

Intersection patterns of geometric set systems

Xavier Goaoc

The pitch...

▷ Can we generalize some of the benefits of **convexity**?

E.g. algorithmic.

The pitch...

▷ Can we generalize some of the benefits of **convexity**?

E.g. algorithmic.

▷ This talk: three **methodologies** to do so.

- 1. Mapping simplicial complexes into \mathbb{R}^d .
- 2. Patterns in hypergraphs.
- 3. Homological properties of nerve complexes.

One benefit of convexity:

Helly's theorem...

... and why we keep generalizing it.

 \Rightarrow in any **linear program**, d constraints **suffice**.

d = # variables.

 $x_2 - x_1$

 $x_1 \ge 0$

 $2x_2 - x_1 \le 2$

 $x_2 - 2x_1 \ge -4$

min

s.t.

 \Rightarrow in any **linear program**, d constraints **suffice**.

d = # variables.

 $x_2 - x_1$

 $x_1 > 0$

 $2x_2 - x_1 \le 2$

 $x_2 - 2x_1 \ge -4$

min

s.t.

 \Rightarrow in any **linear program**, d constraints **suffice**.

d = # variables.

 $\begin{aligned} x_2 - x_1 \\ x_1 \ge 0 \end{aligned}$

 $2x_2 - x_1 \le 2$

 $x_2 - 2x_1 \ge -4$

min

s.t.

 \Rightarrow in any **linear program**, d constraints **suffice**.

d = # variables.

1. Assign weights to the constraints, initialized to 1.

- 1. Assign weights to the constraints, initialized to 1.
- 2. Solve the problem for a **small** random sample of constraints.

- 1. Assign weights to the constraints, initialized to 1.
- 2. Solve the problem for a **small** random sample of constraints.
- 3. Check that solution against the remaining constraints.

- 1. Assign weights to the constraints, initialized to 1.
- 2. Solve the problem for a **small** random sample of constraints.
- 3. Check that solution against the remaining constraints.
- 4. If some constraints are unsatisfied, **double** their weight and go back to 2.

- 1. Assign weights to the constraints, initialized to 1.
- 2. Solve the problem for a **small** random sample of constraints.
- 3. Check that solution against the remaining constraints.
- 4. If some constraints are unsatisfied, **double** their weight and go back to 2.

LP-type problems. [Matoušek-Sharir-Welzl 1996]

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~ When do empty intersections have **small witnesses**?

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

An example: sets of **line transversals**.

0

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

An example: sets of line transversals.

For which X do the sets T(X) satisfy a **Helly-type** theorem?

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

"Given a family \mathcal{F} of <insert geometric shape> in \mathbb{R}^d , if every <insert number> have a line transversal, they all do."

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

"Given a family \mathcal{F} of <insert geometric shape> in \mathbb{R}^d , if every <insert number> have a line transversal, they all do."

in the plane...

[Danzer 1957]

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

"Given a family \mathcal{F} of <insert geometric shape> in \mathbb{R}^d , if every <insert number> have a line transversal, they all do."

in the plane...

[Danzer 1957]

[Grünbaum 1960]

LP-type problems. [Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

"Given a family \mathcal{F} of <insert geometric shape> in \mathbb{R}^d , if every <insert number> have a line transversal, they all do."

LP-type problems.

[Matoušek-Sharir-Welzl 1996]

~~ When do empty intersections have small witnesses?

"Given a family \mathcal{F} of <insert geometric shape> in \mathbb{R}^d , if every <insert number> have a line transversal, they all do."

in the plane...

LP-type problems.

[Matoušek-Sharir-Welzl 1996]

~~ When do empty intersections have small witnesses?

"Given a family \mathcal{F} of <insert geometric shape> in \mathbb{R}^d , if every <insert number> have a line transversal, they all do."

in \mathbb{R}^{d} ...

LP-type problems. [Matou

[Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

"Given a family \mathcal{F} of <insert geometric shape> in \mathbb{R}^d , if every <insert number> have a line transversal, they all do."

LP-type problems. [Matouš

[Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

"Given a family \mathcal{F} of <insert geometric shape> in \mathbb{R}^d , if every <insert number> have a line transversal, they all do."

LP-type problems. [Matouše

[Matoušek-Sharir-Welzl 1996]

~> When do empty intersections have **small witnesses**?

"Given a family \mathcal{F} of <insert geometric shape> in \mathbb{R}^d , if every <insert number> have a line transversal, they all do."

All very ad hoc... What about **structural** results?
More benefits of convexity...

Combinatorial convexity

▷ If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X. [Carathéodory 1905] ▷ Any d + 2 points contain two disjoint parts with overlapping convex hulls. [Radon 1921] ▷ Any (r-1)d + r points contain r disj. parts with overlap. convex hulls. [Tverberg 1966]

▷ If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X. [Carathéodory 1905] ▷ Any d + 2 points contain two disjoint parts with overlapping convex hulls. [Radon 1921] ▷ Any (r - 1)d + r points contain r disj. parts with overlap. convex hulls. [Tverberg 1966]

- ▷ Any point that is in the convex hull of d+1 color classes is in a colorful simplex. Colorful Carathéodory [Bárány 1976]
- \triangleright For convex sets of d + 1 colors, if each colorful subset intersects, then one color class has a point in common.
- > Any 2d + 2 points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls. **Colorful Radon** [Lovász 1992]

Colorful Helly [Lovász 1976]

▷ If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X. [Carathéodory 1905] ▷ Any d + 2 points contain two disjoint parts with overlapping convex hulls. [Radon 1921] ▷ Any (r - 1)d + r points contain r disj. parts with overlap. convex hulls. [Tverberg 1966]

⊳	Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.	Colorful Carathéodory [Bárány 1976]
⊳	For convex sets of $d + 1$ colors, if each colorful subset intersects, then one color class has a point in common.	Colorful Helly [Lovász 1976]
⊳	Any $2d + 2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.	Colorful Radon [Lovász 1992]
⊳	If a positive fraction of the $(d+1)$ -tuples of intersect, then a positive fraction has a point in common.	[Katchalski-Liu 1979, Kalai 1985]
\triangleright	For any point set, a fraction c_d of the simplices overlap.	. [Boros-Füredi, Bárány 1984]
⊳	For any $p \ge q \ge d+1$ there exists $N(p,q,d)$ s.t. any fastisfying "among any p some q overlap" has a hitting statistical setup overlap.	amily [Hadwiger-Debrunner 1957] set of size N . [Alon-Kleitman 1992]

▷ If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X. [Carathéodory 1905] ▷ Any d + 2 points contain two disjoint parts with overlapping convex hulls. [Radon 1921] ▷ Any (r-1)d + r points contain r disj. parts with overlap. convex hulls. [Tverberg 1966]

\triangleright	Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.	Colorful Carathéodory [Bárány 1976]
\triangleright	For convex sets of $d + 1$ colors, if each colorful subset intersects, then one color class has a point in common.	Colorful Helly [Lovász 1976]
\triangleright	Any $2d + 2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.	Colorful Radon [Lovász 1992]
⊳	If a positive fraction of the $(d+1)$ -tuples of intersect, then a positive fraction has a point in common.	[Katchalski-Liu 1979, Kalai 1985]
\triangleright	For any point set, a fraction c_d of the simplices overlap.	. [Boros-Füredi, Bárány 1984]
\triangleright	For any $p \ge q \ge d + 1$ there exists $N(p,q,d)$ s.t. any far satisfying "among any p some q overlap" has a hitting s	amily [Hadwiger-Debrunner 1957] set of size N . [Alon-Kleitman 1992]

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Fractional Helly [Katchalski-Liu 1979, Kalai 1985]

Question: is the value of a given LP better than a given threshold τ ?

Question: is the value of a given LP better than a given threshold τ ?

Question: is the value of a given LP better than a given threshold τ ?

Repeat k times... solve the problem for d + 1 random constraints. if the solution is worse than τ , return NO. Return YES.

 x_2

 \geq

 x_1

Question: is the value of a given LP better than a given threshold τ ?

▷ if the LP is ϵ -far from τ and $k = \Theta(\epsilon^{-(d+1)})$, then a YES is correct with probability $\geq \frac{2}{3}$.

 ϵ -far from τ = every point as good as τ violates at least an ϵ fraction of the constraints.

Question: is the value of a given LP better than a given threshold τ ?

Repeat k times... solve the problem for d + 1 random constraints. if the solution is worse than τ , return NO. Return YES.

 \triangleright a NO is always correct,

▷ if the LP is ϵ -far from τ and $k = \Theta(\epsilon^{-(d+1)})$, then a YES is correct with probability $\geq \frac{2}{3}$.

 ϵ -far from τ = every point as good as τ violates at least an ϵ fraction of the constraints.

[Chakraborty et al. 2018]

\triangleright If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X .	[Carathéodory 1905]
\triangleright Any $d+2$ points contain two disjoint parts with overlapping convex hu	IIs. [Radon 1921]
\triangleright Any $(r-1)d + r$ points contain r disj. parts with overlap. convex hulls	5. [Tverberg 1966]
> Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex. Colorful Carathe	éodory [Bárány 1976]
\triangleright For convex sets of $d + 1$ colors, if each colorful subset intersects, then one color class has a point in common. Colorfu	I Helly [Lovász 1976]
Any 2d + 2 points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls. Colorful	Radon [Lovász 1992]
> If a positive fraction of the $(d + 1)$ -tuples of intersect, then a positive fraction has a point in common. [Katchalski	-Liu 1979, Kalai 1985]
\triangleright For any point set, a fraction c_d of the simplices overlap. [Boros	s-Füredi, Bárány 1984]
$\triangleright \text{ For any } p \geq q \geq d+1 \text{ there exists } N(p,q,d) \text{ s.t. any family} \qquad [\text{Hadwestimes}] \text{ Hadwestimes} \text{ satisfying "among any } p \text{ some } q \text{ overlap" has a hitting set of size } N.$	wiger-Debrunner 1957] [Alon-Kleitman 1992]

▷ If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X. [Carathéodory 1905]
▷ Any d + 2 points contain two disjoint parts with overlapping convex hulls. [Radon 1921]
▷ Any (r-1)d + r points contain r disj. parts with overlap. convex hulls. [Tverberg 1966]

> Any point that is in the convex hull of d+1 color classes is in a colorful simplex. Colorful Carathéodory [Bárány 1976]

\triangleright	For convex sets of $d + 1$ colors, if each colorful subset	Colorful Helly [Lovász 1976]
	So how to generalize any of these beyond	convexity?
	Any $2d + 2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.	Colorful Radon [Lovász 1992]
	If a positive fraction of the $(d+1)$ -tuples of intersect, then a positive fraction has a point in common.	[Katchalski-Liu 1979, Kalai 1985]
\triangleright	For any point set, a fraction c_d of the simplices overlap.	[Boros-Füredi, Bárány 1984]
	For any $p \ge q \ge d+1$ there exists $N(p,q,d)$ s.t. any family satisfying "among any p some q overlap" has a hitting set of s	[Hadwiger-Debrunner 1957] size N . [Alon-Kleitman 1992]

Methodology #1

Convexity and maps of simplicial complexes into \mathbb{R}^d

- $\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^D .
- $\triangleright |\mathcal{K}| = \bigcup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

 $\triangleright \mathcal{K} \text{ a set of geometric simplices in } \mathbb{R}^D.$ $\triangleright |\mathcal{K}| = \bigcup_{\sigma \in \mathcal{K}} \sigma \text{ its geometric realization.}$

Analogue of graph planarity:

 \triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^d ?

▷ \mathcal{K} a set of geometric simplices in \mathbb{R}^D . ▷ $|\mathcal{K}| = \bigcup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:

 \triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^d ?

▷ No Wagner-Fary theorem: $L \neq PL \neq top$.

▷ \mathcal{K} a set of geometric simplices in \mathbb{R}^D . ▷ $|\mathcal{K}| = \bigcup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:

 \triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^d ?

 \triangleright No Wagner-Fary theorem: L \neq PL \neq top.

 $\triangleright \Delta_{2k+2}^{(2k)} \not\hookrightarrow_{\mathsf{top}} \mathbb{R}^{2k}$. [Van Kampen 1932, Flores 1933]

 $\Delta_n^{(\delta)} = \text{the } (\leq \delta) \text{-dimensional faces of the } n\text{-dimensional simplex.}$

 $\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^D . $\triangleright |\mathcal{K}| = \bigcup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:

 \triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^d ? ▷ No Wagner-Fary theorem: $L \neq PL \neq top$. $\triangleright \Delta_{2k+2}^{(2k)} \not\hookrightarrow_{top} \mathbb{R}^{2k}$. [Van Kampen 1932, Flores 1933] $\Delta_n^{(\delta)} =$ the $(\leq \delta)$ -dimensional faces of the *n*-dimensional simplex.

Back to combinatorial convexity...

 \triangleright Any d+2 points can be divided into 2 parts with overlapping convex hulls.

 $\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^D . $\triangleright |\mathcal{K}| = \bigcup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:

 \triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^d ? ▷ No Wagner-Fary theorem: $L \neq PL \neq top$. $\triangleright \Delta_{2k+2}^{(2k)} \not\hookrightarrow_{\mathsf{top}} \mathbb{R}^{2k}$. [Van Kampen 1932, Flores 1933] $\Delta_n^{(\delta)} =$ the $(\leq \delta)$ -dimensional faces of the *n*-dimensional simplex.

Back to combinatorial convexity...

 \triangleright Any d + 2 points can be divided into 2 parts with overlapping convex hulls. \simeq For any linear map $|\Delta_{d+1}^{(d)}| \to \mathbb{R}^d$, two disjoint faces have overlapping images.

 $\triangleright \mathcal{K}$ a set of geometric simplices in \mathbb{R}^D . $\triangleright |\mathcal{K}| = \bigcup_{\sigma \in \mathcal{K}} \sigma$ its geometric realization.

Analogue of graph planarity:

 \triangleright For which d does $|\mathcal{K}|$ embed into \mathbb{R}^d ? \triangleright No Wagner-Fary theorem: L \neq PL \neq top. $\triangleright \Delta_{2k+2}^{(2k)} \not\hookrightarrow_{top} \mathbb{R}^{2k}$. [Van Kampen 1932, Flores 1933] $\Delta_n^{(\delta)} =$ the $(\leq \delta)$ -dimensional faces of the *n*-dimensional simplex.

Back to combinatorial convexity...

 \triangleright Any d + 2 points can be divided into 2 parts with overlapping convex hulls. \simeq For any linear map $|\Delta_{d+1}^{(d)}| \rightarrow \mathbb{R}^d$, two disjoint faces have overlapping images. tinuous [Bajmóczy-Bárány 1979]

$$\triangleright \text{ define } \hat{f} \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{ccc} Y \subseteq |\mathcal{K}| \times |\mathcal{K}| & \to & \mathbb{S}^{d-1} \subset \mathbb{R}^d \\ (p,q) & \mapsto & \frac{f(p) - f(q)}{\|f(p) - f(q)\|} \end{array} \right.$$

where Y excludes the $\left(p,q\right)$ for which we allow f(p)=f(q) ,

$$\triangleright \text{ define } \hat{f} \stackrel{\text{\tiny def}}{=} \begin{cases} Y \subseteq |\mathcal{K}| \times |\mathcal{K}| & \to & \mathbb{S}^{d-1} \subset \mathbb{R}^d \\ (p,q) & \mapsto & \frac{f(p) - f(q)}{\|f(p) - f(q)\|} \end{cases}$$

where Y excludes the (p,q) for which we allow $f(p) = f(q)$,

 \triangleright equip Y with the \mathbb{Z}_2 -action generated by $-:(p,q)\mapsto (q,p)$,

$$\triangleright \text{ define } \hat{f} \stackrel{\text{def}}{=} \begin{cases} Y \subseteq |\mathcal{K}| \times |\mathcal{K}| & \to \quad \mathbb{S}^{d-1} \subset \mathbb{R}^d \\ (p,q) & \mapsto \quad \frac{f(p)-f(q)}{\|f(p)-f(q)\|} \end{cases}$$
where Y excludes the (p,q) for which we allow $f(p) = f(q)$,
$$\triangleright \text{ equip } Y \text{ with the } \mathbb{Z}_2 \text{-action generated by } - : (p,q) \mapsto (q,p),$$

$$\triangleright \text{ If } (Y,-) \simeq (\mathbb{S}^{\bullet},-) \text{ with } \bullet \geq d \text{ apply Borsuk-Ulam.}$$
There does not exist a continuous antipodal map $\mathbb{S}^k \to \mathbb{S}^{k-1}$

 \mathbb{S}^2
$$\begin{split} \triangleright \text{ define } \hat{f} \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} Y \subseteq |\mathcal{K}| \times |\mathcal{K}| & \to & \mathbb{S}^{d-1} \subset \mathbb{R}^d \\ (p,q) & \mapsto & \frac{f(p) - f(q)}{\|f(p) - f(q)\|} \end{array} \right. \\ \text{ where } Y \text{ excludes the } (p,q) \text{ for which we allow } f(p) = f(q), \\ \triangleright \text{ equip } Y \text{ with the } \mathbb{Z}_2 \text{ -action generated by } - : (p,q) \mapsto (q,p), \\ \triangleright \text{ If } (Y,-) \simeq (\mathbb{S}^{\bullet},-) \text{ with } \bullet \geq d \text{ apply Borsuk-Ulam.} \\ \text{ There does not exist a continuous antipodal map } \mathbb{S}^k \to \mathbb{S}^{k-1}. \end{split}$$

Other spaces, other actions (Dold's theorem, ...).

$$\triangleright \text{ define } \hat{f} \stackrel{\text{def}}{=} \begin{cases} Y \subseteq |\mathcal{K}| \times |\mathcal{K}| & \to \quad \mathbb{S}^{d-1} \subset \mathbb{R}^d \\ (p,q) & \mapsto \quad \frac{f(p)-f(q)}{\|f(p)-f(q)\|} \end{cases} \\ \text{where } Y \text{ excludes the } (p,q) \text{ for which we allow } f(p) = f(q), \\ \triangleright \text{ equip } Y \text{ with the } \mathbb{Z}_2 \text{ -action generated by } - : (p,q) \mapsto (q,p), \\ \triangleright \text{ If } (Y,-) \simeq (\mathbb{S}^{\bullet},-) \text{ with } \bullet \geq d \text{ apply Borsuk-Ulam.} \\ \text{There does not exist a continuous antipodal map } \mathbb{S}^k \to \mathbb{S}^{k-1}. \end{cases}$$

Other spaces, other actions (Dold's theorem, ...).

For any linear map $f : |\Delta_{(r-1)(d+1)}^{(d)}| \to \mathbb{R}^d$, some **r** disjoint faces have overlapping images. [Tverberg 1966]

$$\triangleright \text{ define } \hat{f} \stackrel{\text{def}}{=} \begin{cases} Y \subseteq |\mathcal{K}| \times |\mathcal{K}| & \to \quad \mathbb{S}^{d-1} \subset \mathbb{R}^d \\ (p,q) & \mapsto \quad \frac{f(p)-f(q)}{\|f(p)-f(q)\|} \end{cases} \\ \text{where } Y \text{ excludes the } (p,q) \text{ for which we allow } f(p) = f(q), \\ \triangleright \text{ equip } Y \text{ with the } \mathbb{Z}_2 \text{-action generated by } - : (p,q) \mapsto (q,p), \\ \triangleright \text{ If } (Y,-) \simeq (\mathbb{S}^{\bullet},-) \text{ with } \bullet \geq d \text{ apply Borsuk-Ulam.} \\ \text{There does not exist a continuous antipodal map } \mathbb{S}^k \to \mathbb{S}^{k-1}. \end{cases}$$

Other spaces, other actions (Dold's theorem, ...).

For any linear map $f : |\Delta_{(r-1)(d+1)}^{(d)}| \to \mathbb{R}^d$, some **r** disjoint faces have overlapping images. [Tverberg 1966]

"Linear" can be dropped for r a prime power [Özaydin 1987]

$$\triangleright \text{ define } \hat{f} \stackrel{\text{def}}{=} \begin{cases} Y \subseteq |\mathcal{K}| \times |\mathcal{K}| & \to \quad \mathbb{S}^{d-1} \subset \mathbb{R}^d \\ (p,q) & \mapsto \quad \frac{f(p)-f(q)}{\|f(p)-f(q)\|} \end{cases} \\ \text{where } Y \text{ excludes the } (p,q) \text{ for which we allow } f(p) = f(q), \\ \triangleright \text{ equip } Y \text{ with the } \mathbb{Z}_2 \text{ -action generated by } - : (p,q) \mapsto (q,p), \\ \triangleright \text{ If } (Y,-) \simeq (\mathbb{S}^{\bullet},-) \text{ with } \bullet \geq d \text{ apply Borsuk-Ulam.} \\ \text{There does not exist a continuous antipodal map } \mathbb{S}^k \to \mathbb{S}^{k-1}. \end{cases}$$

Other spaces, other actions (Dold's theorem, ...).

For any linear map $f : |\Delta_{(r-1)(d+1)}^{(d)}| \to \mathbb{R}^d$, some **r** disjoint faces have overlapping images. [Tverberg 1966]

"Linear" can be dropped for r a prime power [Özaydin 1987]but not in general.[Mabillard-Wagner 2015, Frick 2015]

$$\triangleright \text{ define } \hat{f} \stackrel{\text{def}}{=} \begin{cases} Y \subseteq |\mathcal{K}| \times |\mathcal{K}| & \to \quad \mathbb{S}^{d-1} \subset \mathbb{R}^d \\ (p,q) & \mapsto \quad \frac{f(p)-f(q)}{\|f(p)-f(q)\|} \end{cases}$$
where Y excludes the (p,q) for which we allow $f(p) = f(q)$,
$$\triangleright \text{ equip } Y \text{ with the } \mathbb{Z}_2 \text{-action generated by } - : (p,q) \mapsto (q,p),$$

$$\triangleright \text{ If } (Y,-) \simeq (\mathbb{S}^{\bullet},-) \text{ with } \bullet \geq d \text{ apply Borsuk-Ulam.}$$
There does not exist a continuous antipodal map $\mathbb{S}^k \to \mathbb{S}^{k-1}$.

Other spaces, other actions (Dold's theorem, ...).

For any linear map $f : |\Delta_{\mathbf{n}}^{(\mathbf{d})}| \to \mathbb{R}^{\mathbf{d}}$, some constant proportion of the faces have overlapping images.

$$\triangleright \text{ define } \hat{f} \stackrel{\text{def}}{=} \begin{cases} Y \subseteq |\mathcal{K}| \times |\mathcal{K}| & \to \quad \mathbb{S}^{d-1} \subset \mathbb{R}^d \\ (p,q) & \mapsto \quad \frac{f(p)-f(q)}{\|f(p)-f(q)\|} \end{cases}$$
where Y excludes the (p,q) for which we allow $f(p) = f(q)$,
$$\triangleright \text{ equip } Y \text{ with the } \mathbb{Z}_2 \text{-action generated by } - : (p,q) \mapsto (q,p),$$

$$\triangleright \text{ If } (Y,-) \simeq (\mathbb{S}^{\bullet},-) \text{ with } \bullet \geq d \text{ apply Borsuk-Ulam.}$$
There does not exist a continuous antipodal map $\mathbb{S}^k \to \mathbb{S}^{k-1}.$

Other spaces, other actions (Dold's theorem, ...).

For any linear map $f : |\Delta_{\mathbf{n}}^{(\mathbf{d})}| \to \mathbb{R}^{\mathbf{d}}$, some constant proportion of the faces have overlapping images.

"Linear" can be dropped. [Gromov 2010].

▷ If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X ▷ Any $d + 2$ points contain two disjoint parts with overlap ▷ Any $(r - 1)d + r$ points contain r disj. parts with overlap	Carathéodory 1905]oping convex hulls.[Radon 1921]ap. convex hulls.[Tverberg 1966]
▷ Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.	Colorful Carathéodory [Bárány 1976]
\triangleright For convex sets of $d+1$ colors, if each colorful subset intersects, then one color class has a point in common.	Colorful Helly [Lovász 1976]
\triangleright Any $2d + 2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.	Colorful Radon [Lovász 1992]
\triangleright If a positive fraction of the $(d+1)$ -tuples of intersect, then a positive fraction has a point in common.	[Katchalski-Liu 1979, Kalai 1985]
\triangleright For any point set, a fraction c_d of the simplices overlap.	. [Boros-Füredi, Bárány 1984]
▷ For any $p \ge q \ge d + 1$ there exists $N(p,q,d)$ s.t. any far satisfying "among any p some q overlap" has a hitting s	amily [Hadwiger-Debrunner 1957] set of size N . [Alon-Kleitman 1992]

\triangleright If $p \in \operatorname{conv}(X)$ then p is in a simplex with vertices in X .	[Carathéodory 1905]	
\triangleright Any $d + 2$ points contain two disjoint parts with overlapping convex hulls. [Radon 1921]		
\triangleright Any $(r-1)d + r$ points contain r disj. parts with overlap	o. convex hulls. [Tverberg 1966]	
> Any point that is in the convex hull of $d+1$ color classes is in a colorful simplex.	Colorful Carathéodory [Bárány 1976]	
▷ For convex sets of Do some generalizations imply of intersects, then one color class has a point in common.	others? lorful Helly [Lovász 1976]	
\triangleright Any $2d + 2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.	Colorful Radon [Lovász 1992]	
\triangleright If a positive fraction of the $(d+1)$ -tuples of intersect, then a positive fraction has a point in common.	[Katchalski-Liu 1979, Kalai 1985]	
\triangleright For any point set, a fraction c_d of the simplices overlap.	[Boros-Füredi, Bárány 1984]	
\triangleright For any $p \ge q \ge d + 1$ there exists $N(p,q,d)$ s.t. any familiar satisfying "among any p some q overlap" has a hitting set	t of size N. [Alon-Kleitman 1992]	

Methodology #2

Convexity and patterns in hypergraphs

▷ If $p \in \text{conv}(X)$ then p is in a simplex with vertices in X ▷ Any $d + 2$ points contain two disjoint parts with overla ▷ Any $(r - 1)d + r$ points contain r disj. parts with over	X.[Carathéodory 1905]opping convex hulls.[Radon 1921]clap. convex hulls.[Tverberg 1966]
▷ Any point that is in the convex hull of $d + 1$ color classes is in a colorful simplex.	Colorful Carathéodory [Bárány 1976]
\triangleright For convex sets of $d + 1$ colors, if each colorful subset intersects, then one color class has a point in common.	Colorful Helly [Lovász 1976]
\triangleright Any $2d + 2$ points, 2 of each color, can be partitioned into colorful subsets with overlapping convex hulls.	Colorful Radon [Lovász 1992]
\triangleright If a positive fraction of the $(d+1)$ -tuples of intersect, then a positive fraction has a point in common.	[Katchalski-Liu 1979, Kalai 1985]
\triangleright For any point set, a fraction c_d of the simplices overlap	b. [Boros-Füredi, Bárány 1984]
▷ For any $p \ge q \ge d + 1$ there exists $N(p,q,d)$ s.t. any f satisfying "among any p some q overlap" has a hitting	family [Hadwiger-Debrunner 1957] set of size N. [Alon-Kleitman 1992]

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$ vertex set = \mathcal{F} , edges = intersecting *m*-tuples.

 $\triangleright \text{ Colorful Helly} = a$ forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$ vertex set = \mathcal{F} , edges = intersecting *m*-tuples.

▷ Colorful Helly = a forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.

 \triangleright *m* sets of *m* vertices.

- $\triangleright \text{ Colorful Helly} = a$ forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
- $\triangleright m$ sets of m vertices.
- ▷ Every **transversal** is an edge.

- $\triangleright \text{ Colorful Helly} = a$ forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
- $\triangleright m$ sets of m vertices.
- ▷ Every **transversal** is an edge.

- $\triangleright \text{ Colorful Helly} = a$ forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
- $\triangleright m$ sets of m vertices.
- ▷ Every **transversal** is an edge.

- $\triangleright \text{ Colorful Helly} = a$ forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
- $\triangleright m$ sets of m vertices.
- ▷ Every **transversal** is an edge.
- \triangleright no color class is an edge

A family \mathcal{F} of convex sets \rightsquigarrow a sequence of hypergraphs $\mathcal{H}_{\mathcal{F}}(m)$ vertex set = \mathcal{F} , edges = intersecting *m*-tuples.

- $\triangleright \text{ Colorful Helly} = a$ forbidden pattern for $\mathcal{H}_{\mathcal{F}}(m)$.
- $\triangleright m$ sets of m vertices.
- ▷ Every **transversal** is an edge.
- \triangleright no color class is an edge

Fractional Helly holds whenever this pattern is forbidden.

Positive edge density \Rightarrow linear-size clique.

[Holmsen 2019]

Colorful Helly

colorful *m*-tuples intersect \Rightarrow some color class intersect

Methodology #3

Convexity and homological properties of nerves

$\mathcal{N}(\mathcal{F}) = \{ \emptyset, \{1\}, \{2\}, \{3\} \}$

$\mathcal{N}(\mathcal{F}) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\} \}$

$\mathcal{N}(\mathcal{F}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$

$\mathcal{N}(\mathcal{F}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

$\mathcal{N}(\mathcal{F}) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$

▷ Nerves are **abstract simplicial complexes**.

$\mathcal{N}(\mathcal{F}) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$

▷ Nerves are **abstract simplicial complexes**.

Theorem. If all subfamilies of \mathcal{F} have empty or **contractible** intersections then $\mathcal{N}(\mathcal{F})$ has the homotopy type of $\cup \mathcal{F}$.

[Borsuk 1948]

$\mathcal{N}(\mathcal{F}) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$

▷ Nerves are **abstract simplicial complexes**.

Theorem. If all subfamilies of \mathcal{F} have empty or **contractible** intersections then $\mathcal{N}(\mathcal{F})$ has the homotopy type of $\cup \mathcal{F}$.

[Borsuk 1948]

 \triangleright Reconstruction methods.

 $Delaunay = \mathcal{N}(Voronoi \ regions)$

https://doc.cgal.org/latest/Manual/tuto_reconstruction.html

$\mathcal{N}(\mathcal{F}) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$

▷ Nerves are **abstract simplicial complexes**.

Theorem. If all subfamilies of \mathcal{F} have empty or **contractible** intersections then $\mathcal{N}(\mathcal{F})$ has the homotopy type of $\cup \mathcal{F}$.

[Borsuk 1948]

▷ Reconstruction methods.

 $Delaunay = \mathcal{N}(Voronoi \ regions)$

▷ Topological data analysis.

https://doc.cgal.org/latest/Manual/tuto_reconstruction.html

Nerves of convex \subset *d*-collapsible complexes.
Filter the nerve by sweeping \mathbb{R}^d by a hyperplane.

Filter the nerve by sweeping \mathbb{R}^d by a hyperplane. Elementary change: deletion of an interval.

Filter the nerve by sweeping \mathbb{R}^d by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension < d.

[Wegner 1975]

Filter the nerve by sweeping \mathbb{R}^d by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension < d. A

Fractional Helly holds for set systems with *d*-collapsible nerves.

Many (d+1)-tuples intersect \Rightarrow many intersect. [Kalai 1985]

[Wegner 1975]

Filter the nerve by sweeping \mathbb{R}^d by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension < d.

Fractional Helly holds for set systems with *d*-collapsible nerves.

Many (d+1)-tuples intersect \Rightarrow many intersect. [Kalai 1985]

[Wegner 1975]

[Tancer 2009]

Filter the nerve by sweeping \mathbb{R}^d by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension < d.

Fractional Helly holds for set systems with *d*-collapsible nerves.

Many (d+1)-tuples intersect \Rightarrow many intersect. [Kalai 1985]

[Wegner 1975]

d-collapsible complexes \subset *d*-Leray complexes.

Induced subcomplexes have trivial homology in all dimensions $\geq d$.

[Tancer 2009]

Filter the nerve by sweeping \mathbb{R}^d by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension < d.

Fractional Helly holds for set systems with *d*-collapsible nerves.

 $Many (d+1)-tuples \ intersect \Rightarrow many \ intersect.$ [Kalai 1985]

[Wegner 1975]

[Tancer 2009]

d-collapsible complexes \subset *d*-Leray complexes.

Induced subcomplexes have trivial homology in all dimensions $\geq d$.

Fractional Helly holds for set systems with *d*-collapsible nerves. [Kalai 1985, Stanley 1975]

Filter the nerve by sweeping \mathbb{R}^d by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension < d.

Fractional Helly holds for set systems with *d*-collapsible nerves.

 $Many (d+1)-tuples \ intersect \Rightarrow many \ intersect.$ [Kalai 1985]

[Wegner 1975]

[Tancer 2009]

d-collapsible complexes \subset *d*-Leray complexes.

Induced subcomplexes have trivial homology in all dimensions $\geq d$.

Fractional Helly holds for set systemswith d-collapsible nerves.[Kalai 1985, Stanley 1975]

... as does **Colorful Helly**.

[Kalai-Meshulam 2005]

Filter the nerve by sweeping \mathbb{R}^d by a hyperplane. Elementary change: deletion of an interval. Helly \Rightarrow lower-end has dimension < d.

Fractional Helly holds for set systems with d-collapsible nerves.

Many (d+1)-tuples intersect \Rightarrow many intersect. [Kalai 1985]

[Wegner 1975]

[Tancer 2009]

d-collapsible complexes \subset *d*-Leray complexes.

Induced subcomplexes have trivial homology in all dimensions $\geq d$.

Fractional Helly holds for set systemswith d-collapsible nerves.[Kalai 1

[Kalai 1985, Stanley 1975]

... as does **Colorful Helly**.

[Kalai-Meshulam 2005]

Set systems whose nerve is *d*-Leray satisfy...

 \triangleright colorful Helly for every $m \ge d+1$,

Set systems whose nerve is *d*-Leray satisfy...

 \triangleright colorful Helly for every $m \ge d+1$,

Set systems whose nerve is *d*-Leray satisfy...

 \triangleright colorful Helly for every $m \ge d+1$,

 \triangleright for every $p \ge q \ge d+1$ there exists N(p,q,d) s.t. ...

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

Introduce nerves with multiplicities.

The nerve theorem generalizes... Leray number of projection can be analyzed.

▷ Every family \mathcal{F} s.t. for every $G \subseteq \mathcal{F} \cap_{A \in G} A$ has $\leq b$ connected components, each one **acyclic**.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

Introduce nerves with multiplicities.

The nerve theorem generalizes... Leray number of projection can be analyzed.

Open: Is it enough if every $X \in \mathcal{F}^{\cap}$ has **bounded** β_0, β_1, \ldots ?

 $\bullet \bullet \circ \circ \circ$

Zooming in...

Sharp conditions using some Ramsey theory

$$(d=2)$$

 \triangleright Consider 4 convex sets A_1, A_2, A_3, A_4 .

$$(d=2)$$

 \triangleright Consider 4 convex sets A_1, A_2, A_3, A_4 .

 \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.

$$(d=2)$$

- \triangleright Consider 4 convex sets A_1, A_2, A_3, A_4 .
- \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.
- \triangleright Pick a Radon partition of $\{p_1, p_2, p_3, p_4\}$

$$(d=2)$$

 \triangleright Consider 4 convex sets A_1, A_2, A_3, A_4 .

 \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.

 \triangleright Pick a Radon partition of $\{p_1, p_2, p_3, p_4\}$

 $\triangleright \square$ is in $A_1 \cap A_2 \cap A_3 \cap A_4$.

$$(d=2)$$

- \triangleright Consider 4 convex sets A_1, A_2, A_3, A_4 .
- \triangleright Suppose any 3 intersect: $p_i \in \cap_{j \neq i} A_j$.
- $\triangleright \mathsf{Pick} \mathsf{ a Radon partition of } \{p_1, p_2, p_3, p_4\}$
- $\triangleright \square$ is in $A_1 \cap A_2 \cap A_3 \cap A_4$.
- \triangleright Consider 5 convex sets $A_1, A_2, A_3, A_4, A_5...$

 \triangleright Consider 4 convex sets A_1, A_2, A_3, A_4 . \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$. \triangleright Pick a Radon partition of $\{p_1, p_2, p_3, p_4\}$ $\triangleright \Box$ is in $A_1 \cap A_2 \cap A_3 \cap A_4$.

 \triangleright Consider 5 convex sets $A_1, A_2, A_3, A_4, A_5...$

Topological Helly from topological Radon.

 \triangleright Consider a **good cover** of 4 sets A_1, A_2, A_3, A_4 .

▷ Consider 4 convex sets A₁, A₂, A₃, A₄.
▷ Suppose any 3 intersect: p_i ∈ ∩_{j≠i}A_j.
▷ Pick a Radon partition of {p₁, p₂, p₃, p₄}
▷ □ is in A₁ ∩ A₂ ∩ A₃ ∩ A₄.
▷ Consider 5 convex sets A₁, A₂, A₃, A₄, A₅...

Topological Helly from topological Radon.

 \triangleright Consider a **good cover** of 4 sets A_1, A_2, A_3, A_4 .

 \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.

$$(d=2)$$

▷ Consider 4 convex sets A₁, A₂, A₃, A₄.
▷ Suppose any 3 intersect: p_i ∈ ∩_{j≠i}A_j.
▷ Pick a Radon partition of {p₁, p₂, p₃, p₄}
▷ □ is in A₁ ∩ A₂ ∩ A₃ ∩ A₄.
▷ Consider 5 convex sets A₁, A₂, A₃, A₄, A₅...

Topological Helly from topological Radon.

- \triangleright Consider a **good cover** of 4 sets A_1, A_2, A_3, A_4 .
- \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.
- ▷ Build a continuous map fitting the intersections...

▷ Consider 4 convex sets A₁, A₂, A₃, A₄.
▷ Suppose any 3 intersect: $p_i \in \cap_{j \neq i} A_j$.
▷ Pick a Radon partition of { p_1, p_2, p_3, p_4 }
▷ □ is in A₁ ∩ A₂ ∩ A₃ ∩ A₄.
▷ Consider E convex sets A = A = A = A = A

 \triangleright Consider 5 convex sets $A_1, A_2, A_3, A_4, A_5...$

Topological Helly from topological Radon.

- \triangleright Consider a **good cover** of 4 sets A_1, A_2, A_3, A_4 .
- \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.

(d=2)

▷ Build a continuous map fitting the intersections...

▷ Consider 4 convex sets A₁, A₂, A₃, A₄.
▷ Suppose any 3 intersect: $p_i \in \cap_{j \neq i} A_j$.
▷ Pick a Radon partition of { p_1, p_2, p_3, p_4 }
▷ □ is in A₁ ∩ A₂ ∩ A₃ ∩ A₄.
▷ Consider E convex sets A = A = A = A = A

 \triangleright Consider 5 convex sets $A_1, A_2, A_3, A_4, A_5...$

Topological Helly from topological Radon.

- \triangleright Consider a **good cover** of 4 sets A_1, A_2, A_3, A_4 .
- \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.

(d=2)

▷ Build a continuous map fitting the intersections...
A classic: Helly from Radon...

▷ Consider 4 convex sets A_1, A_2, A_3, A_4 . ▷ Suppose any 3 intersect: $p_i \in \cap_{j \neq i} A_j$. ▷ Pick a Radon partition of $\{p_1, p_2, p_3, p_4\}$ ▷ \Box is in $A_1 \cap A_2 \cap A_3 \cap A_4$.

 \triangleright Consider 5 convex sets $A_1, A_2, A_3, A_4, A_5...$

Topological Helly from topological Radon.

- \triangleright Consider a **good cover** of 4 sets A_1, A_2, A_3, A_4 .
- \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.

(d=2)

▷ Build a continuous map fitting the intersections...

A classic: Helly from Radon...

 \triangleright Consider 4 convex sets A_1, A_2, A_3, A_4 . \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$. \triangleright Pick a Radon partition of $\{p_1, p_2, p_3, p_4\}$ $\triangleright \Box$ is in $A_1 \cap A_2 \cap A_3 \cap A_4$.

 \triangleright Consider 5 convex sets $A_1, A_2, A_3, A_4, A_5...$

Topological Helly from topological Radon.

- \triangleright Consider a **good cover** of 4 sets A_1, A_2, A_3, A_4 .
- \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.

(d=2)

- ▷ Build a continuous map fitting the intersections...
- ▷ ... some non-trivial intersection **must** occur.

A classic: Helly from Radon...

 $\triangleright \Box$ is in $A_1 \cap A_2 \cap A_3 \cap A_4$.

 \triangleright Consider 4 convex sets A_1, A_2, A_3, A_4 .

▷ Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.

 \triangleright Pick a Radon partition of $\{p_1, p_2, p_3, p_4\}$

 \triangleright Consider 5 convex sets $A_1, A_2, A_3, A_4, A_5...$

Idea: Analyze intersection patterns of **topological** set systems by drawing **non-embeddable** complexes inside!

- \triangleright Consider a **good cover** of 4 sets A_1, A_2, A_3, A_4 .
- \triangleright Suppose any 3 intersect: $p_i \in \bigcap_{j \neq i} A_j$.
- ▷ Build a continuous map fitting the intersections...
- ▷ ... some non-trivial intersection **must** occur.

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

Suppose \mathcal{F} has empty intersection and is **minimal** for that.

(d=2)

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

Suppose \mathcal{F} has empty intersection and is **minimal** for that. Fix a point in the \cap of each subset of size $|\mathcal{F}| - 1$.

(d=2)

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 \triangleright **Helly** when each $X \in \mathcal{F}^{\cap}$ has $\beta_0 \leq b$ and $\beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

Suppose \mathcal{F} has empty intersection and is **minimal** for that. Fix a point in the \cap of each subset of size $|\mathcal{F}| - 1$. For every family $G \subset \mathcal{F}$ of size $|\mathcal{F}| - (b+1)$. Two points can be connected inside $\cap G$. Label the edge with $\mathcal{F} \setminus G$.

(d = 2)

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 \triangleright **Helly** when each $X \in \mathcal{F}^{\cap}$ has $\beta_0 \leq b$ and $\beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

Suppose \mathcal{F} has empty intersection and is **minimal** for that. Fix a point in the \cap of each subset of size $|\mathcal{F}| - 1$. For every family $G \subset \mathcal{F}$ of size $|\mathcal{F}| - (b+1)$. Two points can be connected inside $\cap G$. Label the edge with $\mathcal{F} \setminus G$.

Ramsey \Rightarrow if \mathcal{F} is large enough, some K_5 has disjoint edges with disjoint labels.

(d = 2)

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

 \triangleright Helly when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_0, \beta_1, \ldots, \beta_{\lceil d/2 \rceil - 1}$.

[G-Paták-Patáková-Tancer-Wagner 2015]

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

▷ **Helly** when every $X \in \mathcal{F}^{\cap}$ has **bounded** β_0 , β_1 , ..., $\beta_{\lceil d/2 \rceil - 1}$. [G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

▷ **Helly** when every $X \in \mathcal{F}^{\cap}$ has **bounded** β_0 , β_1 , ..., $\beta_{\lceil d/2 \rceil - 1}$. [G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

▷ **Helly** when every $X \in \mathcal{F}^{\cap}$ has **bounded** β_0 , β_1 , ..., $\beta_{\lceil d/2 \rceil - 1}$. [G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections. Work with \mathbb{Z}_2 -homology.

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

▷ **Helly** when every $X \in \mathcal{F}^{\cap}$ has **bounded** β_0 , β_1 , ..., $\beta_{\lceil d/2 \rceil - 1}$. [G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.Work with \mathbb{Z}_2 -homology.Build homological minors.[Wagner 2011]

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

▷ **Helly** when every $X \in \mathcal{F}^{\cap}$ has **bounded** β_0 , β_1 , ..., $\beta_{\lceil d/2 \rceil - 1}$. [G-Paták-Patáková-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.Work with \mathbb{Z}_2 -homology.Build homological minors.[Wagner 2011]Use an homological relaxation of embeddings.

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

▷ **Helly** when every $X \in \mathcal{F}^{\cap}$ has **bounded** β_0 , β_1 , ..., $\beta_{\lceil d/2 \rceil - 1}$. [G-Paták-Patáková-Tancer-Wagner 2015]

▷ Radon when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_0, \beta_1, \ldots, \beta_{\lceil d/2 \rceil - 1}$. ⇒ Fractional Helly, (\mathbf{p}, \mathbf{q}) , weak ϵ -nets, ... [Patáková 2020]

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

▷ **Helly** when every $X \in \mathcal{F}^{\cap}$ has **bounded** $\beta_0, \beta_1, \ldots, \beta_{\lceil d/2 \rceil - 1}$. [G-Paták-Patáková-Tancer-Wagner 2015]

▷ Radon when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_0, \beta_1, \ldots, \beta_{\lceil d/2 \rceil - 1}$. ⇒ Fractional Helly, (\mathbf{p}, \mathbf{q}) , weak ϵ -nets, ... [Patáková 2020]

Open. Qualitatively sharp, bounds are horrible!

 \triangleright set system $\mathcal{F} \to \text{its closure } \mathcal{F}^{\cap} \stackrel{\text{\tiny def}}{=} \{ \cap_{A \in G} A \colon G \subseteq \mathcal{F} \}$

 $\triangleright \text{ Helly when each } X \in \mathcal{F}^{\cap} \text{ has } \beta_0 \leq b \text{ and} \\ \beta_1 = \beta_2 = \ldots = \beta_{\lceil d/2 \rceil - 1} = 0.$ [Matoušek 1996]

▷ **Helly** when every $X \in \mathcal{F}^{\cap}$ has **bounded** β_0 , β_1 , ..., $\beta_{\lceil d/2 \rceil - 1}$. [G-Paták-Patáková-Tancer-Wagner 2015]

▷ Radon when every $X \in \mathcal{F}^{\cap}$ has bounded $\beta_0, \beta_1, \ldots, \beta_{\lceil d/2 \rceil - 1}$. ⇒ Fractional Helly, (\mathbf{p}, \mathbf{q}) , weak ϵ -nets, ... [Patáková 2020]

Open. Qualitatively sharp, bounds are horrible!

 \triangleright The fractional Helly number is always d + 1. [G-Holmsen-Patáková 2021]

••••••••••••••

Wrapping up!

Convexity reveals much more general properties.

- ▷ overlap properties of maps from simplicial complexes,
- ▷ properties of hypergraphs with certain forbidden patterns.
- ▷ consequences of properties of nerves,

Some translations are recent... more to uncover?

Convexity reveals much more general properties.

- ▷ overlap properties of maps from simplicial complexes,
- ▷ properties of hypergraphs with certain forbidden patterns.
- ▷ consequences of properties of nerves,

Some translations are recent... more to uncover?

Some "convex" algorithms generalize well...

- \triangleright Helly \rightsquigarrow LP-type, Fractional Helly \rightsquigarrow property testing.
- ▷ complexity upper bounds rather than effective algorithms.

Effective use-cases? More applications?

Convexity **reveals** much more general properties.

- ▷ overlap properties of maps from simplicial complexes,
- ▷ properties of hypergraphs with certain forbidden patterns.
- ▷ consequences of properties of nerves,

Some translations are recent... more to uncover?

Some "convex" algorithms generalize well...

- \triangleright Helly \rightsquigarrow LP-type, Fractional Helly \rightsquigarrow property testing.
- ▷ complexity upper bounds rather than effective algorithms.

Effective use-cases? More applications?

More interplay of geometry, combinatorics, topology and algorithms?

IMRE BÁRÁNY AND GIL KALAI

ABSTRACT. In this paper we present a variety of problems in the interfa between combinatorics and geometry around the theorems of Helly, Rado Carathéodory, and Tverberg. Through these problems we describe the fasc nating area of Helly-type theorems and explain some of their main themes an

▷ Intermixing transversals of various dimensions.

Question. Suppose a family of red/blue convex sets in \mathbb{R}^d are such that any red/blue pair intersect. Can a positive fraction of one color be pierced by a single line?

[Martinez-Roldán-Rubin 2020]

▷ Intermixing transversals of various dimensions.

Question. Suppose a family of red/blue convex sets in \mathbb{R}^d are such that any red/blue pair intersect. Can a positive fraction of one color be pierced by a single line?

[Martinez-Roldán-Rubin 2020]

▷ A "Homological VC dimension?"

Conjecture. For any $\gamma > 0$, if \mathcal{F} is a set system in \mathbb{R}^d such that for any $m \ge 1$, for any intersection of m sets from \mathcal{F} , the Betti numbers sum to at most γm^{d+1} , then \mathcal{F} satisfies a fractional Helly theorem.

[Kalai-Meshulam 2004]

Thank you for your attention!