40th European Workshop on Computational Geometry

 Coloring Problems on ARRANGEMENTS OF PSEUDOLINES

Sandro M. Roch

pseudoline arrangements

pseudoline arrangements

pseudoline arrangement:
continuous curves $f_{1}, \cdots, f_{n}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ with

$$
\lim _{t \rightarrow \infty}\left\|f_{i}(t)\right\|=\lim _{t \rightarrow-\infty}\left\|f_{i}(t)\right\|=\infty
$$

each two cross in exactly one point.

pseudoline arrangements

pseudoline arrangement:
continuous curves $f_{1}, \cdots, f_{n}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ with

$$
\lim _{t \rightarrow \infty}\left\|f_{i}(t)\right\|=\lim _{t \rightarrow-\infty}\left\|f_{i}(t)\right\|=\infty
$$

each two cross in exactly one point.

Ex: nonsimple arrangement:

Ex: simple arrangement:

pseudoline arrangements

face respecting colorings

Theorem I: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice on the boundary of any cell.

Example:

face respecting colorings

Theorem I: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice on the boundary of any cell.

Example:

face respecting colorings

Theorem I: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice on the boundary of any cell.

Example:

face respecting colorings

Proof idea: Greedily color the wiring diagram!

face respecting colorings

Proof idea: Greedily color the wiring diagram!

face respecting colorings

Proof idea: Greedily color the wiring diagram!

face respecting colorings

Proof idea: Greedily color the wiring diagram!

Claim: Every crossing has at most $n-1$ conflict ancestors.

line respecting colorings

Theorem II: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice along any pseudoline.

Example:

line respecting colorings

Theorem II: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice along any pseudoline.

Example:

1

line respecting colorings

proof:

line respecting colorings

proof:

Hypergraph $\mathscr{H}(\mathscr{A})$:

- vertices \sim pseudolines
- hyperedges \sim crossings

line respecting colorings

proof:

Hypergraph $\mathscr{H}(\mathscr{A})$:

- vertices \sim pseudolines
- hyperedges \sim crossings

Theorem (Kang, Kelly, Kühn, Methuku, Osthus, 2023)
Every simple hypergraph on n vertices can be edge-colored using n colors.

line respecting colorings

proof:

Hypergraph $\mathscr{H}(\mathscr{A})$:

- vertices \sim pseudolines
- hyperedges \sim crossings

direct proof?

deterministic algorithm?

Theorem (Kang, Kelly, K ${ }^{\text {P }}$ Methuku, Osthus, 2023) Every simple hypergraph $1 n$ vertices can be edge-colored using n colors.

line respecting colorings

Def:

$\operatorname{mx}(\mathscr{A}):=$ max. number of crossings per pseudoline in \mathscr{A}

Example:

$$
\operatorname{mx}(\mathscr{A})=4
$$

line respecting colorings

Def:

$\operatorname{mx}(\mathscr{A}):=$ max. number of crossings per pseudoline in \mathscr{A}
Fact: number of pseudolines $n \leq 845 \cdot \operatorname{mx}(\mathscr{A})$
(Dumitrescu, 2023)

Example:

$$
\operatorname{mx}(\mathscr{A})=4
$$

line respecting colorings

Def:

$\operatorname{mx}(\mathscr{A}):=$ max. number of crossings per pseudoline in \mathscr{A}
Fact: number of pseudolines $n \leq 845 \cdot \operatorname{mx}(\mathscr{A})$
(Dumitrescu, 2023)

Example:

$$
\begin{aligned}
& \operatorname{mx}(\mathscr{A})=4 \\
& \text { need } \operatorname{mx}(\mathscr{A})+3=7 \text { colors }
\end{aligned}
$$

line respecting colorings

Conjecture:

There exists some constant c so that one can color the crossings of every arrangement using $\mathrm{mx}(\mathscr{A})+c$ colors.

Example:

$$
\begin{aligned}
& \operatorname{mx}(\mathscr{A})=4 \\
& \text { need } \operatorname{mx}(\mathscr{A})+3=7 \text { colors }
\end{aligned}
$$

pseudoline coloring

Def: pseudoline coloring of arrangement \mathcal{A} :

- color the pseudolines of \mathscr{A}
- avoiding monochromatic crossings
$\chi_{p l}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:

$$
\chi_{p l}(\mathscr{A})=3
$$

pseudoline coloring

Def: pseudoline coloring of arrangement \mathcal{A} :

- color the pseudolines of \mathscr{A}
- avoiding monochromatic crossings
$\chi_{p l}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:

$$
\chi_{p l}(\mathscr{A})=3
$$

First observations:

- $2 \leq \chi_{p l}(\mathscr{A}) \leq n \quad($ unless $n<2)$

pseudoline coloring

Def: pseudoline coloring of arrangement \mathcal{A} :

- color the pseudolines of \mathscr{A}
- avoiding monochromatic crossings
$\chi_{p l}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:

$$
\chi_{p l}(\mathscr{A})=3
$$

First observations:

- $2 \leq \chi_{p l}(\mathscr{A}) \leq n \quad($ unless $n<2)$
- \mathscr{A} simple $\Leftrightarrow \chi_{p l}(\mathscr{A})=n$

pseudoline coloring

Theorem III:
Let \mathscr{A} be an arrangement of n pseudolines.
The pseudolines of \mathscr{A} can be colored using $\mathscr{O}(\sqrt{n})$ colors avoiding monochromatic crossings of degree at least 4 .

pseudoline coloring

Theorem III:

Let \mathscr{A} be an arrangement of n pseudolines.
The pseudolines of \mathscr{A} can be colored using $\mathscr{O}(\sqrt{n})$ colors avoiding monochromatic crossings of degree at least 4 .

Proposition:

Given an arrangement \mathscr{A} of n pseudolines, it is NP-hard to compute $\chi_{p l}(\mathscr{A})$.

Questions?

