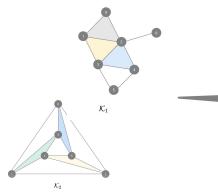
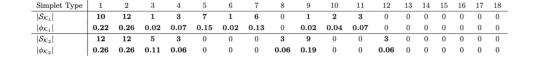
Approximating Simplet Frequency Distribution for Simplicial Complexes

Hamid Beigy¹, Mohammad Mahini², Salman Qadami³, and Morteza Saghafian⁴

- 1 Sharif University of Technology beigy@sharif.edu
- 2 Sharif University of Technology m_mahini@ce.sharif.edu
- 3 Amirkabir University of Technology salmanqadami@gmail.com
- 4 Institute of Science and Technology Austria morteza.saghafian@ist.ac.at

Approximating Simplet Frequency Distribution for Simplicial Complexes





Creating a vector from a Simplicial Complex (SC) Based on its Small Building Blocks (Simplets)

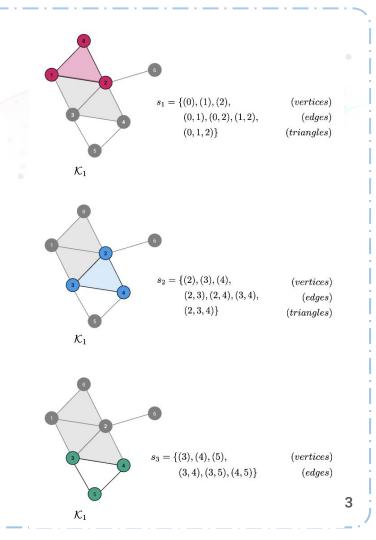
That can be helpful for ML applications such as classification.

Thursday 12:15-12:30

Hamid Beigy, Mohammad Mahini, Salman Qadami, Morteza Saghafian Presenting by Mohammad Mahini

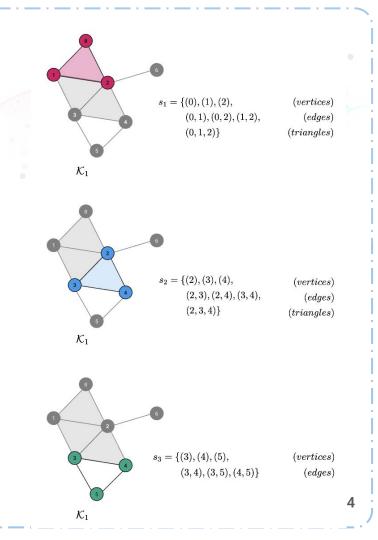
Simplet

- Simplets are small induced connected sub-complexes of a massive complex that appear at any frequency.
 - Every simplet can be identified by its vertices.
 - Simplet Types are isomorphic classes of simplets.
 - We denoted $\mathcal{S}_{\mathcal{K}}(i)$ as a set of all simplets of type i in \mathcal{K} .



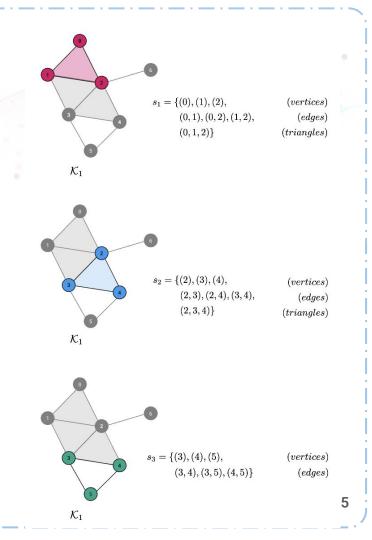
Simplet

- Simplets are small induced connected sub-complexes of a massive complex that appear at any frequency.
- Every simplet can be identified by its vertices.
- Simplet Types are isomorphic classes of simplets.
- We denoted $\mathcal{S}_{\mathcal{K}}(i)$ as a set of all simplets of type i in \mathcal{K} .



Simplet

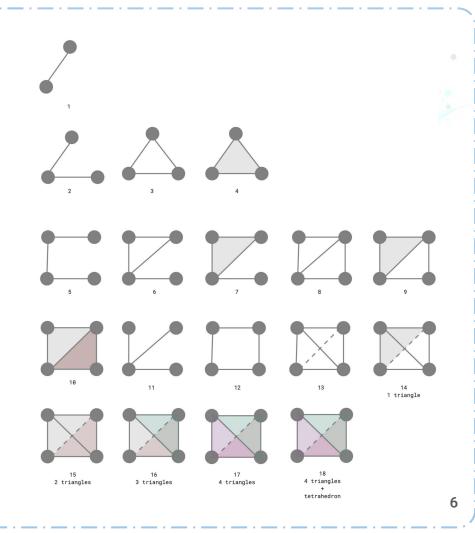
- Simplets are small induced connected sub-complexes of a massive complex that appear at any frequency.
- Every simplet can be identified by its vertices.
- Simplet Types are isomorphic classes of simplets.
- We denoted $S_{\mathcal{K}}(i)$ as a set of all simplets of type i in \mathcal{K} .



Simplet Types

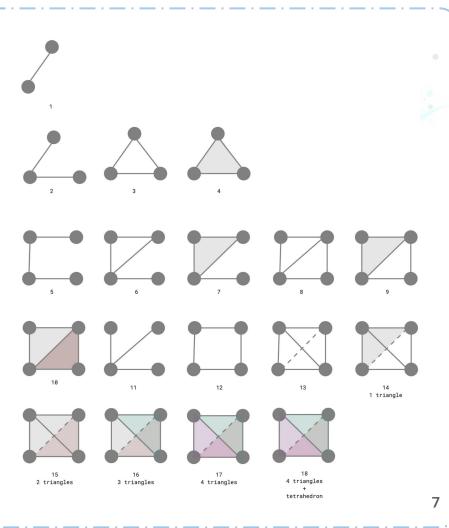
- Simplet types with two to four vertices

Example:

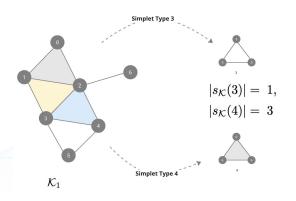


Simplet Types

- Simplet types with two to four vertices



- Example:



Simplet Frequency Distribution (SFD) Vector

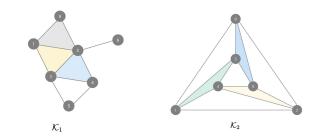
- The relative frequencies of various simplet types in \mathcal{K}
- The frequency denoted by $\phi_{\mathcal{K}}(i)$ is obtained by dividing $|\mathcal{S}_{\mathcal{K}}(i)|$ by $\sum_{j=1}^{N_m} |\mathcal{S}_{\mathcal{K}}(j)|$
- The vector $(\phi_{\mathcal{K}}(1), \dots, \phi_{\mathcal{K}}(N_m))$ is called the SFD vector of the \mathcal{K}

- Example:

Simplet Frequency Distribution (SFD) Vector

- The relative frequencies of various simplet types in \mathcal{K}
- The frequency denoted by $\phi_{\mathcal{K}}(i)$ is obtained by dividing $|\mathcal{S}_{\mathcal{K}}(i)|$ by $\sum_{j=1}^{N_m} |\mathcal{S}_{\mathcal{K}}(j)|$
- The vector $(\phi_{\mathcal{K}}(1), \dots, \phi_{\mathcal{K}}(N_m))$ is called the SFD vector of the \mathcal{K}

- Example:



Simplet Type	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$ \mathcal{S}_{\mathcal{K}_1} $	10	12	1	3	7	1	6	0	1	2	3	0	0	0	0	0	0	0
$ \phi_{\mathcal{K}_1} $	0.22	0.26	0.02	0.07	0.15	0.02	0.13	0	0.02	0.04	0.07	0	0	0	0	0	0	0
$ \mathcal{S}_{\mathcal{K}_2} $	12	12	5	3	0	0	0	3	9	0	0	3	0	0	0	0	0	0
$ \phi_{\mathcal{K}_2} $	0.26	0.26	0.11	0.06	0	0	0	0.06	0.19	0	0	0.06	0	0	0	0	0	0

9

Calculating The SFD Vector for Large SCs

- Simple Simplet counting algorithm is in $\Theta(n^k)$

Our approach:

- Instead of calculating the exact counts we use an approximation on Simplet frequencies.
- Our algorithm is sublinear in the size of ${\cal K}$

Calculating The SFD Vector for Large SCs

- Simple Simplet counting algorithm is in $\Theta(n^k)$

Our approach:

- Instead of calculating the exact counts we use an <u>approximation on</u> <u>Simplet frequencies</u>.
- Our algorithm is sublinear for large and sparse SCs in the size of ${\cal K}$

Approximating The SFD Vector with Sampling

- 1. [Number of Samples] With a set of $\frac{c}{\epsilon^2}(1 + \ln \frac{1}{\delta})$ simplets sampled uniformly from SC \mathcal{K} , we can have an (ϵ, δ) -approximation on the SFD vector of \mathcal{K} .
- 2. [Sampling Algorithm] We propose a uniform sampling algorithm for simplets in a connected simplicial complex that find a sample with complexity in $O(log(n) \cdot \Delta \cdot diam(\mathcal{K})^2)$.

The time complexity of (ϵ, δ) -approximation of SFD vector of \mathcal{K} is $O(\frac{1}{\epsilon^2} \cdot (1 + \ln \frac{1}{\delta}) \cdot \log(n) \cdot \Delta \cdot diam(\mathcal{K})^2)$

Approximating The SFD Vector with Sampling

- 1. [Number of Samples] With a set of $\frac{c}{\epsilon^2}(1 + \ln \frac{1}{\delta})$ simplets sampled uniformly from SC \mathcal{K} , we can have an (ϵ, δ) -approximation on the SFD vector of \mathcal{K} .
- 2. [Sampling Algorithm] We propose a uniform sampling algorithm for simplets in a connected simplicial complex that find a sample with complexity in $O(log(n) \cdot \Delta \cdot diam(\mathcal{K})^2)$.

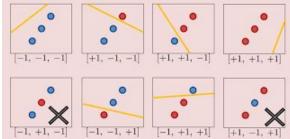
The <u>time complexity</u> of (ϵ, δ) -approximation of SFD vector of \mathcal{K} is $O(\frac{1}{\epsilon^2} \cdot (1 + \ln \frac{1}{\delta}) \cdot \log(n) \cdot \Delta \cdot diam(\mathcal{K})^2)$

[Number of Samples] With a set of $\frac{c}{\epsilon^2}(1 + \ln \frac{1}{\delta})$ simplets sampled uniformly from SC \mathcal{K} , we can have an (ϵ, δ) -approximation on the SFD vector of \mathcal{K} .

$\frac{c}{\epsilon^2} \left(1 + \ln \frac{1}{\delta}\right)$

[Number of Samples] With a set of $\frac{c}{\epsilon^2}(1 + \ln \frac{1}{\delta})$ simplets sampled uniformly from SC \mathcal{K} , we can have an (ϵ, δ) -approximation on the SFD vector of \mathcal{K} .

- We use <u>VC dimension</u> to prove this bound.
- For a domain D and collection \mathcal{R} of subsets of D, the VC dimension represents the maximum size of a set $X \subseteq D$ that can be shattered by \mathcal{R} which means $\{r \cap X | \forall r \in R\} = 2^{|X|}$.



[Number of Samples] With a set of $\frac{c}{\epsilon^2}(1 + \ln \frac{1}{\delta})$ simplets sampled uniformly from SC \mathcal{K} , we can have an (ϵ, δ) -approximation on the SFD vector of \mathcal{K} .

- [VC Dimension of Simplets] Let $\mathcal{R} = \{S_i \mid 1 \le i \le N_m\}$ be a family of all simplet sets where N_m is the number of simplet types with at most m vertices, and D is all simplets of SC \mathcal{K} , Then we have $VC(D, \mathcal{R}) = 1$.

Proof. Let $\{s_1, s_2\} \subseteq D$

- If s_1 and s_2 are belong to the same simplet type, $\{s_1\}$ can't be shattered.
- Otherwise, $\{s_1, s_2\}$ can't be shattered.

 $\frac{c}{\epsilon^2} \left(1 + \ln \frac{1}{\delta}\right)$

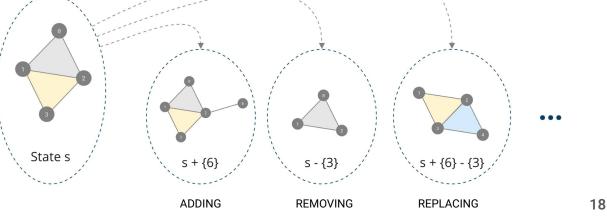
[Number of Samples] With a set of $\frac{c}{\epsilon^2}(1 + \ln \frac{1}{\delta})$ simplets sampled uniformly from SC \mathcal{K} , we can have an (ϵ, δ) -approximation on the SFD vector of \mathcal{K} .

- [VC Dimension of Simplets] Let $\mathcal{R} = \{S_i \mid 1 \le i \le N_m\}$ be a family of all simplet sets where N_m is the number of simplet types with at most m vertices, and D is all simplets of SC \mathcal{K} , Then we have $VC(D, \mathcal{R}) = 1$.

[Lemma] For a domain D and collection \mathcal{R} of subsets of D, with $VC(D,\mathcal{R}) \leq d$ and using $\frac{c}{\epsilon^2} \left(d + \ln \frac{1}{\delta} \right)$ uniform samples, we can have an (ϵ, δ) -approximation on distribution of all subsets in \mathcal{R} .

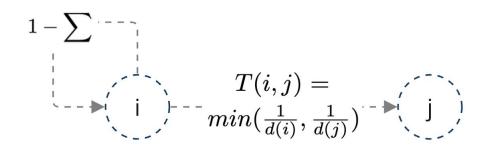
Sampling Algorithm

- A Monte-Carlo Markov-Chain algorithm.
- Random walk on a directed graph $\mathcal{P}_{\mathcal{K}}^m$ whose vertex set (states) is a set of all simplets in complex \mathcal{K}
- Out-neighbors of every state s



Sampling Algorithm

- T(i,j) is Transition probability matrix T on $\mathcal{P}_{\mathcal{K}}^{m}$



- The random walk is
 - Irreducible
 - Aperiodic
 - Converges to the uniform stationary distribution

Sampling Algorithm (Time Complexity)

- The mixing time of the markov chain on $\mathcal{P}_{\mathcal{K}}^m$ is in

$$O(\log(n) \cdot \Delta \cdot diam(\mathcal{K})^2)$$

Proof.

- $\quad \Delta(\mathcal{P}^m_{\mathcal{K}}) \in O(m^2 \cdot \Delta)$
- $diam(\mathcal{P}^m_{\mathcal{K}}) = diam(\mathcal{K}) + m$

(**m** is the maximum number of simplet vertices; and is constant in size of SC)

[Lemma] The mixing time t_{mix}^G of a random walk on graph G with n vertices is in

 $O(\log(n) \cdot \Delta(G) \cdot diam(G)^2)$

Approximating Simplet Frequency Distribution for Simplicial Complexes

Creating a vector from a Simplicial Complex (SC) using local structures (Simplets)

Uniform simplet sampling using random walk

 $O(\log(n) \cdot \Delta \cdot diam(\mathcal{K})^2)$

Sub-linear for Real World SCs

Upper-bound on

the # of samples

 $\frac{c}{\epsilon^2} \left(1 + \ln \frac{1}{\delta}\right)$

Hamid Beigy, Mohammad Mahini, Salman Qadami, Morteza Saghafian Presenting by Mohammad Mahini

 (ϵ,δ) - approximation

algorithm

GitHub

Future Directions

- 1. [The SFD vector for Simplexes] $S_{\mathcal{K}}(s,i)$ $SFD(s) = (\phi_{\mathcal{K}}(s,1), \dots, \phi_{\mathcal{K}}(s,N_m))$
- 2. [Centrality measure for simplexes]

 $\sum w_i \times \phi_{\mathcal{K}}(s,i)$

- 3. [Alpha Complexes] Filtering
- 4. [Simplicial Complex Similarity Metric]
- 5. [Classification Applications]

Thanks for your attention