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The pitch...

▷ Can we generalize some of the benefits of convexity?

▷ This talk: three methodologies to do so.

1. Mapping simplicial complexes into Rd.

3. Homological properties of nerve complexes.

2. Patterns in hypergraphs.

E.g. algorithmic.



Helly’s theorem...

... and why we keep generalizing it.

One benefit of convexity:
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1. Assign weights to the constraints, initialized to 1.
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Helly’s theorem. If a finite family of convex sets

in Rd has no point in common, some ≤ d+ 1 of

[Helly 1913]

d constraints suffice.
⇒ in any linear program,

2. Solve the problem for a small random sample of constraints.

1. Assign weights to the constraints, initialized to 1.

3. Check that solution against the remaining constraints.

4. If some constraints are unsatisfied, double their weight and go back to 2.

them already have no point in common.

(Non-doubling rare for samples of size 4d2.)

Double only if weight(unsatisfied)< 1
2dweight(all).

d2
k
d ≤ weight(B) ≤ weight(all) ≤

(
1 + 1

2d

)k
n

Some subset B of ≤ d constraints is involved in every doubling.
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⇝ When do empty intersections have small witnesses?

X T (X) ⊂ G2,d+1 X T (X) ⊂ G2,d+1

For which X do the sets T (X) satisfy a Helly-type theorem?

An example: sets of line transversals.
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in the plane...

”Given a family F of <insert geometric shape> in Rd,
if every <insert number> have a line transversal, they all do.”



This algorithm works ”as soon as” there is a Helly-type theorem.

LP-type problems. [Matoušek-Sharir-Welzl 1996]

⇝ When do empty intersections have small witnesses?

[Danzer 1957] [Grünbaum 1960]
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This algorithm works ”as soon as” there is a Helly-type theorem.

LP-type problems. [Matoušek-Sharir-Welzl 1996]

⇝ When do empty intersections have small witnesses?

[Danzer 1957] [Grünbaum 1960]
in the plane...

[Tverberg 1989]

in Rd...
[Santaló 1940]

yes

[Holmsen-Matoušek 2003]

noyes

[Cheong-G-Holmsen-Petitjean 2005]

All very ad hoc... What about structural results?

”Given a family F of <insert geometric shape> in Rd,
if every <insert number> have a line transversal, they all do.”
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solve the problem for d+ 1 random constraints.

if the solution is worse than τ , return NO.

Repeat k times...

Return YES.

then a YES is correct with probability ≥ 2
3 .

▷ if the LP is ϵ-far from τ and k = Θ
(
ϵ−(d+1)

)
,

ϵ-far from τ = every point as good as τ
violates at least an ϵ fraction of the constraints.

Property tester

Fractional Helly

⇝

[Chakraborty et al. 2018]

}

Also providing an algorithm...

better than a given threshold τ?
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[Alon-Kleitman 1992]

Colorful Radon [Lovász 1992]
▷ Any 2d+ 2 points, 2 of each color, can be partitioned
into colorful subsets with overlapping convex hulls.

Colorful Helly [Lovász 1976]

Colorful Carathéodory [Bárány 1976]
▷ Any point that is in the convex hull of
d+ 1 color classes is in a colorful simplex.

[Katchalski-Liu 1979, Kalai 1985]
▷ If a positive fraction of the (d+ 1)-tuples of intersect,
then a positive fraction has a point in common.

▷ For convex sets of d+ 1 colors, if each colorful subset
intersects, then one color class has a point in common.

So how to generalize any of these beyond convexity?
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▷ K a set of geometric simplices in RD.

▷ |K| = ∪σ∈Kσ its geometric realization.

▷ For which d does |K| embed into Rd?

Analogue of graph planarity:

▷ No Wagner-Fary theorem: L ̸= PL ̸= top.

▷ ∆
(2k)
2k+2 ̸↪→top R2k. [Van Kampen 1932, Flores 1933]

Back to combinatorial convexity...

▷ Any d+ 2 points can be divided into 2 parts with overlapping convex hulls.

∆
(δ)
n = the (≤ δ)-dimensional faces of the n-dimensional simplex.

≃ For any linear map |∆(d)
d+1| → Rd, two disjoint faces have overlapping images.

[Bajmóczy-Bárány 1979]con
tinu

ous
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▷ define f̂
def
=

{
Y ⊆ |K| × |K| → Sd−1 ⊂ Rd

(p, q) 7→ f(p)−f(q)
∥f(p)−f(q)∥

where Y excludes the (p, q) for which we allow f(p) = f(q),

▷ equip Y with the Z2-action generated by − : (p, q) 7→ (q, p),

▷ If (Y,−) ≃ (S•,−) with • ≥ d apply Borsuk-Ulam.
S1

S2There does not exist a continuous antipodal map Sk → Sk−1.



”For any map f : |K| → Rd, two disjoint faces have overlapping images.”Zoom:

Other spaces, other actions (Dold’s theorem, ...).

▷ define f̂
def
=

{
Y ⊆ |K| × |K| → Sd−1 ⊂ Rd

(p, q) 7→ f(p)−f(q)
∥f(p)−f(q)∥

where Y excludes the (p, q) for which we allow f(p) = f(q),

▷ equip Y with the Z2-action generated by − : (p, q) 7→ (q, p),

▷ If (Y,−) ≃ (S•,−) with • ≥ d apply Borsuk-Ulam.
S1

S2There does not exist a continuous antipodal map Sk → Sk−1.

For any linear map f : |∆(d)
n | → Rd, some constant

proportion of the faces have overlapping images.



”For any map f : |K| → Rd, two disjoint faces have overlapping images.”Zoom:

Other spaces, other actions (Dold’s theorem, ...).

▷ define f̂
def
=

{
Y ⊆ |K| × |K| → Sd−1 ⊂ Rd

(p, q) 7→ f(p)−f(q)
∥f(p)−f(q)∥

where Y excludes the (p, q) for which we allow f(p) = f(q),

▷ equip Y with the Z2-action generated by − : (p, q) 7→ (q, p),

▷ If (Y,−) ≃ (S•,−) with • ≥ d apply Borsuk-Ulam.
S1

S2There does not exist a continuous antipodal map Sk → Sk−1.

For any linear map f : |∆(d)
n | → Rd, some constant

proportion of the faces have overlapping images.

[Gromov 2010].”Linear” can be dropped.



▷ Any d+ 2 points contain two disjoint parts with overlapping convex hulls. [Radon 1921]

▷ Any (r − 1)d+ r points contain r disj. parts with overlap. convex hulls. [Tverberg 1966]

▷ If p ∈ conv(X) then p is in a simplex with vertices in X. [Carathéodory 1905]

▷ For any point set, a fraction cd of the simplices overlap. [Boros-Füredi, Bárány 1984]

▷ For any p ≥ q ≥ d+ 1 there exists N(p, q, d) s.t. any family
satisfying ”among any p some q overlap” has a hitting set of size N .

[Hadwiger-Debrunner 1957]

[Alon-Kleitman 1992]

Colorful Radon [Lovász 1992]
▷ Any 2d+ 2 points, 2 of each color, can be partitioned
into colorful subsets with overlapping convex hulls.

Colorful Helly [Lovász 1976]

Colorful Carathéodory [Bárány 1976]
▷ Any point that is in the convex hull of
d+ 1 color classes is in a colorful simplex.

[Katchalski-Liu 1979, Kalai 1985]
▷ If a positive fraction of the (d+ 1)-tuples of intersect,
then a positive fraction has a point in common.

▷ For convex sets of d+ 1 colors, if each colorful subset
intersects, then one color class has a point in common.
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Do some generalizations imply others?
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Meshulam 2002]



Radon
Any d+ 2 points split
into 2 inseparable parts

Colorful Helly
colorful m-tuples intersect
⇒ some color class intersect

Fractional Helly
Many (d+ 1)-tuples intersect

⇒ many intersect

Weak ϵ-nets
∀ϵ > 0,∀µ∃Ns.t.|N | ≤ f(ϵ)
and N meets all ϵ-large sets.

[Holmsen 2019]

[Moran-Yehudahoff 2018]

[Alon-Kalai-Matoušek-
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Delaunay = N (Voronoi regions)

▷ Reconstruction methods.

▷ Topological data analysis.

[Borsuk 1948]

Theorem. If all subfamilies of F have empty or
contractible intersections then N (F) has the
homotopy type of ∪F .
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▷ colorful Helly for every m ≥ d+ 1,

▷ for every p ≥ q ≥ d+ 1 there exists N(p, q, d) s.t. ...
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What set systems have nerves of bounded Leray numbers?

▷ Every family F s.t. for every G ⊆ F ∩A∈GA has ≤ b
connected components, each one acyclic.

[Kalai-Meshulam 2007][Colin de Verdière-Ginot-G 2014]

Introduce nerves with multiplicities.

The nerve theorem generalizes... Leray number of projection can be analyzed.

Open: Is it enough if every X ∈ F∩ has bounded β0, β1, . . . ?



Zooming in...

Sharp conditions

using some Ramsey theory

• • • • • • • • • • • • • ◦ ◦
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A classic: Helly from Radon...

(d = 2)

▷ Consider 4 convex sets A1, A2, A3, A4.

▷ Suppose any 3 intersect: pi ∈ ∩j ̸=iAj .

▷ Pick a Radon partition of {p1, p2, p3, p4}
▷ □ is in A1 ∩A2 ∩A3 ∩A4.

▷ Consider 5 convex sets A1, A2, A3, A4, A5...

Topological Helly from topological Radon.

▷ Consider a good cover of 4 sets A1, A2, A3, A4.

▷ Suppose any 3 intersect: pi ∈ ∩j ̸=iAj .

▷ Build a continuous map fitting the intersections...

▷ ... some non-trivial intersection must occur.

Idea: Analyze intersection patterns of topological set systems

by drawing non-embeddable complexes inside!
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For every family G ⊂ F of size |F| − (b+ 1).

Fix a point in the ∩ of each subset of size |F| − 1 .

Two points can be connected inside ∩G. Label the edge with F \G.

Ramsey ⇒ if F is large enough, some K5 has disjoint edges with disjoint labels.

(d = 2)
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[Wagner 2011]

[G-Paták-Patáková-Tancer-Wagner 2015]

Convexity ⇝ bounded topological complexity.

▷ set system F → its closure F∩ def
= {∩A∈GA : G ⊆ F}

▷ Helly when each X ∈ F∩ has β0 ≤ b and
β1 = β2 = . . . = β⌈d/2⌉−1 = 0.

▷ Helly when every X ∈ F∩ has bounded β0, β1, . . . , β⌈d/2⌉−1.

Try to continue: fill triangles within intersections.

Work with Z2-homology.

Build homological minors.

Use an homological relaxation of embeddings.
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▷ set system F → its closure F∩ def
= {∩A∈GA : G ⊆ F}

▷ Helly when each X ∈ F∩ has β0 ≤ b and
β1 = β2 = . . . = β⌈d/2⌉−1 = 0.

▷ Helly when every X ∈ F∩ has bounded β0, β1, . . . , β⌈d/2⌉−1.

⇒ Fractional Helly, (p,q), weak ϵ-nets, . . .

▷ The fractional Helly number is always d+ 1. [G-Holmsen-Patáková 2021]

▷ Radon when every X ∈ F∩ has bounded β0, β1, . . . , β⌈d/2⌉−1.
[Patáková 2020]

Open. Qualitatively sharp, bounds are horrible!
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More interplay of geometry, combinatorics,
topology and algorithms?

Some ”convex” algorithms generalize well...
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Many active research directions...

▷ Intermixing transversals of various dimensions.

Question. Suppose a family of red/blue convex sets in Rd are such
that any red/blue pair intersect. Can a positive fraction of one color
be pierced by a single line?

▷ A ”Homological VC dimension?”

Conjecture. For any γ > 0, if F is a set system in Rd such that for
any m ≥ 1, for any intersection of m sets from F , the Betti numbers
sum to at most γmd+1, then F satisfies a fractional Helly theorem.

[Martinez-Roldán-Rubin 2020]

[Kalai-Meshulam 2004]



Thank you for your attention!


