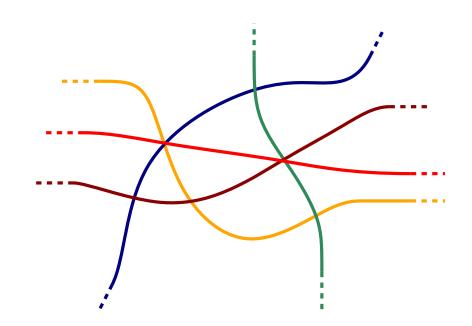


40th European Workshop on Computational Geometry COLORING PROBLEMS ON ARRANGEMENTS OF PSEUDOLINES

Sandro M. Roch

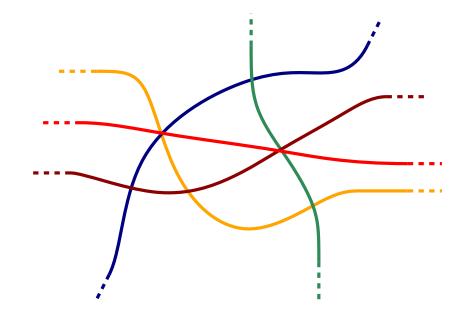
POYAA ΣΙΑΙΝΤΖΗ, CC BY-SA 4.0, via Wikimedia Commons



pseudoline arrangement: continuous curves $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}^2$ with

$$\lim_{t \to \infty} \|f_i(t)\| = \lim_{t \to -\infty} \|f_i(t)\| = \infty,$$

each two cross in exactly one point.

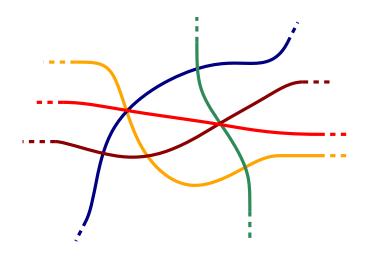


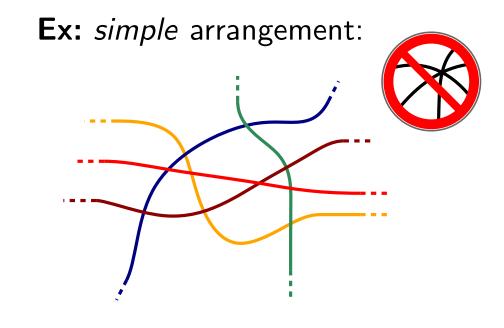
pseudoline arrangement: continuous curves $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}^2$ with

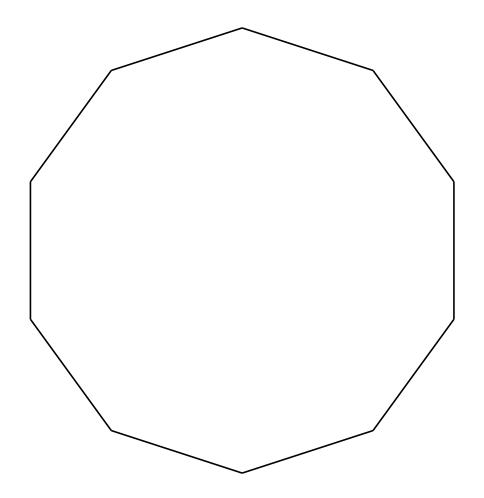
$$\lim_{t \to \infty} \|f_i(t)\| = \lim_{t \to -\infty} \|f_i(t)\| = \infty,$$

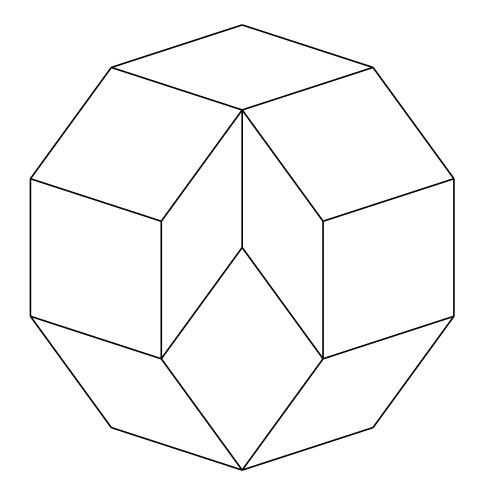
each two cross in exactly one point.

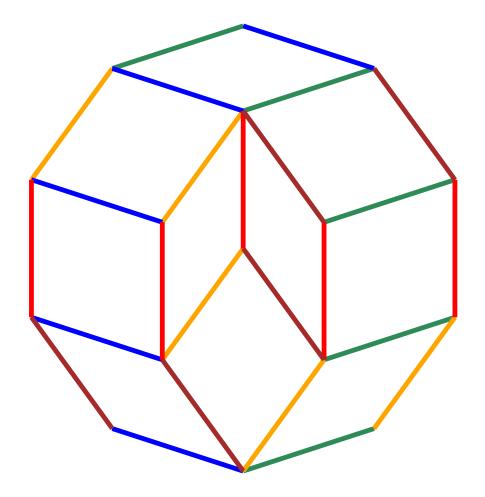
Ex: *nonsimple* arrangement:

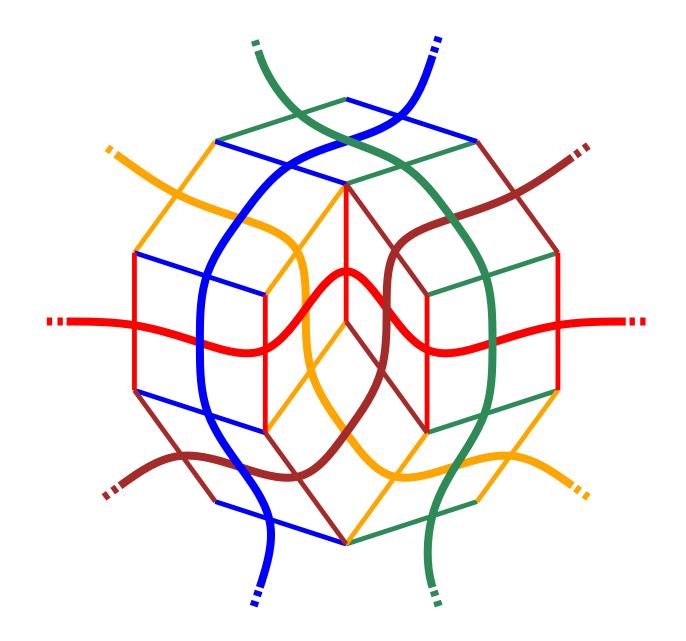


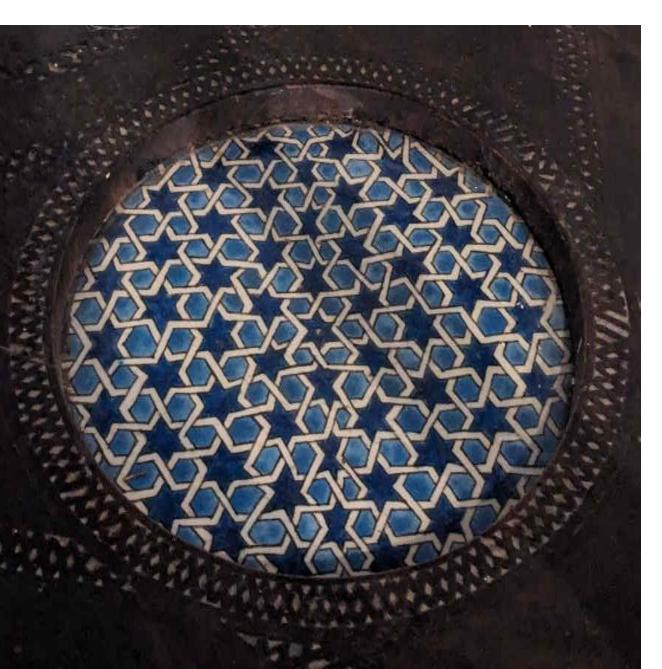


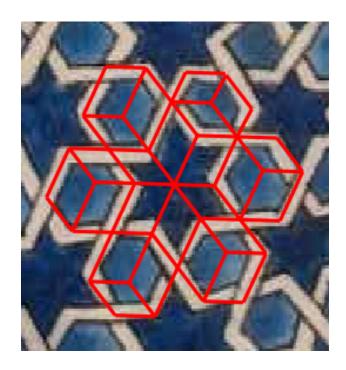




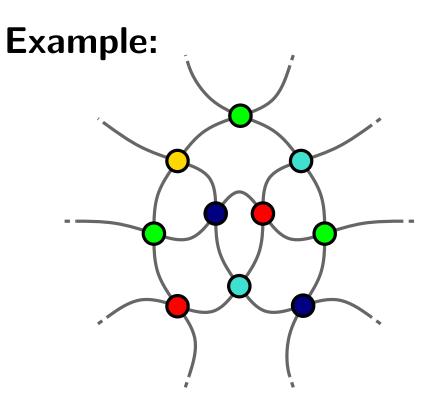




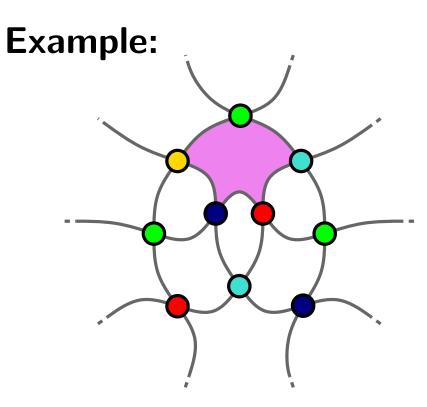




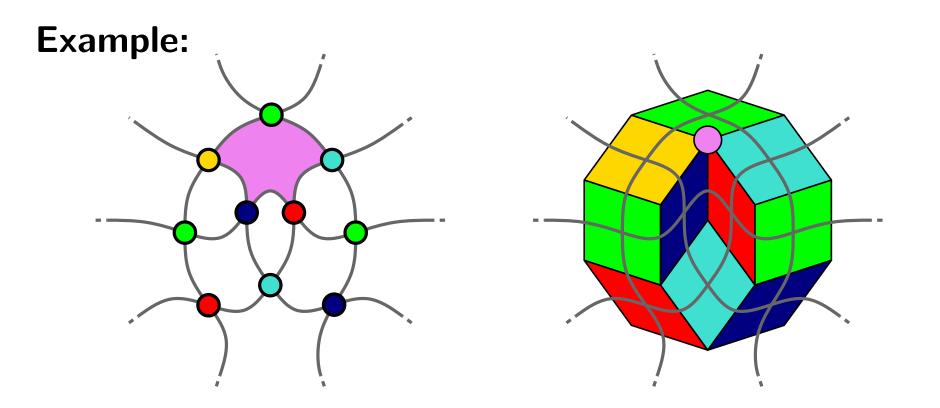
Theorem I: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **on the boundary of any cell**.



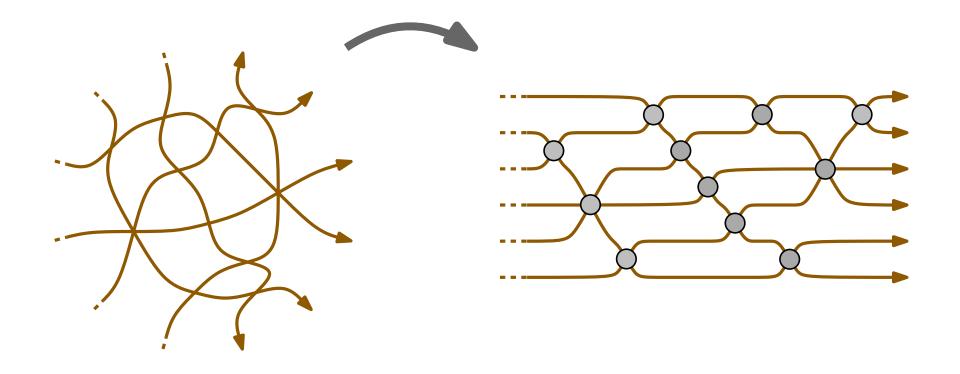
Theorem I: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **on the boundary of any cell**.



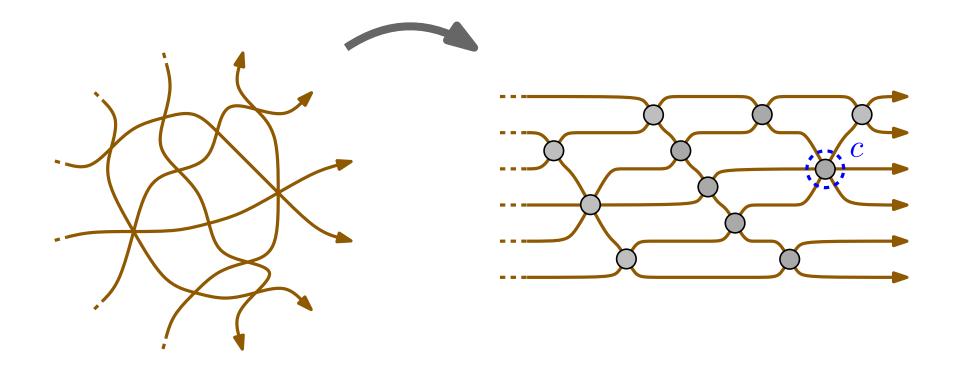
Theorem I: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **on the boundary of any cell**.



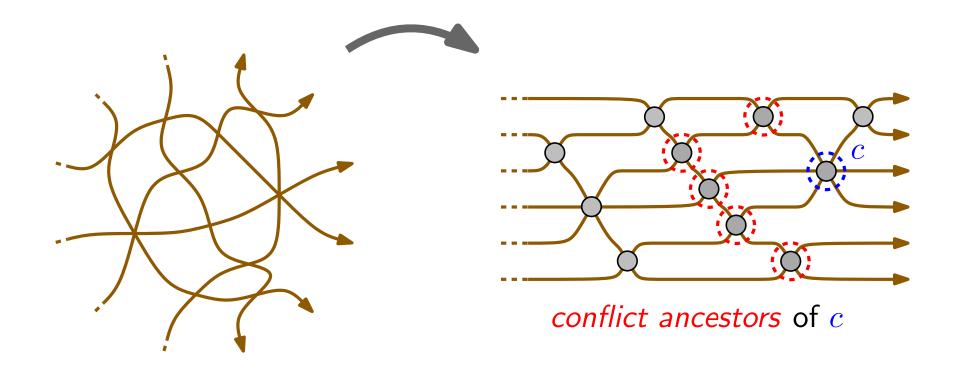
Proof idea: Greedily color the wiring diagram!



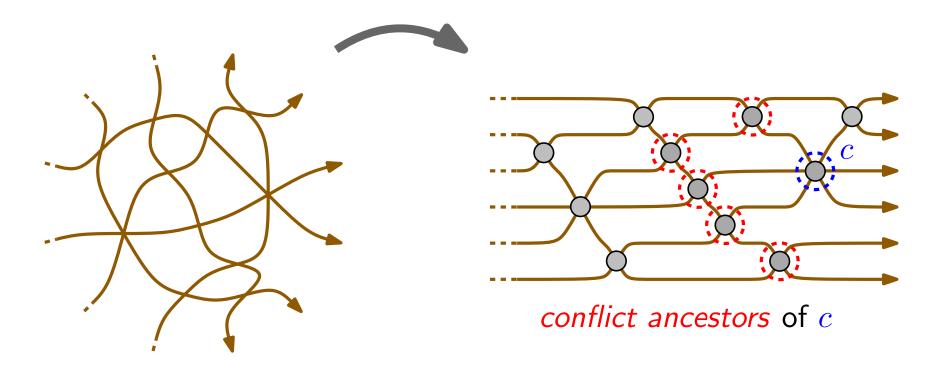
Proof idea: Greedily color the wiring diagram!



Proof idea: Greedily color the wiring diagram!



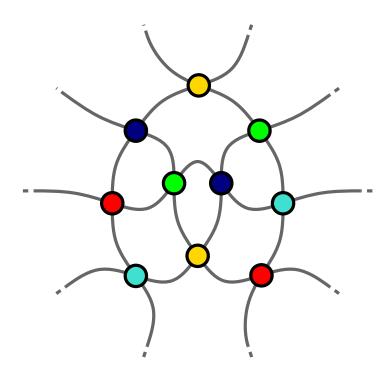
Proof idea: Greedily color the wiring diagram!



Claim: Every crossing has at most n-1 conflict ancestors.

Theorem II: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **along any pseudoline**.

Example:



Theorem II: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **along any pseudoline**.

Example: 2 5 3 3 5

proof:

proof:

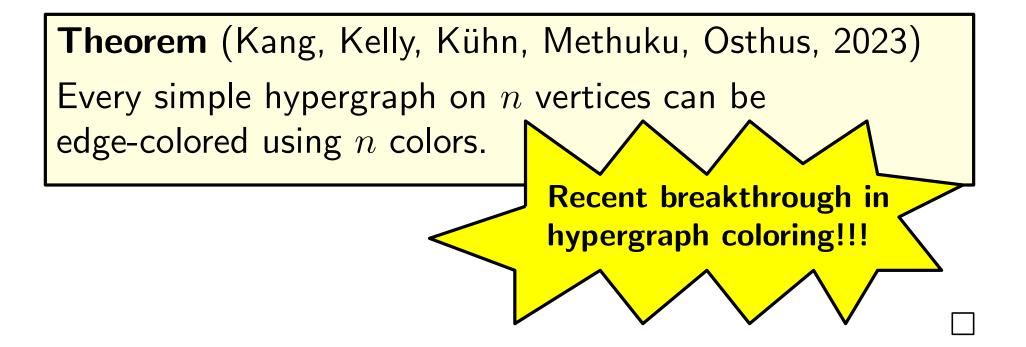
Hypergraph $\mathcal{H}(\mathcal{A})$:

- vertices \sim pseudolines
- hyperedges \sim crossings

proof:

Hypergraph $\mathcal{H}(\mathcal{A})$:

- vertices \sim pseudolines
- hyperedges \sim crossings



proof:

Hypergraph $\mathcal{H}(\mathcal{A})$:

- vertices \sim pseudolines
- hyperedges \sim crossings

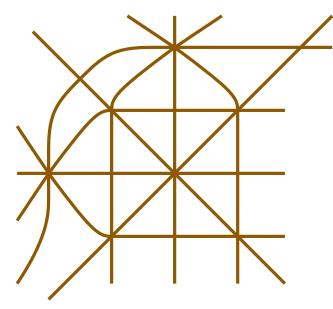
direct proof? deterministic algorithm?

Theorem (Kang, Kelly, Kⁿ Methuku, Osthus, 2023) Every simple hypergraph n vertices can be edge-colored using n colors.

Recent breakthrough in hypergraph coloring!!!

Def: $mx(\mathscr{A}) := max.$ number of crossings per pseudoline in \mathscr{A}

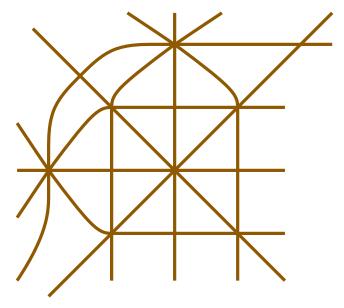
Example:



 $mx(\mathscr{A}) = 4$

Def: $mx(\mathscr{A}) := max.$ number of crossings per pseudoline in \mathscr{A} **Fact:** number of pseudolines $n \leq 845 \cdot mx(\mathscr{A})$ (Dumitrescu, 2023)

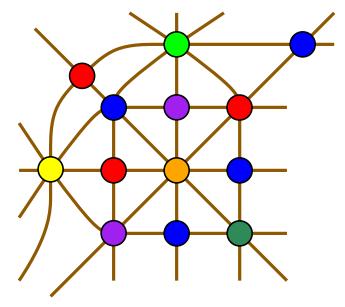
Example:



 $mx(\mathscr{A}) = 4$

Def: $mx(\mathscr{A}) := max.$ number of crossings per pseudoline in \mathscr{A} **Fact:** number of pseudolines $n \leq 845 \cdot mx(\mathscr{A})$ (Dumitrescu, 2023)

Example:

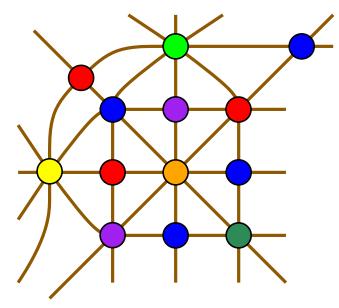


 $mx(\mathscr{A}) = 4$ need $mx(\mathscr{A}) + 3 = 7$ colors

Conjecture:

There exists some constant c so that one can color the crossings of every arrangement using $mx(\mathcal{A}) + c$ colors.

Example:



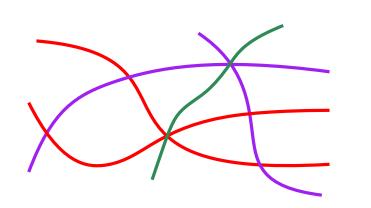
 $mx(\mathscr{A}) = 4$ need $mx(\mathscr{A}) + 3 = 7$ colors

Def: *pseudoline coloring* of arrangement *A*:

- ${\hfill \bullet}$ color the pseudolines of ${\mathscr A}$
- avoiding monochromatic crossings

 $\chi_{pl}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:



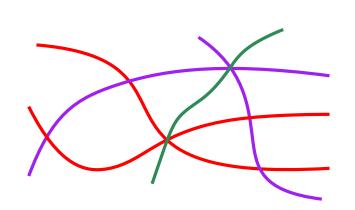
 $\chi_{pl}(\mathscr{A}) = 3$

Def: *pseudoline coloring* of arrangement \mathscr{A} :

- ${\hfill \bullet}$ color the pseudolines of ${\mathscr A}$
- avoiding monochromatic crossings

 $\chi_{pl}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:



 $\chi_{pl}(\mathscr{A}) = 3$

First observations:

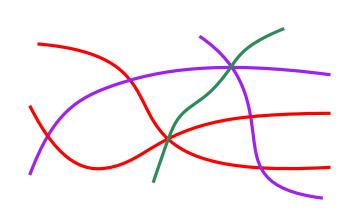
• $2 \le \chi_{pl}(\mathscr{A}) \le n$ (unless n < 2)

Def: *pseudoline coloring* of arrangement *A*:

- ${\ensuremath{\,\circ}}$ color the pseudolines of ${\ensuremath{\mathscr{A}}}$
- avoiding monochromatic crossings

 $\chi_{pl}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:



 $\chi_{pl}(\mathscr{A}) = 3$

First observations:

• $2 \le \chi_{pl}(\mathscr{A}) \le n$ (unless n < 2)

•
$$\mathscr{A}$$
 simple $\Leftrightarrow \chi_{pl}(\mathscr{A}) = n$

Theorem III:

Let \mathscr{A} be an arrangement of n pseudolines.

The pseudolines of \mathscr{A} can be colored using $\mathscr{O}(\sqrt{n})$ colors avoiding monochromatic crossings of degree at least 4.

Theorem III:

Let \mathscr{A} be an arrangement of n pseudolines.

The pseudolines of \mathscr{A} can be colored using $\mathscr{O}(\sqrt{n})$ colors avoiding monochromatic crossings of degree at least 4.

Proposition:

Given an arrangement \mathscr{A} of n pseudolines, it is NP-hard to compute $\chi_{pl}(\mathscr{A})$.

Questions?

