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¢« e Creating a vector Simplicial Complex (SC)
Small Building Blocks (Simplets)
That can be helpful for ML applications such as classification.
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Simplet

- Simplets are small induced connected
sub-complexes of a massive complex
that appear at any frequency.
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Simplet

- Simplets are small induced connected
sub-complexes of a massive complex
that appear at any frequency.

- Every simplet can be identified by its
vertices.

- Simplet Types are isomorphic classes
of simplets.

-  We denoted Si(i) as a set of all
simplets of typeiin K.
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Simplet Types /

- Simplet types with two to { | A A
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Simplet Types /

- Simplet types with two to { | A A
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Simplet Frequency Distribution (SFD) Vector

-  The relative frequencies of various simplet types in IC

- The frequency denoted by ¢« (i) is obtained by dividing IS« (i)l by ;= 1Sc()
- The vector (¢c(1),...,¢x(Nn)) is called the SFD vector of the KC
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Calculating The SFD Vector for Large SCs

- Simple Simplet counting algorithm is in ©(n*)
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Calculating The SFD Vector for Large SCs

- Simple Simplet counting algorithm is in ©(n*)

Our approach:

- Instead of calculating the exact counts we use an approximation on

Simplet frequencies.
- Our algorithm is sublinear for large and sparse SCs in the size of KC
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Approximating The SFD Vector with Sampling

1. [Number of Samples]

2. [Sampling Algorithm]
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Approximating The SFD Vector with Sampling

1. [Number of Samples] With a set of 5(1+In3)simplets sampled uniformly
from SC IC, we can have an (,6)-approximation on the SFD vector of K.

2. [Sampling Algorithm] We propose a uniform sampling algorithm for
simplets in a connected simplicial complex that find a sample with
complexity in O(log(n) - A - diam(K)?) .

The time complexity of (¢,6)-approximation of SFD vector of K is

O(%-(1+1n 3)-log(n) -\A-’diam(lC)2)
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Number of Samples

[Number of Samples] With a set of $(1+1n}) simplets sampled uniformly
from SC KC, we can have an (¢, 6)-approximation on the SFD vector of K.

5(1+1n3)
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Number of Samples

$(1+1Ing)

€

(€,9)

-  We use VC dimension to prove this bound.

- For a domain D and collection R of subsets of D, the VC dimension

represents the maximum size of a set X C p that can be shattered by R

which means {r n X|vr € R} = 21XI.
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Number of Samples

$(1+1Ing)

€

(€,9)

- [VC Dimension of Simplets] Let R = {S; | 1 <i < N,,} be a family of all
simplet sets where n,, is the number of simplet types with at most m
vertices, and D is all simplets of SC K, Then we have vc(D,R)=1.

Proof. Let {s;,s,} € D
- If s;and sy are belong to the same simplet type, {s;} can't be shattered.

- Otherwise, {s1,s,} can't be shattered.
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& 1
Number of Samples €2 (1 + In 5)

$(1+Ing)
(€,6)
- [VC Dimension of Simplets] Let R = {S; | 1 <i < N,,} be a family of all

simplet sets where n,, is the number of simplet types with at most m
vertices, and D is all simplets of SC K, Then we have vc(D,R)=1.

[Lemmma] For a domain D and collection R of subsets of D,
with vc(D,R) <d and using & (s+u3) uniform samples, we can
have an (¢, 6)-approximation on distribution of all subsets in R.
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Sampling Algorithm

- A Monte-Carlo Markov-Chain algorithm.

- Random walk on a directed graph P whose vertex set (states) is a set
of all simplets in complex KC
- Out-neighbors of every state s e T
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Sampling Algorithm

- T(,4)is Transition probability matrix T on P¢

The random walk is

-3 -
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Irreducible
Aperiodic
Converges to the uniform stationary distribution
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Sampling Algorithm (Time Complexity)

- The mixing time of the markov chain on PZ is in

O(log(n) - A - diam(K)?)

Proof.
- A(PE) € O(m? - A)
= diam(Pg) = diam(K) + m

(m is the maximum number of simplet vertices; and is
constant in size of SC)

[Lemma] The mixing time t%’lmolf

a random walk on graph G with
n vertices is in

O(log(n)-A(G) - diam(G)?)
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for L
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Creating a vector from aSimplicial Complex (SC)
using local structures (Simplets)

Conclusion

. . Upper-bound on
(¢,0) - approximation 0 4 ot samples

algorithm —
$(1+1In3)

GitHub

&S

Uniform simplet
sampling using random
walk

O(log(n) - A - diam(K)?)

Sub-linear for Real World SCs

Hamid Beigy, Mohammad Mahini, Salman Qadami, Morteza Saghafian
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Future Directions

1.

ok w

[The SFD vector for Simplexes] gy (s, 5)
SFD(S) = (¢K(37 1)7 ceey ¢’C(37 Nm))

[Centrality measure for simplexes]

Z w; X ¢rc(s,1)

[Alpha Complexes] - Filtering
[Simplicial Complex Similarity Metric]
[Classification Applications]
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Thanks for your attention
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