear time

• The given approach stores O(n) spirality values per node

• This does not allow us to achieve O(n) time complexity in total!

Question: is there any constant upper bound on the maximum 
spirality of a component? 



Strive for linear time

Answer: this is not always the case!

• The given approach stores O(n) spirality values per node

• This does not allow us to achieve O(n) time complexity in total!

Question: is there any constant upper bound on the maximum 
spirality of a component? 



Spirality – Logarithmic lower bound

• N ≥ 2 (even) 

• n = (3N)

• L = N/2+1

one of the three 
series of G1 will 
have spirality 
 = N+2

N = 4, L=3,  = 6 



SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time

Theorem 3. There exist infinitely many SP-graphs that require components 
with spirality (log n) in any given rectilinear planar representation



Let’s not lose hope

Even if we must handle sets of spirality of non-constant size …

Question: can we represent them in O(1) space? 



Let’s not lose hope

Even if we must handle sets of spirality of non-constant size …

Question: can we represent them in O(1) space? 

Answers: 

1) possible for a meaningful subclass of SP-graphs, called
independent-parallel SP-graphs

2) unclear for general SP-graphs (probably not) 



Independent-parallel SP-graphs

Independent-parallel means “no two P-nodes share a pole”

P

P

P

P

forbidden

P

P

allowed

P



Independent-parallel SP-graphs

• Rectilinear planarity testing of independent-parallel SP-graphs can be 
executed in O(n) time

• Main ingredients:
– each component has one of the following sets of spirality values: 

• {0}; 

• {-1, 1}; 

• {-2, -1, 1, 2}; 

• {-M, -M+1,…, 0,…, M-1, M}; 

• {-M, -M+2, -M+4,…., M-4, M-2, M}



Independent-parallel SP-graphs

• Rectilinear planarity testing of independent-parallel SP-graphs can be 
executed in O(n) time

• Main ingredients:
– dynamic programming on (not normalized) SPQ*-trees 

– the set of each Q*-node and of each P-node is computed in O(1) time 

– the set of each S-node  is computed in O(deg()) time in the first tree and in 
O(1) time in the remaining trees

– rectilinear planarity at the root level is tested in O(1) time



SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time

Theorem 3. There exist infinitely many SP-graphs that require components 
with spirality (log n) in any given rectilinear planar representation

Theorem 4. Let G be an n-vertex independent-parallel SP-graph. There exists 
an algorithm that tests whether G is rectilinear planar in O(n) time



SP-graphs

Theorem 1. Let G be an n-vertex SP-graph. There exists an algorithm that
computes a bend-minimum orthogonal drawing of G in O(n3) time

Theorem 2. Let G be an n-vertex SP-graph. There exists an algorithm that
tests whether G is rectilinear planar in O(n2) time

Theorem 3. There exist infinitely many SP-graphs that require components 
with spirality (log n) in any given rectilinear planar representation

Theorem 4. Let G be an n-vertex independent-parallel SP-graph. There exists 
an algorithm that tests whether G is rectilinear planar in O(n) time

[D., Kaufmann, Liotta, Ortali, JGAA 2023]



Non-independent-parallel SP-graphs may be irregular

0 1 2
bend

3 4 5



0 1 2

3 4 5

Non-independent-parallel SP-graphs may be irregular

bend

bend

bend



0 1 2

3 4 5

we cannot
generalize the 
approach used for 
independent-
parallel SP-graphs

Non-independent-parallel SP-graphs may be irregular

bend

bend

bend



SP-graphs: Open Problems

Open Problem 3: Can we improve the complexity of the bend-minimization 
problem for SP-graphs?

Recall: The best bound is O(n3)



SP-graphs: Open Problems

Open Problem 3: Can we improve the complexity of the bend-minimization 
problem for SP-graphs?

Recall: The best bound is O(n3)

Open Problem 4: Can we improve the complexity of rectilinear planarity 
testing for (general) SP-graphs?

Recall: The best bound is O(n2)



Planar 3-graphs: A long history

O(n5 log n)
Di Battista, 

Liotta,Vargiu 

1998
1998

O(n4)
with a finer analysis

O(n2.43 logk n)
Chang and Yen

2017
2018

O(n2)
D.,Liotta,Patrignani

O(n) time
D.,Liotta,Ortali,

Patrignani

2020



Planar 3-graphs in linear time
[D., Liotta, Ortali, Patrignani, SODA 2020]

Theorem 5. Let G be an n-vertex planar 3-graph. There exists an algorithm 
that computes a bend-minimum orthogonal drawing of G in O(n) time. 
Also, if G is not K4, the drawing has at most one bend per edge



Planar 3-graphs in linear time

Theorem 5. Let G be an n-vertex planar 3-graph. There exists an algorithm 
that computes a bend-minimum orthogonal drawing of G in O(n) time. 
Also, if G is not K4, the drawing has at most one bend per edge

Optimal in terms of:
– time complexity

– total number of bends

– number of bends per edge

[D., Liotta, Ortali, Patrignani, SODA 2020]



Planar 3-graphs in linear time

Theorem 5. Let G be an n-vertex planar 3-graph. There exists an algorithm 
that computes a bend-minimum orthogonal drawing of G in O(n) time. 
Also, if G is not K4, the drawing has at most one bend per edge

Main ingredients:
– constant number of “shapes” (related to spirality) for each type of node

– efficient processing of R-nodes without flow-based techniques
• in particular, we can find in O(n) time the optimal solution for triconnected planar 3 

graphs (over all choices of the external face) 

– update of the optimal set of each type of node in O(1) time

[D., Liotta, Ortali, Patrignani, SODA 2020]



Shape-Lemma. Every biconnected planar 3-graph distinct from K4 admits a 
bend-minimum orthogonal representation such that:

O1. every edge has at most one bend

O2. every P- and R-component is D-, X-, L-, or C-shaped

O3. every S-component has absolute spirality k  4

O4. every component is optimal within its shape
(thanks to substitution)

Constant number of “shapes”

D X

0 1 2 3 4

L C



Triconnected Graphs: Open Problems

Open Problem 5: Does there exist an o(nT(n)) algorithm for planar 
triconnected 4-graphs?

T(n) = time needed to solve a min-cost-flow problem 

In particular: Can we find an O(n2)-time algorithm (or better)?

Recall: For triconnected planar 3-graphs we can solve the problem in O(n) time
[D., Liotta, Patrignani, SODA 2020]



FPT Algorithm for planar 4-graphs

Theorem 6. Let G be an n-vertex planar 4-graph with k vertices of degree at 
most two, let b be a non-negative integer, and let p = b+k. There exists an 
O(2p log p)nO(1)–time algorithm that tests whether G admits an orthogonal 
representation with at most b bends, and that computes one if it exists 



Bounding the spirality

Lemma. For any node  of a rooted SPQ*R-tree T of G, the absolute value of 
the spirality of any orthogonal representation of G is at most p+2

Intuition: right (left) turns on the external left (right) path must be either 
bends or degree-2 vertices

u

v



Bounding the spirality: Q*-, S-, P-nodes

Lemma. For any node  of a rooted SPQ*R-tree T of G, the absolute value of 
the spirality of any orthogonal representation of G is at most p+2

• The optimal set of a Q*-node is computed in O(p) time

• The optimal set of an S-node is computed in O(p2) time from those of its children

• The optimal set of a P-node is computed in O(p) time from those of its children 

u

v

Intuition: right (left) turns on the external left (right) path must be either 
bends or degree-2 vertices



R-nodes

……

R

1 d……

S/P/R-nodes Q*-nodes
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constrained min-cost-flow

d  p O(pp)=O(2p log p) 
combinations of target 
spirality values
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H1

H2



Extension to non-biconnected graphs

The presented results can be extended to 1-connected graphs

Main ingredients:

• use the block-cutvertex tree of the graph

• angle constraints at the cutvertices (representations that share a cutvertex
must be glued together)



Concluding remarks
constrained scenarios and some more problems



Constrained scenarios: HV-drawings

• Problem HV-PLANARITYTESTING. Rectilinear planarity testing where each edge is 
assigned a “direction”, i. e., horizontal (H) or vertical (V)

positive instance



Constrained scenarios: HV-drawings

• Problem HV-PLANARITYTESTING. Rectilinear planarity testing where each edge is 
assigned a “direction”, i. e., horizontal (H) or vertical (V)

negative instance



Constrained scenarios: HV-drawings

• HV-PLANARITYTESTING is NP-complete even for planar 3-graphs
[D., Liotta, Patrignani – JCSS 2019]

• HV-PLANARITYTESTING is polynomial-time solvable for SP-graphs
–O(n4)-time for SP-graphs [D., Liotta, Patrignani – JCSS 2019]  

• exploiting SPQ*-trees and spirality 

–O(n2)-time for SP-graphs 
• improving the time required by S-nodes as in 

[D., Kaufmann, Liotta, Ortali – JGAA 2023] 



Constrained scenarios: HV-drawings

• HV-PLANARITYTESTING is NP-complete even for planar 3-graphs
[D., Liotta, Patrignani – JCSS 2019]

• HV-PLANARITYTESTING is polynomial-time solvable for SP-graphs
–O(n4)-time for SP-graphs [D., Liotta, Patrignani – JCSS 2019]  

• exploiting SPQ*-trees and spirality 

–O(n2)-time for SP-graphs 
• improving the time required by S-nodes as in 

[D., Kaufmann, Liotta, Ortali – JGAA 2023] 

Open Problem 6: Study the parametrized complexity of HV-PLANARITYTESTING

for planar 4-graphs (with rigid components)



Constrained scenarios: Rectilinear-Upward

• Problem RU-PLANARITYTESTING. Rectilinear planarity testing where each edge 
cannot point downward

positive instance negative instance

8

7

1

4

2

3

5

6
8

7

1

4

2

3

5

6

5 6

3 4 8

2 1 7

5 6

3 4 8

2 1 7



Constrained scenarios: Rectilinear-Upward

[D., Kaufmann, Liotta, Ortali, Patrignani – ISAAC 2023 + advances]

• RU-PLANARITYTESTING is NP-complete

• RU-PLANARITYTESTING is O(n)-time solvable for upward-plane digraphs
– based on a 2-SAT formulation

• RU-PLANARITYTESTING is O(n2)-time solvable for biconnected SP-digraphs
– based on spirality + SPQ-trees

• RU-PLANARITYTESTING is FPT, parameterized by k= # of switches (sources/sinks)
– O(2k log k+2k n)-time algorithm, based on spirality + SPQR-trees + 2-SAT

Open Problem 7: Can we solve RU-PLANARITYTESTING in polynomial time for 
any plane digraph 



Constrained scenarios: Rectilinear-Upward

[D., Kaufmann, Liotta, Ortali, Patrignani – ISAAC 2023 + advances]

• RU-PLANARITYTESTING is NP-complete

• RU-PLANARITYTESTING is O(n)-time solvable for upward-plane digraphs
– based on a 2-SAT formulation

• RU-PLANARITYTESTING is O(n2)-time solvable for biconnected SP-digraphs
– based on spirality + SPQ-trees

• RU-PLANARITYTESTING is FPT, parameterized by k= # of switches (sources/sinks)
– O(2k log k+2k n)-time algorithm, based on spirality + SPQR-trees + 2-SAT

Open Problem 8: Can we solve RU-PLANARITYTESTING in O(n2) time for any 
directed partial 2-tree (“1-connected” SP-digraphs)



Constrained scenarios: Rectilinear-Upward

[D., Kaufmann, Liotta, Ortali, Patrignani – ISAAC 2023 + advances]

• RU-PLANARITYTESTING is NP-complete

• RU-PLANARITYTESTING is O(n)-time solvable for upward-plane digraphs
– based on a 2-SAT formulation

• RU-PLANARITYTESTING is O(n2)-time solvable for biconnected SP-digraphs
– based on spirality + SPQ-trees

• RU-PLANARITYTESTING is FPT, parameterized by k= # of switches (sources/sinks)
– O(2k log k+2k n)-time algorithm, based on spirality + SPQR-trees + 2-SAT

Open Problem 9: Can we find FPT/XP algorithms with respect to other 
parameters (i.e., other than the number of switches)?



Thank you for your attention!



Additional details



Fixed Embedding: State-of-the-art

Remark: for rectilinear planarity testing the min-cost flow problem is reduced to a 
max-flow problem (faces cannot exchange flow); O(n log3 n) time
[Borradaile, Klein, Mozes, Nussbaum, Wulff- Nilsen, SIAM J. Comp. 2017]

Improvements of Tamassia’s result derive from subsequent faster 
min-cost flow algorithms:

• O(n1.75 log n) time [Garg & Tamassia, GD 1996]

• O(n1.5 ) time [Cornelsen & Karrenbauer, JGAA 2012]



Fixed Embedding: State-of-the-art

Remark: for bend minimization we could use in principle a recent “almost-linear 
time” min-cost-flow algorithm - O(n1+o(1) log n) time
[Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva, FOCS 2022, Comm. ACM 2023] 

Improvements of Tamassia’s result derive from subsequent faster 
min-cost flow algorithms:

• O(n1.75 log n) time [Garg & Tamassia, GD 1996]

• O(n1.5 ) time [Cornelsen & Karrenbauer, JGAA 2012]

“For now, the new algorithms introduced by Prof. Kyng, Dr. Probst Gutenberg, and their co-authors remain 
impractical, as they rely on a theoretical analysis of algorithm performance on networks larger than 
anything even giant corporations like Google would ever consider. But, the race is now on to simplify and 
improve the algorithm to make it work well in practice.”
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