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Preliminaries

• We consider convex drawings D of Kn where vertices are represented by
distinct points in the plane in convex position and edges by line
segments connecting the images of its end-vertices.
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• We say that D is generic if exactly two edges cross in all crossings in D.

• We say that D is regular if vertices of D form regular n-gon.
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Faces in convex drawings of Kn

• In every drawing D of Kn, every bounded face F of D is convex polygon.

• The size of F is the number of vertices of F .

• A face of size k is called a k-face.

• How large faces have to appear in convex drawings of Kn with large n?.

• How about generic convex drawings? Or regular drawings?
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What is known?

• Surprisingly, not much!

• The total number of faces in a regular drawing of Kn was considered by
Harborth (1969) and Poonen and Rubinstein (1998), but these results
do not distinguish faces of different sizes.

• Shannon and Sloane (2021) computed some values a(k), the smallest n
such that regular drawing of Kn contains a k-face.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17

• Closely related is the work of Poonen and Rubinstein who gave a
formula for the number of crossings in regular drawings of Kn.

• It follows from their formula that all regular drawings of Kn with odd n
are generic. Also that, apart from the center, no crossing is the
intersection of more than 7 edges of a regular drawing of Kn for any n.



What is known?

• Surprisingly, not much!

• The total number of faces in a regular drawing of Kn was considered by
Harborth (1969) and Poonen and Rubinstein (1998), but these results
do not distinguish faces of different sizes.

• Shannon and Sloane (2021) computed some values a(k), the smallest n
such that regular drawing of Kn contains a k-face.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17

• Closely related is the work of Poonen and Rubinstein who gave a
formula for the number of crossings in regular drawings of Kn.

• It follows from their formula that all regular drawings of Kn with odd n
are generic. Also that, apart from the center, no crossing is the
intersection of more than 7 edges of a regular drawing of Kn for any n.



What is known?

• Surprisingly, not much!

• The total number of faces in a regular drawing of Kn was considered by
Harborth (1969) and Poonen and Rubinstein (1998), but these results
do not distinguish faces of different sizes.

• Shannon and Sloane (2021) computed some values a(k), the smallest n
such that regular drawing of Kn contains a k-face.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17

• Closely related is the work of Poonen and Rubinstein who gave a
formula for the number of crossings in regular drawings of Kn.

• It follows from their formula that all regular drawings of Kn with odd n
are generic. Also that, apart from the center, no crossing is the
intersection of more than 7 edges of a regular drawing of Kn for any n.



What is known?

• Surprisingly, not much!

• The total number of faces in a regular drawing of Kn was considered by
Harborth (1969) and Poonen and Rubinstein (1998), but these results
do not distinguish faces of different sizes.

• Shannon and Sloane (2021) computed some values a(k), the smallest n
such that regular drawing of Kn contains a k-face.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17

• Closely related is the work of Poonen and Rubinstein who gave a
formula for the number of crossings in regular drawings of Kn.

• It follows from their formula that all regular drawings of Kn with odd n
are generic. Also that, apart from the center, no crossing is the
intersection of more than 7 edges of a regular drawing of Kn for any n.



What is known?

• Surprisingly, not much!

• The total number of faces in a regular drawing of Kn was considered by
Harborth (1969) and Poonen and Rubinstein (1998), but these results
do not distinguish faces of different sizes.

• Shannon and Sloane (2021) computed some values a(k), the smallest n
such that regular drawing of Kn contains a k-face.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17

• Closely related is the work of Poonen and Rubinstein who gave a
formula for the number of crossings in regular drawings of Kn.

• It follows from their formula that all regular drawings of Kn with odd n
are generic. Also that, apart from the center, no crossing is the
intersection of more than 7 edges of a regular drawing of Kn for any n.



What is known?

• Surprisingly, not much!

• The total number of faces in a regular drawing of Kn was considered by
Harborth (1969) and Poonen and Rubinstein (1998), but these results
do not distinguish faces of different sizes.

• Shannon and Sloane (2021) computed some values a(k), the smallest n
such that regular drawing of Kn contains a k-face.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17

• Closely related is the work of Poonen and Rubinstein who gave a
formula for the number of crossings in regular drawings of Kn.

• It follows from their formula that all regular drawings of Kn with odd n
are generic. Also that, apart from the center, no crossing is the
intersection of more than 7 edges of a regular drawing of Kn for any n.



What is known?

• Surprisingly, not much!

• The total number of faces in a regular drawing of Kn was considered by
Harborth (1969) and Poonen and Rubinstein (1998), but these results
do not distinguish faces of different sizes.

• Shannon and Sloane (2021) computed some values a(k), the smallest n
such that regular drawing of Kn contains a k-face.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17

• Closely related is the work of Poonen and Rubinstein who gave a
formula for the number of crossings in regular drawings of Kn.

• It follows from their formula that all regular drawings of Kn with odd n
are generic.

Also that, apart from the center, no crossing is the
intersection of more than 7 edges of a regular drawing of Kn for any n.



What is known?

• Surprisingly, not much!

• The total number of faces in a regular drawing of Kn was considered by
Harborth (1969) and Poonen and Rubinstein (1998), but these results
do not distinguish faces of different sizes.

• Shannon and Sloane (2021) computed some values a(k), the smallest n
such that regular drawing of Kn contains a k-face.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17

• Closely related is the work of Poonen and Rubinstein who gave a
formula for the number of crossings in regular drawings of Kn.

• It follows from their formula that all regular drawings of Kn with odd n
are generic. Also that, apart from the center, no crossing is the
intersection of more than 7 edges of a regular drawing of Kn for any n.



Our results I

• Finding faces of size 3 or 4 in convex drawings of Kn is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of Kn.
Then, D contains a 3-face if and only if n ≥ 3.
Moreover, D contains a 4-face if and only if n ≥ 6.

• To find larger faces, we restrict ourselves to generic drawings of Kn.

Theorem 1

For every n ∈ N and every generic convex drawing D of Kn, the drawing D
contains a 5-face if and only if n ≥ 5.

• We do not know if every convex drawing of large Kn contains a 5-face.
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Our results II

• It is possible to avoid faces of size at least 6.

Theorem 2

For every n ∈ N, there is a generic convex drawing of Kn that does not
contain any k-face with k ≥ 6.

• This settles the question about the largest face we can always find in
generic convex drawings.

• The problem of finding 5-faces is difficult if we allow crossings of more
than two edges. We know that every convex drawing of K7 has a 5-face.
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Our results III

• However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For n ∈ N, a regular drawing of Kn contains a 5-face if and only if

n /∈ {1, 2, 3, 4, 6, 8, 12}.

• The proof is quite involved and uses results of Poonen and Rubinstein.



Our results III

• However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For n ∈ N, a regular drawing of Kn contains a 5-face if and only if

n /∈ {1, 2, 3, 4, 6, 8, 12}.

• The proof is quite involved and uses results of Poonen and Rubinstein.



Our results III

• However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For n ∈ N, a regular drawing of Kn contains a 5-face if and only if

n /∈ {1, 2, 3, 4, 6, 8, 12}.

• The proof is quite involved and uses results of Poonen and Rubinstein.



Our results III

• However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For n ∈ N, a regular drawing of Kn contains a 5-face if and only if

n /∈ {1, 2, 3, 4, 6, 8, 12}.

• The proof is quite involved and uses results of Poonen and Rubinstein.



Our results III

• However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For n ∈ N, a regular drawing of Kn contains a 5-face if and only if

n /∈ {1, 2, 3, 4, 6, 8, 12}.

• The proof is quite involved and uses results of Poonen and Rubinstein.



Our results III

• However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For n ∈ N, a regular drawing of Kn contains a 5-face if and only if

n /∈ {1, 2, 3, 4, 6, 8, 12}.

• The proof is quite involved and uses results of Poonen and Rubinstein.



Our results III

• However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For n ∈ N, a regular drawing of Kn contains a 5-face if and only if

n /∈ {1, 2, 3, 4, 6, 8, 12}.

• The proof is quite involved and uses results of Poonen and Rubinstein.



Open problems

• Seems to be a new unexplored area. ⇒ Plenty of open problems!

Problem

Is there n0 ∈ N such that for every n ≥ n0 every convex drawing of Kn

contains a 5-face?

Problem

Is it true that for every integer k ≥ 3 there is an integer n(k) such that
every regular drawing of Kn with n ≥ n(k) contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of Kn? What if
the drawing is generic or regular?

• You can consider problems about faces of size at least k and for
drawings that are not convex.

Thank you for your attention.



Open problems

• Seems to be a new unexplored area.

⇒ Plenty of open problems!

Problem

Is there n0 ∈ N such that for every n ≥ n0 every convex drawing of Kn

contains a 5-face?

Problem

Is it true that for every integer k ≥ 3 there is an integer n(k) such that
every regular drawing of Kn with n ≥ n(k) contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of Kn? What if
the drawing is generic or regular?

• You can consider problems about faces of size at least k and for
drawings that are not convex.

Thank you for your attention.



Open problems

• Seems to be a new unexplored area. ⇒ Plenty of open problems!

Problem

Is there n0 ∈ N such that for every n ≥ n0 every convex drawing of Kn

contains a 5-face?

Problem

Is it true that for every integer k ≥ 3 there is an integer n(k) such that
every regular drawing of Kn with n ≥ n(k) contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of Kn? What if
the drawing is generic or regular?

• You can consider problems about faces of size at least k and for
drawings that are not convex.

Thank you for your attention.



Open problems

• Seems to be a new unexplored area. ⇒ Plenty of open problems!

Problem

Is there n0 ∈ N such that for every n ≥ n0 every convex drawing of Kn

contains a 5-face?

Problem

Is it true that for every integer k ≥ 3 there is an integer n(k) such that
every regular drawing of Kn with n ≥ n(k) contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of Kn? What if
the drawing is generic or regular?

• You can consider problems about faces of size at least k and for
drawings that are not convex.

Thank you for your attention.



Open problems

• Seems to be a new unexplored area. ⇒ Plenty of open problems!

Problem

Is there n0 ∈ N such that for every n ≥ n0 every convex drawing of Kn

contains a 5-face?

Problem

Is it true that for every integer k ≥ 3 there is an integer n(k) such that
every regular drawing of Kn with n ≥ n(k) contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of Kn? What if
the drawing is generic or regular?

• You can consider problems about faces of size at least k and for
drawings that are not convex.

Thank you for your attention.



Open problems

• Seems to be a new unexplored area. ⇒ Plenty of open problems!

Problem

Is there n0 ∈ N such that for every n ≥ n0 every convex drawing of Kn

contains a 5-face?

Problem

Is it true that for every integer k ≥ 3 there is an integer n(k) such that
every regular drawing of Kn with n ≥ n(k) contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of Kn? What if
the drawing is generic or regular?

• You can consider problems about faces of size at least k and for
drawings that are not convex.

Thank you for your attention.



Open problems

• Seems to be a new unexplored area. ⇒ Plenty of open problems!

Problem

Is there n0 ∈ N such that for every n ≥ n0 every convex drawing of Kn

contains a 5-face?

Problem

Is it true that for every integer k ≥ 3 there is an integer n(k) such that
every regular drawing of Kn with n ≥ n(k) contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of Kn? What if
the drawing is generic or regular?

• You can consider problems about faces of size at least k

and for
drawings that are not convex.

Thank you for your attention.



Open problems

• Seems to be a new unexplored area. ⇒ Plenty of open problems!

Problem

Is there n0 ∈ N such that for every n ≥ n0 every convex drawing of Kn

contains a 5-face?

Problem

Is it true that for every integer k ≥ 3 there is an integer n(k) such that
every regular drawing of Kn with n ≥ n(k) contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of Kn? What if
the drawing is generic or regular?

• You can consider problems about faces of size at least k and for
drawings that are not convex.

Thank you for your attention.



Open problems

• Seems to be a new unexplored area. ⇒ Plenty of open problems!

Problem

Is there n0 ∈ N such that for every n ≥ n0 every convex drawing of Kn

contains a 5-face?

Problem

Is it true that for every integer k ≥ 3 there is an integer n(k) such that
every regular drawing of Kn with n ≥ n(k) contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of Kn? What if
the drawing is generic or regular?

• You can consider problems about faces of size at least k and for
drawings that are not convex.

Thank you for your attention.


