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The pitch...

> Can we generalize some of the benefits of convexity?

E.g. algorithmic.

> This talk: three methodologies to do so.

1. Mapping simplicial complexes into R?.
2. Patterns in hypergraphs.

3. Homological properties of nerve complexes.
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One benefit of convexity:

Helly's theorem...

. and why we keep generalizing it.
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Helly’s theorem. If a finite family of convex sets
in R has no point in common, some < d + 1 of |
them already have no point in common. |

S [Helly 1913]

= in any linear program,
= —> d constraints suffice.
/ d = # variables.

min o — I

st. a1 >0 and they are easy to find... o
[Clarkson 1995]
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1. Assign weights to the constraints, initialized to 1.
2. Solve the problem for a small random sample of constraints.
3. Check that solution against the remaining constraints.

4. |If some constraints are unsatisfied, double their weight and go back to 2.



Some subset B of < d constraints is involved in every doubling.
Double only if weight(unsatisfied)< 5-weight(all).
d2% < weight(B) < weight(all) < (1+ 4)"n

(Non-doubling rare for samples of size 4d?.)

1. Assign weights to the constraints, initialized to 1.
2. Solve the problem for a small random sample of constraints.
3. Check that solution against the remaining constraints.

4. |If some constraints are unsatisfied, double their weight and go back to 2.
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An example: sets of line transversals.
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This algorithm works "as soon as” there is a Helly-type theorem.
LP-type problems. [Matousek-Sharir-Welzl 1996]

~» When do empty intersections have small witnesses?

" Given a family F of <insert geometric shape> in R?,
if every <insert number> have a line transversal, they all do.”

] @

in the plane...
[Danzer 1957] [Griinbaum 1960] [Tverberg 1989
in R?... yes yes no
[Cheong-G-Holmsen-Petitjean 2005] [Santalé 1940] [Holmsen-Matousek 2003]

All very ad hoc... What about structural results?
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More benefits of convexity...

Combinatorial convexity
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Also providing an algorithm...

Question: is the value of a given LP
better than a given threshold 77

Repeat k times...

solve the problem for d + 1 random constraints.

if the solution is worse than 7, return NO.

Return YES.

> a NO is always correct,

> if the LP is e-far from 7 and £k = © (e_(d+1)),
then a YES is correct with probability > %

e-far from 7 = every point as good as T
violates at least an € fraction of the constraints.

Analysis

—

Fractional Helly

¢

Property tester

[Chakraborty et al. 2018]



> If p € conv(X) then p is in a simplex with vertices in X. [Carathéodory 1905]
> Any d + 2 points contain two disjoint parts with overlapping convex hulls. [Radon 1921]

> Any (r — 1)d + r points contain r disj. parts with overlap. convex hulls.  [Tverberg 1966]

> Any point that is in the convex hull of

P - Colorful Carathéodory (Barany 1976
d + 1 color classes is in a colorful simplex. y [Barany ]

> For convex sets of d + 1 colors, if each colorful subset

: L Colorful Helly [Lovasz 1976]
intersects, then one color class has a point in common.

> Any 2d + 2 points, 2 of each color, can be partitioned

: : : Colorful Radon [Lovasz 1992]
into colorful subsets with overlapping convex hulls.

> If a positive fraction of the (d + 1)-tuples of intersect,

.. , C [Katchalski-Liu 1979, Kalai 1985]
then a positive fraction has a point in common.
> For any point set, a fraction ¢4 of the simplices overlap. [Boros-Fiiredi, Barany 1984]

> For any p > q¢ > d + 1 there exists N (p, q,d) s.t. any family [Hadwiger-Debrunner 1957]
satisfying "among any p some q overlap” has a hitting set of size N. [Alon-Kleitman 1992]



So how to generalize any of these beyond convexity?
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Methodology #1

Convexity and maps of

simplicial complexes into R
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Convexity ~ linear maps from simplicial complexes into R,

> JC a set of geometric simplices in RP.

> |IC| = Ugexco its geometric realization. : ;

Analogue of graph planarity:

> For which d does || embed into R%?
> No Wagner-Fary theorem: L # PL # top.

> ASF) £310p RZF. [Van Kampen 1932, Flores 1933]

AY) = the (< d)-dimensional faces of the n-dimensional simplex.

Back to combinatorial convexity...

> Any d + 2 points can be divided into 2 parts with overlapping convex hulls.

~ For any dinear map |Afﬁ21| — R9, two disjoint faces have overlapping images.

0o A\
00’{‘“\)0
C

[Bajmdczy-Barany 1979]
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> define — —
(p, q) = ||§83—§§3§n

where Y excludes the (p, q) for which we allow f(p) = f(q),

> equip Y with the Zy-action generated by — : (p,q) — (q,p),

2

> If (Y, —) ~ (S°®, —) with e > d apply Borsuk-Ulam.

There does not exist a continuous antipodal map S* — SF—1. g2
Other spaces, other actions (Dold’s theorem, ...).

For any linear map f : \A.gd)| — RY, some constant
proportion of the faces have overlapping images.

"Linear” can be dropped. [Gromov 2010].
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> Any d + 2 points contain two disjoint parts with overlapping convex hulls. [Radon 1921]

> Any (r — 1)d + r points contain r disj. parts with overlap. convex hulls.  [Tverberg 1966]

Do some generalizations imply others?

> For any point set, a fraction ¢4 of the simplices overlap. [Boros-Fiiredi, Barany 1984]
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Methodology #2

Convexity and

patterns in hypergraphs



> For convex sets of d + 1 colors, if each colorful subset

: L Colorful Helly [Lovasz 1976]
intersects, then one color class has a point in common.
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Colorful Helly. For convex sets of d + 1 colors, if each colorful
subset intersects, then one color class has a point in common.

A family F of convex sets ~» a sequence of hypergraphs H z(m)

vertex set =JF, edges = intersecting m-tuples.

> Colorful Helly = a
forbidden pattern for Hr(m).

> m sets of m vertices.
> Every transversal is an edge.

> no color class is an edge

Fractional Helly holds whenever this pattern is forbidden.

Positive edge density = linear-size clique. [Holmsen 2019]
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Many (d + 1)-tuples intersect
= many intersect
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[Holmsen-Lee 2019]

Radon
Any d + 2 points split
into 2 inseparable parts

Colorful Helly

colorful m-tuples intersect
= some color class intersect

[Moran-Yehudahoff 2018]

Ve > 0,VudNs.t.|N| < f(e)
and N meets all e-large sets.

Weak e-nets

[Holmsen 2019]

Fractional Helly
Many (d + 1)-tuples intersect
= many intersect

Helly
All (d 4 1)-tuples intersect
= all intersect.

[Alon-Kalai-Matousek-
Meshulam 2002]



[Holmsen-Lee 2019]

Radon
Any d + 2 points split
into 2 inseparable parts

Colorful Helly

= some color class inte

colorful m-tuples intersect

[Moran-Yehudahoff 2018]

rsect

Ve > 0,
and N meets all e-large sets.

Weak c-nets
VudNs.t.|N| < f(e)

[Holmsen 2019]

Fractional Helly
Many (d + 1)-tuples intersect
= many intersect

Helly
All (d 4 1)-tuples intersect
= all intersect.

[Alon-Kalai-Matousek-
Meshulam 2002]

Among any p some ¢ intersect
= piercing number is bounded.

(p,q)—theorem
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Methodology #3

Convexity and

homological properties of nerves



Nerve N (F) ~ intersection hypergraph of F
N(F)={G:GCFand Naca A+ 0},

‘ N(F) ={0,{1},{2},{3}}
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Nerve NV (F) ~ intersection hypergraph of F
N(F)={G:G C F and Ngec A # 0}.

N(F) ={0, {1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}

> Nerves are abstract simplicial complexes.

Theorem. If all subfamilies of F have empty or
contractible intersections then N (F) has the [Borsuk 1948]
homotopy type of UF.

> Reconstruction methods.

Delaunay = N (Voronoi regions)

https://doc.cgal.org/latest/Manual/tuto reconstruction.html




Nerve NV (F) ~ intersection hypergraph of F
N(F)={G:G C F and Ngec A # 0}.

Theorem. If all subfamilies of F have empty or
contractible intersections then A/ (F) has the
homotopy type of UF.

> Reconstruction methods.

> Topological data analysis.

B =
N
e
&

https://doc.cgal.org/latest/Manual/tuto reconstruction.html

Delaunay = N (Voronoi regions)

N(F) ={0, {1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}

> Nerves are abstract simplicial complexes.

[Borsuk 1948]

Y
' Wity 7
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d-collapsible complexes C d-Leray complexes.

Induced subcomplexes have trivial homology in all dimensions > d.

Fractional Helly holds for set systems
with d-collapsible nerves. [Kalai 1985, Stanley 1975]

[Tancer 2009]



Nerves of convex C d-collapsible complexes. Y2 o

Filter the nerve by sweeping R® by a hyperplane. P
Elementary change: deletion of an interval. '
Helly = lower-end has dimension < d.

[Wegner 1975] R \

Fractional Helly holds for set systems with d-collapsible nerves.
Many (d + 1)-tuples intersect = many intersect.  [Kalai 1985]

d-collapsible complexes C d-Leray complexes.

Induced subcomplexes have trivial homology in all dimensions > d.

Fractional Helly holds for set systems
with d-collapsible nerves. [Kalai 1985, Stanley 1975]

[Tancer 2009]
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Radon

[Holmsen-Lee 2019] ,Any d_+ 2 el el [Moran-Yehudahoff 2018]
into 2 inseparable parts

Colorful Helly Weak e-nets
colorful m-tuples intersect Ve > 0,VuaNs.t.|N| < f(e)
= some color class intersect and N meets all e-large sets.

[Holmsen 2019] \ Fractional Helly j [Alon-Kalai-Matougek-
Many (d + 1)-tuples intersect Meshulam 2002]

= many intersect

Helly (p,q)—theorem
All (d + 1)-tuples intersect Among any p some ¢ intersect
= all intersect. ‘@6&\ /4/00 = piercing number is bounded.

\\,e,\\\ /e,'t/beb ;
99 9/

Set systems whose nerve is d-Leray satisfy...
> colorful Helly for every m > d + 1,

> for every p > q > d + 1 there exists N(p, q,d) s.t.
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What set systems have nerves of bounded Leray numbers?

> Every family F s.t. for every G C F NgeqA has < b
connected components, each one acyclic.

[Kalai-Meshulam 2007][Colin de Verdiere-Ginot-G 2014]

Introduce nerves with multiplicities.

o <=
W om =<

The nerve theorem generalizes... Leray number of projection can be analyzed.

Open: Is it enough if every X € F™' has bounded 5y, 51, ...7




L N 00 L N oo o000 O O

Zooming in...

Sharp conditions

using some Ramsey theory
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A classic: Helly from Radon...

> Consider 4 convex sets Ay, Ay, A3, Ay.
> Suppose any 3 intersect: p; € M A;.
> Pick a Radon partition of {p1,p2, p3,ps}

> [ is in AlmAgmAgﬂA4.

> Consider 5 convex sets Ay, Ay, A3, Ay, As...

Topological Helly from topological Radon.

@ > Consider a good cover of 4 sets Aq, Ay, A3, Ay.
o > Suppose any 3 intersect: p; € N,z A;.
> Build a continuous map fitting the intersections...

> ... some non-trivial intersection must occur.



ldea: Analyze intersection patterns of topological set systems
by drawing non-embeddable complexes inside!
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Convexity ~~ bounded topological complexity.

> set system F — its closure F©' = {NscqA: G C F}

> Helly when each X € 7™ has 8y < b and
B1=02=...= PBrq/21-1 = 0.

[Matousek 1996]

Suppose F has empty intersection and is minimal for that. (d=2)
Fix a point in the N of each subset of size |F| —1 .

For every family G C F of size |F| — (b+1).
Two points can be connected inside NG. Label the edge with F \ G.

Ramsey = if F is large enough, some Kx has disjoint edges with disjoint labels.
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Convexity ~~ bounded topological complexity.

> set system F — its closure F©' = {NscqA: G C F}

> Helly when each X € 7™ has 8y < b and
Br=02=-..=Bra/21-1 =0 [Matoutek 1996]

> Helly when every X € 7' has bounded 3y, 81, ..., Bra/21-1-
[G-Patak-Patakova-Tancer-Wagner 2015]

Try to continue: fill triangles within intersections.
Work with Z.s-homology.
Build homological minors. [Wagner 2011]

Use an homological relaxation of embeddings.
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> set system F — its closure F7' = {NacqAd: G C F}

> Helly when each X € F™ has 8y < b and
P =02 =...= Braj-1=0. [Matougek 1996]

> Helly when every X € 7' has bounded 3y, 81, ..., Bra/21-1-
[G-Patdk-Patakova-Tancer-Wagner 2015]

> Radon when every X € F"' has bounded 8y, 51, ..., Bri/21-1-
] [Patdkova 2020]
= Fractional Helly, (p,q), weak e-nets, ...

Open. Qualitatively sharp, bounds are horrible!

> The fractional Helly number is always d + 1. [G-Holmsen-Patakova 2021]



Wrapping up!
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Convexity reveals much more general properties.

> overlap properties of maps from simplicial complexes,
> properties of hypergraphs with certain forbidden patterns.

> consequences of properties of nerves,

Some translations are recent... more to uncover?

Some "convex’ algorithms generalize well...

> Helly ~~ LP-type, Fractional Helly ~~ property testing.

> complexity upper bounds rather than effective algorithms.

Effective use-cases? More applications?

More interplay of geometry, combinatorics,
topology and algorithms?



Many active research directions...
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Thank you for your attention!



