Intersection patterns
 of geometric set systems

Xavier Goaoc

The pitch...
\triangleright Can we generalize some of the benefits of convexity?
E.g. algorithmic.

The pitch...
\triangleright Can we generalize some of the benefits of convexity?
E.g. algorithmic.
\triangleright This talk: three methodologies to do so.

1. Mapping simplicial complexes into \mathbb{R}^{d}.
2. Patterns in hypergraphs.
3. Homological properties of nerve complexes.

One benefit of convexity:

Helly's theorem...

... and why we keep generalizing it.

> Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

\Rightarrow in any linear program, d constraints suffice.

$$
d=\# \text { variables. }
$$

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

\Rightarrow in any linear program, d constraints suffice.

$$
d=\# \text { variables. }
$$

$$
\begin{array}{ll}
\min & x_{2}-x_{1} \\
\text { s.t. } & x_{1} \geq 0 \\
& 2 x_{2}-x_{1} \leq 2 \\
& x_{1}+x_{2} \geq 0 \\
& x_{2}-2 x_{1} \geq-4
\end{array}
$$

[Helly 1913]

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

\Rightarrow in any linear program, d constraints suffice.

$$
d=\# \text { variables. }
$$

$$
\begin{array}{ll}
\min & x_{2}-x_{1} \\
\text { s.t. } & x_{1} \geq 0 \\
& 2 x_{2}-x_{1} \leq 2 \\
& x_{1}+x_{2} \geq 0 \\
& x_{2}-2 x_{1} \geq-4
\end{array}
$$

[Helly 1913]

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

\Rightarrow in any linear program, d constraints suffice.

$$
d=\# \text { variables. }
$$

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

$\begin{array}{ll}\min & x_{2}-x_{1} \\ \text { s.t. } & x_{1} \geq 0 \\ & 2 x_{2}-x_{1} \leq 2 \\ & x_{1}+x_{2} \geq 0 \\ & x_{2}-2 x_{1} \geq-4\end{array}$
[Helly 1913]
\Rightarrow in any linear program, d constraints suffice.

$$
d=\# \text { variables. }
$$

and they are easy to find...
[Clarkson 1995]

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

$\begin{array}{ll}\min & x_{2}-x_{1} \\ \mathrm{s.t.} & x_{1} \geq 0 \\ & 2 x_{2}-x_{1} \leq 2 \\ & x_{1}+x_{2} \geq 0 \\ & x_{2}-2 x_{1} \geq-4\end{array}$
[Helly 1913]
\Rightarrow in any linear program, d constraints suffice.

$$
d=\# \text { variables. }
$$

and they are easy to find...
[Clarkson 1995]

1. Assign weights to the constraints, initialized to 1 .

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

$\begin{array}{ll}\min & x_{2}-x_{1} \\ \text { s.t. } & x_{1} \geq 0 \\ & 2 x_{2}-x_{1} \leq 2 \\ & x_{1}+x_{2} \geq 0 \\ & x_{2}-2 x_{1} \geq-4\end{array}$
[Helly 1913]
\Rightarrow in any linear program, d constraints suffice.

$$
d=\# \text { variables. }
$$

and they are easy to find...
[Clarkson 1995]

1. Assign weights to the constraints, initialized to 1 .
2. Solve the problem for a small random sample of constraints.

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

\Rightarrow in any linear program, d constraints suffice.

$$
d=\# \text { variables. }
$$

$\begin{array}{ll}\min & x_{2}-x_{1} \\ \text { s.t. } & x_{1} \geq 0 \\ & 2 x_{2}-x_{1} \leq 2 \\ & x_{1}+x_{2} \geq 0 \\ & x_{2}-2 x_{1} \geq-4\end{array}$
and they are easy to find...
[Clarkson 1995]

1. Assign weights to the constraints, initialized to 1 .
2. Solve the problem for a small random sample of constraints.
3. Check that solution against the remaining constraints.

Helly's theorem. If a finite family of convex sets in \mathbb{R}^{d} has no point in common, some $\leq d+1$ of them already have no point in common.

min $\quad x_{2}-x_{1}$
s.t. $\quad x_{1} \geq 0$
$2 x_{2}-x_{1} \leq 2$
$x_{2}-2 x_{1} \geq-4$
[Helly 1913]
\Rightarrow in any linear program, d constraints suffice.

$$
d=\# \text { variables. }
$$

and they are easy to find...
[Clarkson 1995]

1. Assign weights to the constraints, initialized to 1 .
2. Solve the problem for a small random sample of constraints.
3. Check that solution against the remaining constraints.
4. If some constraints are unsatisfied, double their weight and go back to 2.

Some subset B of $\leq d$ constraints is involved in every doubling.
Double only if weight(unsatisfied) $<\frac{1}{2 d}$ weight(all).
$d 2^{\frac{k}{d}} \leq \operatorname{weight}(B) \leq \operatorname{weight}($ all $) \leq\left(1+\frac{1}{2 d}\right)^{k} n$
(Non-doubling rare for samples of size $4 d^{2}$.)

1. Assign weights to the constraints, initialized to 1 .
2. Solve the problem for a small random sample of constraints.
3. Check that solution against the remaining constraints.
4. If some constraints are unsatisfied, double their weight and go back to 2.

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?

An example: sets of line transversals.

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?

An example: sets of line transversals.

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?

An example: sets of line transversals.

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?

An example: sets of line transversals.

$X \quad T(X) \subset \mathbb{G}_{2, d+1}$

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?

An example: sets of line transversals.

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?

An example: sets of line transversals.

For which X do the sets $T(X)$ satisfy a Helly-type theorem?

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?
"Given a family \mathcal{F} of $<$ insert geometric shape $>$ in \mathbb{R}^{d}, if every <insert number> have a line transversal, they all do."

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?
"Given a family \mathcal{F} of $<$ insert geometric shape $>$ in \mathbb{R}^{d}, if every <insert number> have a line transversal, they all do."

in the plane...
[Danzer 1957]

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?
"Given a family \mathcal{F} of $<$ insert geometric shape $>$ in \mathbb{R}^{d}, if every <insert number> have a line transversal, they all do."

in the plane...
[Danzer 1957]

[Grünbaum 1960]

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?
"Given a family \mathcal{F} of $<$ insert geometric shape $>$ in \mathbb{R}^{d}, if every <insert number> have a line transversal, they all do."

$\longrightarrow \quad$ translates ?
in the plane...
[Danzer 1957]

[Grünbaum 1960]

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?
"Given a family \mathcal{F} of $<$ insert geometric shape $>$ in \mathbb{R}^{d}, if every <insert number> have a line transversal, they all do."

[Grünbaum 1960]

[Tverberg 1989]

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?
"Given a family \mathcal{F} of $<$ insert geometric shape $>$ in \mathbb{R}^{d}, if every <insert number> have a line transversal, they all do."

[Tverberg 1989]

[Grünbaum 1960]
yes
[Santaló 1940]
in $\mathbb{R}^{d} \ldots$

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?
"Given a family \mathcal{F} of $<$ insert geometric shape $>$ in \mathbb{R}^{d}, if every <insert number> have a line transversal, they all do."

[Danzer 1957]
in $\mathbb{R}^{d} \ldots$

[Grünbaum 1960]
yes
[Santaló 1940]

[Tverberg 1989]
no
[Holmsen-Matoušek 2003]

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?
"Given a family \mathcal{F} of $<$ insert geometric shape $>$ in \mathbb{R}^{d}, if every <insert number> have a line transversal, they all do."

[Grünbaum 1960]
yes
[Santaló 1940]

[Tverberg 1989]
no

This algorithm works "as soon as" there is a Helly-type theorem.
LP-type problems. [Matoušek-Sharir-Welzl 1996]
\rightsquigarrow When do empty intersections have small witnesses?
"Given a family \mathcal{F} of $<$ insert geometric shape $>$ in \mathbb{R}^{d}, if every <insert number> have a line transversal, they all do."

[Danzer 1957]
in the plane...
yes
[Cheong-G-Holmsen-Petitjean 2005]
yes
[Cheong-G-Holmsen-Petitjean 2005]
in $\mathbb{R}^{d} \ldots$

[Grünbaum 1960]
yes
[Santaló 1940]

[Tverberg 1989]

All very ad hoc... What about structural results?
-• 000 ○○ 00 ०००० ००

More benefits of convexity...

Combinatorial convexity

A wealth of combinatorial properties of convexity in \mathbb{R}^{d}.
\triangleright If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X.
[Carathéodory 1905]
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hulls.
[Radon 1921]
\triangleright Any $(r-1) d+r$ points contain r disj. parts with overlap. convex hulls.

A wealth of combinatorial properties of convexity in \mathbb{R}^{d}.
\triangleright If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X.
[Carathéodory 1905]
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hulls. [Radon 1921]
\triangleright Any $(r-1) d+r$ points contain r disj. parts with overlap. convex hulls.
\triangleright Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.
\triangleright For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

Colorful Carathéodory [Bárány 1976]

Colorful Helly [Lovász 1976]
\triangleright Any $2 d+2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.

A wealth of combinatorial properties of convexity in \mathbb{R}^{d}.

\triangleright If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X.
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hulls
\triangleright Any $(r-1) d+r$ points contain r disj. parts with overlap. convex hulls.
\triangleright Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.

Colorful Carathéodory [Bárány 1976]
\triangleright For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.
\triangleright Any $2 d+2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.

Colorful Helly [Lovász 1976]

Colorful Radon [Lovász 1992]
\triangleright If a positive fraction of the $(d+1)$-tuples of intersect, then a positive fraction has a point in common.
\triangleright For any point set, a fraction c_{d} of the simplices overlap.
[Boros-Füredi, Bárány 1984]
\triangleright For any $p \geq q \geq d+1$ there exists $N(p, q, d)$ s.t. any family
[Hadwiger-Debrunner 1957] satisfying "among any p some q overlap" has a hitting set of size N. [Alon-Kleitman 1992]

A wealth of combinatorial properties of convexity in \mathbb{R}^{d}.
\Rightarrow If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X.
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hulls.
[Radon 1921]
\triangleright Any $(r-1) d+r$ points contain r disj. parts with overlap. convex hulls.
\triangleright Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.

Colorful Carathéodory [Bárány 1976]
\triangleright For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

Colorful Helly [Lovász 1976]
\triangleright Any $2 d+2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.
\triangleright If a positive fraction of the $(d+1)$-tuples of intersect, then a positive fraction has a point in common.
[Katchalski-Liu 1979, Kalai 1985]
\triangleright For any point set, a fraction c_{d} of the simplices overlap.
\triangleright For any $p \geq q \geq d+1$ there exists $N(p, q, d)$ s.t. any family satisfying "among any p some q overlap" has a hitting set of size Λ

If a positive fraction of the $(d+1)$-tuples of \mathcal{F} intersect, then a positive fraction of \mathcal{F} has a point in common.

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

If a positive fraction of the $(d+1)$-tuples of \mathcal{F} intersect, then a positive fraction of \mathcal{F} has a point in common.

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]
$d=1$

If a positive fraction of the $(d+1)$-tuples of \mathcal{F} intersect, then a positive fraction of \mathcal{F} has a point in common.

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Interval graphs with positive edge density have a linear-size clique.

If a positive fraction of the $(d+1)$-tuples of \mathcal{F} intersect, then a positive fraction of \mathcal{F} has a point in common.

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Interval graphs with positive edge density have a linear-size clique.

If a positive fraction of the $(d+1)$-tuples of \mathcal{F} intersect, then a positive fraction of \mathcal{F} has a point in common.

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Interval graphs with positive edge density have a linear-size clique.

If a positive fraction of the $(d+1)$-tuples of \mathcal{F} intersect, then a positive fraction of \mathcal{F} has a point in common.

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Interval graphs with positive edge density have a linear-size clique.

Also providing an algorithm...
Question: is the value of a given LP better than a given threshold τ ?

Also providing an algorithm...
Question: is the value of a given LP better than a given threshold τ ?

Repeat k times...
solve the problem for $d+1$ random constraints.
if the solution is worse than τ, return NO.
Return YES.

Also providing an algorithm...
Question: is the value of a given LP better than a given threshold τ ?

Repeat k times...
solve the problem for $d+1$ random constraints.
if the solution is worse than τ, return NO.
Return YES.
\triangleright a NO is always correct,

Also providing an algorithm...
Question: is the value of a given LP better than a given threshold τ ?

Repeat k times...
solve the problem for $d+1$ random constraints.
if the solution is worse than τ, return NO.
Return YES.
\triangleright a NO is always correct,
\triangleright if the LP is ϵ-far from τ and $k=\Theta\left(\epsilon^{-(d+1)}\right)$, then a YES is correct with probability $\geq \frac{2}{3}$.
ϵ-far from $\tau=$ every point as good as τ
violates at least an ϵ fraction of the constraints.

Also providing an algorithm...
Question: is the value of a given LP better than a given threshold τ ?

Repeat k times...
solve the problem for $d+1$ random constraints.
if the solution is worse than τ, return NO.
Return YES.
\triangleright a NO is always correct,
\triangleright if the LP is ϵ-far from τ and $k=\Theta\left(\epsilon^{-(d+1)}\right)$, then a YES is correct with probability $\geq \frac{2}{3}$.

$\}$| Fractional Helly |
| :---: |
| \vdots |
| Property tester |

ϵ-far from $\tau=$ every point as good as τ
[Chakraborty et al. 2018]
\triangleright If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X.
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hulls. [Radon 1921]
\triangleright Any $(r-1) d+r$ points contain r disj. parts with overlap. convex hulls.
\triangleright Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.

Colorful Carathéodory [Bárány 1976]
\triangleright For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.
\triangleright Any $2 d+2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.

Colorful Helly [Lovász 1976]

Colorful Radon [Lovász 1992]
\triangleright If a positive fraction of the $(d+1)$-tuples of intersect, then a positive fraction has a point in common.
\triangleright For any point set, a fraction c_{d} of the simplices overlap.
\triangleright For any $p \geq q \geq d+1$ there exists $N(p, q, d)$ s.t. any family [Katchalski-Liu 1979, Kalai 1985] satisfying "among any p some q overlap" has a hitting set of size N. [Alon-Kleitman 1992]
\triangleright If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hulls.
\triangleright Any $(r-1) d+r$ points contain r disj. parts with overlap. convex hulls.
\triangleright Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.
\triangleright For convex sets of $d+1$ colors, if each colorful subset
Colorful_Hellv [Lovász 1976 So how to generalize any of these beyond convexity?
\triangleright Any $2 a+\angle$ points, \angle of eacn color, can de partictoned into colorful subsets with overlapping convex hulls.
\triangleright If a positive fraction of the $(d+1)$-tuples of intersect, then a positive fraction has a point in common.
\triangleright For any point set, a fraction c_{d} of the simplices overlap.
[Katchalski-Liu 1979, Kalai 1985]
\triangleright For any $p \geq q \geq d+1$ there exists $N(p, q, d)$ s.t. any family satisfying "among any p some q overlap" has a hitting set of size N
[1 ladwiger-Debrunner 1957] V. [Alon-Kleitman 1992]
-• •• ○○ ○○ ○○○○ ○○

Methodology \#1

Convexity and maps of
simplicial complexes into \mathbb{R}^{d}

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.
$\triangleright|\mathcal{K}|=\cup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.
$\triangleright|\mathcal{K}|=\cup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization .

Analogue of graph planarity:
\triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^{d} ?

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.
$\triangleright|\mathcal{K}|=\cup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:
\triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^{d} ?
\triangleright No Wagner-Fary theorem: $\mathrm{L} \neq \mathrm{PL} \neq$ top.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.
$\triangleright|\mathcal{K}|=\cup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:
\triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^{d} ?
\triangleright No Wagner-Fary theorem: $\mathrm{L} \neq \mathrm{PL} \neq$ top.
$\triangleright \Delta_{2 k+2}^{(2 k)} \not_{\text {top }} \mathbb{R}^{2 k}$. [Van Kampen 1932, Flores 1933]

$\Delta_{n}^{(\delta)}=$ the $(\leq \delta)$-dimensional faces of the n-dimensional simplex.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.
$\triangleright|\mathcal{K}|=\cup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:
\triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^{d} ?
\triangleright No Wagner-Fary theorem: $\mathrm{L} \neq \mathrm{PL} \neq$ top.
$\triangleright \Delta_{2 k+2}^{(2 k)} \iota_{\text {top }} \mathbb{R}^{2 k} . \quad$ [Van Kampen 1932, Flores 1933]

$\Delta_{n}^{(\delta)}=$ the $(\leq \delta)$-dimensional faces of the n-dimensional simplex.

Back to combinatorial convexity...
\triangleright Any $d+2$ points can be divided into 2 parts with overlapping convex hulls.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.
$\triangleright|\mathcal{K}|=\cup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:
\triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^{d} ?
\triangleright No Wagner-Fary theorem: $\mathrm{L} \neq \mathrm{PL} \neq$ top.
$\triangleright \Delta_{2 k+2}^{(2 k)} \psi_{\text {top }} \mathbb{R}^{2 k} . \quad$ [Van Kampen 1932, Flores 1933]

$\Delta_{n}^{(\delta)}=$ the $(\leq \delta)$-dimensional faces of the n-dimensional simplex.

Back to combinatorial convexity...
\triangleright Any $d+2$ points can be divided into 2 parts with overlapping convex hulls.
\simeq For any linear map $\left|\Delta_{d+1}^{(d)}\right| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images.

Convexity \simeq linear maps from simplicial complexes into \mathbb{R}^{d}.
$\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^{D}.
$\triangleright|\mathcal{K}|=\cup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:
\triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^{d} ?
\triangleright No Wagner-Fary theorem: $\mathrm{L} \neq \mathrm{PL} \neq$ top.
$\triangleright \Delta_{2 k+2}^{(2 k)} \psi_{\text {top }} \mathbb{R}^{2 k} . \quad$ [Van Kampen 1932, Flores 1933]

$\Delta_{n}^{(\delta)}=$ the $(\leq \delta)$-dimensional faces of the n-dimensional simplex.

Back to combinatorial convexity...
\triangleright Any $d+2$ points can be divided into 2 parts with overlapping convex hulls.
\simeq For any dinear map $\left|\Delta_{d+1}^{(d)}\right| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images.

Zoom: "For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."

Zoom: "For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."
\triangleright define $\quad \hat{f} \xlongequal{\text { def }}\left\{\begin{array}{rll}Y \subseteq|\mathcal{K}| \times|\mathcal{K}| & \rightarrow & \mathbb{S}^{d-1} \subset \mathbb{R}^{d} \\ (p, q) & \mapsto & \frac{f(p)-f(q)}{\|f(p)-f(q)\|}\end{array}\right.$
where Y excludes the (p, q) for which we allow $f(p)=f(q)$,

Zoom: "For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."
\triangleright define $\quad \hat{f} \xlongequal{\text { def }}\left\{\begin{array}{rll}Y \subseteq|\mathcal{K}| \times|\mathcal{K}| & \rightarrow & \mathbb{S}^{d-1} \subset \mathbb{R}^{d} \\ (p, q) & \mapsto & \frac{f(p)-f(q)}{\|f(p)-f(q)\|}\end{array}\right.$
where Y excludes the (p, q) for which we allow $f(p)=f(q)$,
\triangleright equip Y with the \mathbb{Z}_{2}-action generated by $-:(p, q) \mapsto(q, p)$,

Zoom:

"For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."
\triangleright define $\quad \hat{f} \stackrel{\text { def }}{=}\left\{\begin{array}{rll}Y \subseteq|\mathcal{K}| \times|\mathcal{K}| & \rightarrow & \mathbb{S}^{d-1} \subset \mathbb{R}^{d} \\ (p, q) & \mapsto & \frac{f(p)-f(q)}{\|f(p)-f(q)\|}\end{array}\right.$
where Y excludes the (p, q) for which we allow $f(p)=f(q)$,
\triangleright equip Y with the \mathbb{Z}_{2}-action generated by $-:(p, q) \mapsto(q, p)$,
\triangleright If $(Y,-) \simeq\left(\mathbb{S}^{\bullet},-\right)$ with $\bullet \geq d$ apply Borsuk-Ulam.
There does not exist a continuous antipodal map $\mathbb{S}^{k} \rightarrow \mathbb{S}^{k-1}$.

Zoom: "For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."
\triangleright define $\quad \hat{f} \stackrel{\text { def }}{=}\left\{\begin{array}{rll}Y \subseteq|\mathcal{K}| \times|\mathcal{K}| & \rightarrow & \mathbb{S}^{d-1} \subset \mathbb{R}^{d} \\ (p, q) & \mapsto & \frac{f(p)-f(q)}{\|f(p)-f(q)\|}\end{array}\right.$
where Y excludes the (p, q) for which we allow $f(p)=f(q)$,
\triangleright equip Y with the \mathbb{Z}_{2}-action generated by $-:(p, q) \mapsto(q, p)$,
\triangleright If $(Y,-) \simeq\left(\mathbb{S}^{\bullet},-\right)$ with $\bullet \geq d$ apply Borsuk-Ulam.
There does not exist a continuous antipodal map $\mathbb{S}^{k} \rightarrow \mathbb{S}^{k-1}$.

Other spaces, other actions (Dold's theorem, ...).

Zoom: "For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."
\triangleright define $\quad \hat{f} \stackrel{\text { def }}{=}\left\{\begin{array}{rll}Y \subseteq|\mathcal{K}| \times|\mathcal{K}| & \rightarrow & \mathbb{S}^{d-1} \subset \mathbb{R}^{d} \\ (p, q) & \mapsto & \frac{f(p)-f(q)}{\|f(p)-f(q)\|}\end{array}\right.$
where Y excludes the (p, q) for which we allow $f(p)=f(q)$,
\triangleright equip Y with the \mathbb{Z}_{2}-action generated by $-:(p, q) \mapsto(q, p)$,
\triangleright If $(Y,-) \simeq\left(\mathbb{S}^{\bullet},-\right)$ with $\bullet \geq d$ apply Borsuk-Ulam.
There does not exist a continuous antipodal map $\mathbb{S}^{k} \rightarrow \mathbb{S}^{k-1}$.

Other spaces, other actions (Dold's theorem, ...).
For any linear map $f:\left|\Delta_{(\mathbf{r}-1)(\mathbf{d}+1)}^{(\mathrm{d})}\right| \rightarrow \mathbb{R}^{\mathbf{d}}$, some \mathbf{r} disjoint faces have overlapping images.

Zoom: "For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."
\triangleright define $\quad \hat{f} \stackrel{\text { def }}{=}\left\{\begin{array}{rll}Y \subseteq|\mathcal{K}| \times|\mathcal{K}| & \rightarrow & \mathbb{S}^{d-1} \subset \mathbb{R}^{d} \\ (p, q) & \mapsto & \frac{f(p)-f(q)}{\|f(p)-f(q)\|}\end{array}\right.$
where Y excludes the (p, q) for which we allow $f(p)=f(q)$,
\triangleright equip Y with the \mathbb{Z}_{2}-action generated by $-:(p, q) \mapsto(q, p)$,
\triangleright If $(Y,-) \simeq\left(\mathbb{S}^{\bullet},-\right)$ with $\bullet \geq d$ apply Borsuk-Ulam.
There does not exist a continuous antipodal map $\mathbb{S}^{k} \rightarrow \mathbb{S}^{k-1}$.

Other spaces, other actions (Dold's theorem, ...).
For any linear map $f:\left|\Delta_{(\mathbf{r}-1)(\mathrm{d}+1)}^{(\mathrm{d})}\right| \rightarrow \mathbb{R}^{\mathbf{d}}$, some \mathbf{r} disjoint faces have overlapping images.
[Tverberg 1966]
"Linear" can be dropped for r a prime power [Özaydin 1987]

Zoom: "For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."
\triangleright define $\quad \hat{f} \stackrel{\text { def }}{=}\left\{\begin{array}{rll}Y \subseteq|\mathcal{K}| \times|\mathcal{K}| & \rightarrow & \mathbb{S}^{d-1} \subset \mathbb{R}^{d} \\ (p, q) & \mapsto & \frac{f(p)-f(q)}{\|f(p)-f(q)\|}\end{array}\right.$
where Y excludes the (p, q) for which we allow $f(p)=f(q)$,
\triangleright equip Y with the \mathbb{Z}_{2}-action generated by $-:(p, q) \mapsto(q, p)$,
\triangleright If $(Y,-) \simeq\left(\mathbb{S}^{\bullet},-\right)$ with $\bullet \geq d$ apply Borsuk-Ulam.
There does not exist a continuous antipodal map $\mathbb{S}^{k} \rightarrow \mathbb{S}^{k-1}$.

Other spaces, other actions (Dold's theorem, ...).
For any linear map $f:\left|\Delta_{(\mathbf{r}-1)(\mathrm{d}+1)}^{(\mathrm{d})}\right| \rightarrow \mathbb{R}^{\mathbf{d}}$, some \mathbf{r} disjoint faces have overlapping images.
[Tverberg 1966]
"Linear" can be dropped for r a prime power [Özaydin 1987] but not in general.

Zoom: "For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."
\triangleright define $\quad \hat{f} \stackrel{\text { def }}{=}\left\{\begin{array}{rll}Y \subseteq|\mathcal{K}| \times|\mathcal{K}| & \rightarrow & \mathbb{S}^{d-1} \subset \mathbb{R}^{d} \\ (p, q) & \mapsto & \frac{f(p)-f(q)}{\|f(p)-f(q)\|}\end{array}\right.$
where Y excludes the (p, q) for which we allow $f(p)=f(q)$,
\triangleright equip Y with the \mathbb{Z}_{2}-action generated by $-:(p, q) \mapsto(q, p)$,
\triangleright If $(Y,-) \simeq\left(\mathbb{S}^{\bullet},-\right)$ with $\bullet \geq d$ apply Borsuk-Ulam.
There does not exist a continuous antipodal map $\mathbb{S}^{k} \rightarrow \mathbb{S}^{k-1}$.

Other spaces, other actions (Dold's theorem, ...).
For any linear map $f:\left|\Delta_{\mathbf{n}}^{(\mathbf{d})}\right| \rightarrow \mathbb{R}^{\mathbf{d}}$, some constant proportion of the faces have overlapping images.

Zoom: "For any map $f:|\mathcal{K}| \rightarrow \mathbb{R}^{d}$, two disjoint faces have overlapping images."
\triangleright define $\quad \hat{f} \stackrel{\text { def }}{=}\left\{\begin{array}{rll}Y \subseteq|\mathcal{K}| \times|\mathcal{K}| & \rightarrow & \mathbb{S}^{d-1} \subset \mathbb{R}^{d} \\ (p, q) & \mapsto & \frac{f(p)-f(q)}{\|f(p)-f(q)\|}\end{array}\right.$
where Y excludes the (p, q) for which we allow $f(p)=f(q)$,
\triangleright equip Y with the \mathbb{Z}_{2}-action generated by $-:(p, q) \mapsto(q, p)$,
\triangleright If $(Y,-) \simeq\left(\mathbb{S}^{\bullet},-\right)$ with $\bullet \geq d$ apply Borsuk-Ulam.
There does not exist a continuous antipodal map $\mathbb{S}^{k} \rightarrow \mathbb{S}^{k-1}$.

Other spaces, other actions (Dold's theorem, ...).
For any linear map $f:\left|\Delta_{\mathrm{n}}^{(\mathrm{d})}\right| \rightarrow \mathbb{R}^{\text {d }}$, some constant proportion of the faces have overlapping images.
"Linear" can be dropped. [Gromov 2010].
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hulls.
\triangleright Any $(r-1) d+r$ points contain r disj. parts with overlap. convex hulls.
\triangleright Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.
\triangleright For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.
\Rightarrow Any $2 d+2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.
\triangleright If a positive fraction of the $(d+1)$-tuples of intersect, then a positive fraction has a point in common.
\triangleright For any point set, a fraction c_{d} of the simplices overlap.
[Boros-Füredi, Bárány 1984]
\triangleright For any $p \geq q \geq d+1$ there exists $N(p, q, d)$ s.t. any family
[Hadwiger-Debrunner 1957] satisfying "among any p some q overlap" has a hitting set of size N \qquad
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hulls.
\triangleright Any $(r-1) d+r$ points contain r disj. parts with overlap. convex hulls.

Do some generalizations imply others?
intersects, then one color class nas a point in common.
\triangleright Any $2 d+2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.
\triangleright If a positive fraction of the $(d+1)$-tuples of intersect, then a positive fraction has a point in common.
\triangleright For any point set, a fraction c_{d} of the simplices overlap.
[Katchalski-Liu 1979, Kalai 1985]
[Boros-Füredi, Bárány 1984]
\triangleright For any $p \geq q \geq d+1$ there exists $N(p, q, d)$ s.t. any family satisfying "among any p some q overlap" has a hitting set of size
-••••• ○○ ○○○○ ○○

Methodology \#2

Convexity and patterns in hypergraphs
\triangleright If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X.
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hulls.
\triangleright Any $(r-1) d+r$ points contain r disj. parts with overlap. convex hulls.
\triangleright Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.
\triangleright For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

Colorful Helly [Lovász 1976]
\triangleright Any $2 d+2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.
\triangleright If a positive fraction of the $(d+1)$-tuples of intersect, then a positive fraction has a point in common.

Colorful Radon [Lovász 1992]
\triangleright For any point set, a fraction c_{d} of the simplices overlap.
[Boros-Füredi, Bárány 1984]
For any $p \geq q \geq d+1$ there exists $N(p, q, d)$ s.t. any family
[Hadwiger-Debrunner satisfying "among any p some q overlap" has a hitting set of size λ
[Alon-Kleitman

Colorful Helly. For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

Colorful Helly. For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$ vertex set $=\mathcal{F}$, edges $=$ intersecting m-tuples.

Colorful Helly. For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$
vertex set $=\mathcal{F}$, edges $=$ intersecting m-tuples.
\triangleright Colorful Helly =a forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.

Colorful Helly. For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$
vertex set $=\mathcal{F}$, edges $=$ intersecting m-tuples.
\triangleright Colorful Helly =a forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
$\triangleright m$ sets of m vertices.

0	0	0		0
0	0	0		0
0	0	0	\ldots	0
\vdots	\vdots	\vdots		\vdots
0	0	0		0

Colorful Helly. For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$
vertex set $=\mathcal{F}$, edges $=$ intersecting m-tuples.
\triangleright Colorful Helly =a forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
$\triangleright m$ sets of m vertices.
\triangleright Every transversal is an edge.

0	0	0		0
0	0	0		0
0	0	0	\ldots	0
\vdots	\vdots	\vdots		\vdots
0	0	0		0

Colorful Helly. For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$
vertex set $=\mathcal{F}$, edges $=$ intersecting m-tuples.
\triangleright Colorful Helly =a forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
$\triangleright m$ sets of m vertices.
\triangleright Every transversal is an edge.

0	0	0	0
0	0	0	
0	0	0	\cdots
\vdots	\vdots	\vdots	
0	0	0	

Colorful Helly. For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$
vertex set $=\mathcal{F}$, edges $=$ intersecting m-tuples.
\triangleright Colorful Helly =a forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
$\triangleright m$ sets of m vertices.
\triangleright Every transversal is an edge.

Colorful Helly. For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$
vertex set $=\mathcal{F}$, edges $=$ intersecting m-tuples.
\triangleright Colorful Helly =a forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
$\triangleright m$ sets of m vertices.
\triangleright Every transversal is an edge.
\triangleright no color class is an edge

Colorful Helly. For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$ vertex set $=\mathcal{F}$, edges $=$ intersecting m-tuples.
\triangleright Colorful Helly =a forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
$\triangleright m$ sets of m vertices.
\triangleright Every transversal is an edge.
\triangleright no color class is an edge

Fractional Helly holds whenever this pattern is forbidden.

```
    Colorful Helly
    colorful m
s some color class intersect
```


Colorful Helly colorful m-tuples intersect \Rightarrow some color class intersect

> | Weak ϵ-nets |
| :---: |
| $\forall \epsilon>0, \forall \mu \exists N$ s.t. $\|N\| \leq f(\epsilon)$ |
| and N meets all ϵ-large sets. |

[Holmsen 2019]

$$
\begin{gathered}
\text { Fractional Helly } \\
\text { Many }(d+1) \text {-tuples intersect } \\
\Rightarrow \text { many intersect }
\end{gathered}
$$

[Alon-Kalai-MatoušekMeshulam 2002]

Radon
Any $d+2$ points split
into 2 inseparable parts

Colorful Helly colorful m-tuples intersect \Rightarrow some color class intersect

> | Weak ϵ-nets |
| :---: |
| $\forall \epsilon>0, \forall \mu \exists N$ s.t. $\|N\| \leq f(\epsilon)$ |
| and N meets all ϵ-large sets. |

[Holmsen 2019]

$$
\begin{gathered}
\text { Fractional Helly } \\
\text { Many }(d+1) \text {-tuples intersect } \\
\Rightarrow \text { many intersect }
\end{gathered}
$$

[Alon-Kalai-MatoušekMeshulam 2002]

Helly

All $(d+1)$-tuples intersect
\Rightarrow all intersect.

$$
\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \quad \circ \circ \circ \circ \quad \circ \circ
$$

Methodology \#3

Convexity and
homological properties of nerves

Nerve $\mathcal{N}(\mathcal{F}) \simeq$ intersection hypergraph of \mathcal{F}

$$
\mathcal{N}(\mathcal{F})=\left\{G: G \subseteq \mathcal{F} \text { and } \cap_{A \in G} A \neq \emptyset\right\} .
$$

Nerve $\mathcal{N}(\mathcal{F}) \simeq$ intersection hypergraph of \mathcal{F}

$$
\mathcal{N}(\mathcal{F})=\left\{G: G \subseteq \mathcal{F} \text { and } \cap_{A \in G} A \neq \emptyset\right\} .
$$

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\}\}
$$

Nerve $\mathcal{N}(\mathcal{F}) \simeq$ intersection hypergraph of \mathcal{F}

$$
\mathcal{N}(\mathcal{F})=\left\{G: G \subseteq \mathcal{F} \text { and } \cap_{A \in G} A \neq \emptyset\right\} .
$$

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}
$$

Nerve $\mathcal{N}(\mathcal{F}) \simeq$ intersection hypergraph of \mathcal{F}

$$
\mathcal{N}(\mathcal{F})=\left\{G: G \subseteq \mathcal{F} \text { and } \cap_{A \in G} A \neq \emptyset\right\} .
$$

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

Nerve $\mathcal{N}(\mathcal{F}) \simeq$ intersection hypergraph of \mathcal{F}

$$
\mathcal{N}(\mathcal{F})=\left\{G: G \subseteq \mathcal{F} \text { and } \cap_{A \in G} A \neq \emptyset\right\} .
$$

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

\triangleright Nerves are abstract simplicial complexes.

Nerve $\mathcal{N}(\mathcal{F}) \simeq$ intersection hypergraph of \mathcal{F}

$$
\mathcal{N}(\mathcal{F})=\left\{G: G \subseteq \mathcal{F} \text { and } \cap_{A \in G} A \neq \emptyset\right\} .
$$

$\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
\triangleright Nerves are abstract simplicial complexes.

Theorem. If all subfamilies of \mathcal{F} have empty or contractible intersections then $\mathcal{N}(\mathcal{F})$ has the

Nerve $\mathcal{N}(\mathcal{F}) \simeq$ intersection hypergraph of \mathcal{F}

$$
\mathcal{N}(\mathcal{F})=\left\{G: G \subseteq \mathcal{F} \text { and } \cap_{A \in G} A \neq \emptyset\right\} .
$$

$\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
\triangleright Nerves are abstract simplicial complexes.

Theorem. If all subfamilies of \mathcal{F} have empty or contractible intersections then $\mathcal{N}(\mathcal{F})$ has the
[Borsuk 1948] homotopy type of $\cup \mathcal{F}$.

\triangleright Reconstruction methods.
Delaunay $=\mathcal{N}$ (Voronoi regions)

Nerve $\mathcal{N}(\mathcal{F}) \simeq$ intersection hypergraph of \mathcal{F}

$$
\mathcal{N}(\mathcal{F})=\left\{G: G \subseteq \mathcal{F} \text { and } \cap_{A \in G} A \neq \emptyset\right\} .
$$

$\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
\triangleright Nerves are abstract simplicial complexes.

Theorem. If all subfamilies of \mathcal{F} have empty or contractible intersections then $\mathcal{N}(\mathcal{F})$ has the homotopy type of $\cup \mathcal{F}$.

\triangleright Reconstruction methods.
Delaunay $=\mathcal{N}$ (Voronoi regions)
\triangleright Topological data analysis.

[^0]Nerves of convex $\subset d$-collapsible complexes.

Nerves of convex $\subset d$-collapsible complexes.

Filter the nerve by sweeping \mathbb{R}^{d} by a hyperplane.

Nerves of convex $\subset d$-collapsible complexes.

Filter the nerve by sweeping \mathbb{R}^{d} by a hyperplane.
Elementary change: deletion of an interval.

Nerves of convex $\subset d$-collapsible complexes.

Filter the nerve by sweeping \mathbb{R}^{d} by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension $<d$.
[Wegner 1975]

Nerves of convex $\subset d$-collapsible complexes.
Filter the nerve by sweeping \mathbb{R}^{d} by a hyperplane.
Elementary change: deletion of an interval.
Helly \Rightarrow lower-end has dimension $<d$.
[Wegner 1975]

Fractional Helly holds for set systems with d-collapsible nerves.

$$
\text { Many }(d+1) \text {-tuples intersect } \Rightarrow \text { many intersect. [Kalai 1985] }
$$

Nerves of convex $\subset d$-collapsible complexes.
Filter the nerve by sweeping \mathbb{R}^{d} by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension $<d$.
[Wegner 1975]

Fractional Helly holds for set systems with d-collapsible nerves.

$$
\text { Many }(d+1) \text {-tuples intersect } \Rightarrow \text { many intersect. } \quad[K a l a i ~ 1985] ~
$$

[Tancer 2009]

Nerves of convex $\subset d$-collapsible complexes.
Filter the nerve by sweeping \mathbb{R}^{d} by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension $<d$.
[Wegner 1975]

Fractional Helly holds for set systems with d-collapsible nerves. Many $(d+1)$-tuples intersect \Rightarrow many intersect. [Kalai 1985]

d-collapsible complexes $\subset d$-Leray complexes.
Induced subcomplexes have trivial homology in all dimensions $\geq d$.
[Tancer 2009]

Nerves of convex $\subset d$-collapsible complexes.

$$
\begin{aligned}
& \text { Filter the nerve by sweeping } \mathbb{R}^{d} \text { by a hyperplane. } \\
& \text { Elementary change: deletion of an interval. } \\
& \text { Helly } \Rightarrow \text { lower-end has dimension }<d . \\
& {[\text { Wegner 1975] }}
\end{aligned}
$$

Fractional Helly holds for set systems with d-collapsible nerves.

```
Many (d+1)-tuples intersect }=>\mathrm{ many intersect. [Kalai 1985]
```


[Tancer 2009]
d-collapsible complexes $\subset d$-Leray complexes.
Induced subcomplexes have trivial homology in all dimensions $\geq d$.

Fractional Helly holds for set systems with d-collapsible nerves.

Nerves of convex $\subset d$-collapsible complexes.
Filter the nerve by sweeping \mathbb{R}^{d} by a hyperplane.
Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension $<d$.
[Wegner 1975]

Fractional Helly holds for set systems with d-collapsible nerves.

```
Many (d+1)-tuples intersect }=>\mathrm{ many intersect. [Kalai 1985]
```

d-collapsible complexes $\subset d$-Leray complexes.
Induced subcomplexes have trivial homology in all dimensions $\geq d$.

Fractional Helly holds for set systems with d-collapsible nerves.
[Kalai 1985, Stanley 1975]
... as does Colorful Helly.

Nerves of convex $\subset d$-collapsible complexes.

Filter the nerve by sweeping \mathbb{R}^{d} by a hyperplane.
Elementary change: deletion of an interval.
Helly \Rightarrow lower-end has dimension $<d$.
[Wegner 1975]

Fractional Helly holds for set systems with d-collapsible nerves.

Many $(d+1)$-tuples intersect \Rightarrow many intersect. [Kalai 1985]

d-collapsible complexes $\subset d$-Leray complexes.
Induced subcomplexes have trivial homology in all dimensions $\geq d$.

Fractional Helly holds for set systems
with d-collapsible nerves.
[Kalai 1985, Stanley 1975]
[Tancer 2009]

Set systems whose nerve is d-Leray satisfy...

colorful Helly for every $m \geq d+1$,

Set systems whose nerve is d-Leray satisfy...

colorful Helly for every $m \geq d+1$,

Set systems whose nerve is d-Leray satisfy...

colorful Helly for every $m \geq d+1$,

\triangleright for every $p \geq q \geq d+1$ there exists $N(p, q, d)$ s.t. \ldots

What set systems have nerves of bounded Leray numbers?

What set systems have nerves of bounded Leray numbers?

\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

What set systems have nerves of bounded Leray numbers?

\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]
Introduce nerves with multiplicities.

What set systems have nerves of bounded Leray numbers?

\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

Introduce nerves with multiplicities.

What set systems have nerves of bounded Leray numbers?

\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

Introduce nerves with multiplicities.

What set systems have nerves of bounded Leray numbers?

\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

Introduce nerves with multiplicities.

What set systems have nerves of bounded Leray numbers?

\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

Introduce nerves with multiplicities.

What set systems have nerves of bounded Leray numbers?

\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

Introduce nerves with multiplicities.

What set systems have nerves of bounded Leray numbers?

\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

Introduce nerves with multiplicities.

What set systems have nerves of bounded Leray numbers?

\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]
Introduce nerves with multiplicities.

The nerve theorem generalizes... Leray number of projection can be analyzed.

What set systems have nerves of bounded Leray numbers?
\triangleright Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one acyclic.
[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]
Introduce nerves with multiplicities.

The nerve theorem generalizes... Leray number of projection can be analyzed.

Open: Is it enough if every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots$?

$\bullet \bullet \quad \circ$

Zooming in...

Sharp conditions

using some Ramsey theory

A classic: Helly from Radon...

A classic: Helly from Radon...

$$
(d=2)
$$

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.
\triangleright Consider 5 convex sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots$

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.
\triangleright Consider 5 convex sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots$

Topological Helly from topological Radon.
\triangleright Consider a good cover of 4 sets $A_{1}, A_{2}, A_{3}, A_{4}$.

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.
\triangleright Consider 5 convex sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots$

Topological Helly from topological Radon.
\triangleright Consider a good cover of 4 sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.
\triangleright Consider 5 convex sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots$

Topological Helly from topological Radon.
\triangleright Consider a good cover of 4 sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Build a continuous map fitting the intersections...

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.
\triangleright Consider 5 convex sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots$

Topological Helly from topological Radon.
\triangleright Consider a good cover of 4 sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Build a continuous map fitting the intersections...

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.
\triangleright Consider 5 convex sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots$

Topological Helly from topological Radon.
\triangleright Consider a good cover of 4 sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Build a continuous map fitting the intersections...

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.
\triangleright Consider 5 convex sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots$

Topological Helly from topological Radon.
\triangleright Consider a good cover of 4 sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Build a continuous map fitting the intersections...

A classic: Helly from Radon...

$$
(d=2)
$$

\triangleright Consider 4 convex sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.
\triangleright Consider 5 convex sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots$

Topological Helly from topological Radon.
\triangleright Consider a good cover of 4 sets $A_{1}, A_{2}, A_{3}, A_{4}$.
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$.
\triangleright Build a continuous map fitting the intersections...
\triangleright... some non-trivial intersection must occur.

```
\triangleright ~ C o n s i d e r ~ 4 ~ c o n v e x ~ s e t s ~ A ~ , ~ , ~ A 2 , ~ A ~ , ~ , ~ A 4 ,
```

\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$
\triangleright Pick a Radon partition of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
$\triangleright \square$ is in $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$.
\triangleright Consider 5 convex sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots$

Idea: Analyze intersection patterns of topological set systems by drawing non-embeddable complexes inside!
\triangleright Consider a good cover of 4 sets $A_{1}, A_{2}, A_{3}, A_{4}$
\triangleright Suppose any 3 intersect: $p_{i} \in \cap_{j \neq i} A_{j}$
\triangleright Build a continuous map fitting the intersections..

Convexity \rightsquigarrow bounded topological complexity.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F} \stackrel{\cap \text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

Suppose \mathcal{F} has empty intersection and is minimal for that.
$(d=2)$

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

Suppose \mathcal{F} has empty intersection and is minimal for that.
$(d=2)$
Fix a point in the \cap of each subset of size $|\mathcal{F}|-1$.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and $\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad$ [Matoušek 1996]

Suppose \mathcal{F} has empty intersection and is minimal for that.
$(d=2)$
Fix a point in the \cap of each subset of size $|\mathcal{F}|-1$.
For every family $G \subset \mathcal{F}$ of size $|\mathcal{F}|-(b+1)$.
Two points can be connected inside $\cap G$. Label the edge with $\mathcal{F} \backslash G$.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and $\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad$ [Matoušek 1996]

Suppose \mathcal{F} has empty intersection and is minimal for that. $(d=2)$

Fix a point in the \cap of each subset of size $|\mathcal{F}|-1$.
For every family $G \subset \mathcal{F}$ of size $|\mathcal{F}|-(b+1)$.
Two points can be connected inside $\cap G$. Label the edge with $\mathcal{F} \backslash G$.
Ramsey \Rightarrow if \mathcal{F} is large enough, some K_{5} has disjoint edges with disjoint labels.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

\triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
[G-Paták-Patáková-Tancer-Wagner 2015]

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

\triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
[G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

\triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
[G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

\triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
[G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.
Work with \mathbb{Z}_{2}-homology.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

\triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
[G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.
Work with \mathbb{Z}_{2}-homology.
Build homological minors.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

\triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
[G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.
Work with \mathbb{Z}_{2}-homology.
Build homological minors.
[Wagner 2011]
Use an homological relaxation of embeddings.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

\triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
[G-Paták-Patáková-Tancer-Wagner 2015]
\triangleright Radon when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F}^{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

\triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
[G-Paták-Patáková-Tancer-Wagner 2015]
\triangleright Radon when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
\Rightarrow Fractional Helly, (p, q), weak ϵ-nets, ...

Open. Qualitatively sharp, bounds are horrible!

Convexity \rightsquigarrow bounded topological complexity.

\triangleright set system $\mathcal{F} \rightarrow$ its closure $\mathcal{F} \xlongequal{\cap} \stackrel{\text { def }}{=}\left\{\cap_{A \in G} A: G \subseteq \mathcal{F}\right\}$
\triangleright Helly when each $X \in \mathcal{F}^{\cap}$ has $\beta_{0} \leq b$ and

$$
\beta_{1}=\beta_{2}=\ldots=\beta_{\lceil d / 2\rceil-1}=0 . \quad[\text { Matoušek 1996] }
$$

\triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
[G-Paták-Patáková-Tancer-Wagner 2015]
\triangleright Radon when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_{0}, \beta_{1}, \ldots, \beta_{\lceil d / 2\rceil-1}$.
\Rightarrow Fractional Helly, (\mathbf{p}, \mathbf{q}), weak ϵ-nets, ...

Open. Qualitatively sharp, bounds are horrible!
\triangleright The fractional Helly number is always $d+1$.
-• ••• •• •• •••• ••

Wrapping up!

Convexity reveals much more general properties.
\triangleright overlap properties of maps from simplicial complexes,
\triangleright properties of hypergraphs with certain forbidden patterns.
\triangleright consequences of properties of nerves,
Some translations are recent... more to uncover?

Convexity reveals much more general properties.
\triangleright overlap properties of maps from simplicial complexes,
\triangleright properties of hypergraphs with certain forbidden patterns.
\triangleright consequences of properties of nerves,
Some translations are recent... more to uncover?

Some "convex" algorithms generalize well...
\triangleright Helly \rightsquigarrow LP-type, Fractional Helly \rightsquigarrow property testing.
\triangleright complexity upper bounds rather than effective algorithms.
Effective use-cases? More applications?

Convexity reveals much more general properties.
\triangleright overlap properties of maps from simplicial complexes,
\triangleright properties of hypergraphs with certain forbidden patterns.
\triangleright consequences of properties of nerves,
Some translations are recent... more to uncover?

Some "convex" algorithms generalize well...
\triangleright Helly \rightsquigarrow LP-type, Fractional Helly \rightsquigarrow property testing.
\triangleright complexity upper bounds rather than effective algorithms.
Effective use-cases? More applications?

More interplay of geometry, combinatorics, topology and algorithms?

Many active research directions...

Many active research directions...

BULLETIN (New Series) OF
Volumiean mathem It The
bitps://o, Number 4, October SOCIETY Article electronicaily pu/bul1/1753 2022, Pages 471-502
onicaily published on October 29, 202

HELLY-TYPE PROBLEMS
IMRE BÁrány and gil kalal
Abstract. In this paper we present a metween
Caratheodory, and Tverb geometry around the thoblems in the interfa

goais.

Many active research directions...

\triangleright Intermixing transversals of various dimensions.
Question. Suppose a family of red/blue convex sets in \mathbb{R}^{d} are such that any red/blue pair intersect. Can a positive fraction of one color be pierced by a single line?
[Martinez-Roldán-Rubin 2020]
\triangleright Intermixing transversals of various dimensions.
Question. Suppose a family of red/blue convex sets in \mathbb{R}^{d} are such that any red/blue pair intersect. Can a positive fraction of one color be pierced by a single line?
[Martinez-Roldán-Rubin 2020]
\triangleright A "Homological VC dimension?"
Conjecture. For any $\gamma>0$, if \mathcal{F} is a set system in \mathbb{R}^{d} such that for any $m \geq 1$, for any intersection of m sets from \mathcal{F}, the Betti numbers sum to at most γm^{d+1}, then \mathcal{F} satisfies a fractional Helly theorem.
[Kalai-Meshulam 2004]

Thank you for your attention!

[^0]: https://doc.cgal.org/latest/Manual/tuto_reconstruction.html

