Faces in Rectilinear Drawings of Complete Graphs

Martin Balko, Anna Brötzner, Fabian Klute, and Josef Tkadlec

Preliminaries

Preliminaries

- We consider convex drawings D of K_{n} where vertices are represented by distinct points in the plane in convex position and edges by line segments connecting the images of its end-vertices.

Preliminaries

- We consider convex drawings D of K_{n} where vertices are represented by distinct points in the plane in convex position and edges by line segments connecting the images of its end-vertices.

Preliminaries

- We consider convex drawings D of K_{n} where vertices are represented by distinct points in the plane in convex position and edges by line segments connecting the images of its end-vertices.

- A crossing D is a common interior point of at least two edges of D.

Preliminaries

- We consider convex drawings D of K_{n} where vertices are represented by distinct points in the plane in convex position and edges by line segments connecting the images of its end-vertices.

- A crossing D is a common interior point of at least two edges of D.

Preliminaries

- We consider convex drawings D of K_{n} where vertices are represented by distinct points in the plane in convex position and edges by line segments connecting the images of its end-vertices.

- A crossing D is a common interior point of at least two edges of D.
- We say that D is generic if exactly two edges cross in all crossings in D.

Preliminaries

- We consider convex drawings D of K_{n} where vertices are represented by distinct points in the plane in convex position and edges by line segments connecting the images of its end-vertices.

- A crossing D is a common interior point of at least two edges of D.
- We say that D is generic if exactly two edges cross in all crossings in D.
- We say that D is regular if vertices of D form regular n-gon.

Preliminaries

- We consider convex drawings D of K_{n} where vertices are represented by distinct points in the plane in convex position and edges by line segments connecting the images of its end-vertices.

- A crossing D is a common interior point of at least two edges of D.
- We say that D is generic if exactly two edges cross in all crossings in D.
- We say that D is regular if vertices of D form regular n-gon.

Faces in convex drawings of K_{n}

Faces in convex drawings of K_{n}

- In every drawing D of K_{n}, every bounded face F of D is convex polygon.

Faces in convex drawings of K_{n}

- In every drawing D of K_{n}, every bounded face F of D is convex polygon.

Faces in convex drawings of K_{n}

- In every drawing D of K_{n}, every bounded face F of D is convex polygon.

Faces in convex drawings of K_{n}

- In every drawing D of K_{n}, every bounded face F of D is convex polygon.

- The size of F is the number of vertices of F.

Faces in convex drawings of K_{n}

- In every drawing D of K_{n}, every bounded face F of D is convex polygon.

- The size of F is the number of vertices of F.

Faces in convex drawings of K_{n}

- In every drawing D of K_{n}, every bounded face F of D is convex polygon.

- The size of F is the number of vertices of F.
- A face of size k is called a k-face.

Faces in convex drawings of K_{n}

- In every drawing D of K_{n}, every bounded face F of D is convex polygon.

- The size of F is the number of vertices of F.
- A face of size k is called a k-face.
- How large faces have to appear in convex drawings of K_{n} with large n ?.

Faces in convex drawings of K_{n}

- In every drawing D of K_{n}, every bounded face F of D is convex polygon.

- The size of F is the number of vertices of F.
- A face of size k is called a k-face.
- How large faces have to appear in convex drawings of K_{n} with large n ?.
- How about generic convex drawings? Or regular drawings?

How large faces can you find?

How large faces can you find?

How large faces can you find?

How large faces can you find?

How large faces can you find?

What is known?

What is known?

- Surprisingly, not much!

What is known?

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_{n} was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.

What is known?

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_{n} was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values $a(k)$, the smallest n such that regular drawing of K_{n} contains a k-face.

What is known?

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_{n} was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values $a(k)$, the smallest n such that regular drawing of K_{n} contains a k-face.

k	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$a(k)$	3	6	5	9	7	13	9	29	11	40	13	43	15	212	17

What is known?

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_{n} was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values $a(k)$, the smallest n such that regular drawing of K_{n} contains a k-face.

k	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$a(k)$	3	6	5	9	7	13	9	29	11	40	13	43	15	212	17

- Closely related is the work of Poonen and Rubinstein who gave a formula for the number of crossings in regular drawings of K_{n}.

What is known?

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_{n} was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values $a(k)$, the smallest n such that regular drawing of K_{n} contains a k-face.

k	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$a(k)$	3	6	5	9	7	13	9	29	11	40	13	43	15	212	17

- Closely related is the work of Poonen and Rubinstein who gave a formula for the number of crossings in regular drawings of K_{n}.
- It follows from their formula that all regular drawings of K_{n} with odd n are generic.

What is known?

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_{n} was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values $a(k)$, the smallest n such that regular drawing of K_{n} contains a k-face.

k	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$a(k)$	3	6	5	9	7	13	9	29	11	40	13	43	15	212	17

- Closely related is the work of Poonen and Rubinstein who gave a formula for the number of crossings in regular drawings of K_{n}.
- It follows from their formula that all regular drawings of K_{n} with odd n are generic. Also that, apart from the center, no crossing is the intersection of more than 7 edges of a regular drawing of K_{n} for any n.

Our results I

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4-face if and only if $n \geq 6$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4-face if and only if $n \geq 6$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4-face if and only if $n \geq 6$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4 -face if and only if $n \geq 6$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4 -face if and only if $n \geq 6$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4 -face if and only if $n \geq 6$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4 -face if and only if $n \geq 6$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4 -face if and only if $n \geq 6$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4-face if and only if $n \geq 6$.

- To find larger faces, we restrict ourselves to generic drawings of K_{n}.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$.
Moreover, D contains a 4-face if and only if $n \geq 6$.

- To find larger faces, we restrict ourselves to generic drawings of K_{n}.

Theorem 1

For every $n \in \mathbb{N}$ and every generic convex drawing D of K_{n}, the drawing D contains a 5-face if and only if $n \geq 5$.

Our results I

- Finding faces of size 3 or 4 in convex drawings of K_{n} is not difficult.

Proposition

Let n be a positive integer and D a convex drawing of K_{n}. Then, D contains a 3 -face if and only if $n \geq 3$. Moreover, D contains a 4-face if and only if $n \geq 6$.

- To find larger faces, we restrict ourselves to generic drawings of K_{n}.

Theorem 1

For every $n \in \mathbb{N}$ and every generic convex drawing D of K_{n}, the drawing D contains a 5 -face if and only if $n \geq 5$.

- We do not know if every convex drawing of large K_{n} contains a 5-face.

Our results II

Our results II

- It is possible to avoid faces of size at least 6 .

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2
For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2
For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2
For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2
For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2
For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2
For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2
For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2

For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

- This settles the question about the largest face we can always find in generic convex drawings.

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2

For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

- This settles the question about the largest face we can always find in generic convex drawings.
- The problem of finding 5-faces is difficult if we allow crossings of more than two edges.

Our results II

- It is possible to avoid faces of size at least 6 .

Theorem 2

For every $n \in \mathbb{N}$, there is a generic convex drawing of K_{n} that does not contain any k-face with $k \geq 6$.

- This settles the question about the largest face we can always find in generic convex drawings.
- The problem of finding 5 -faces is difficult if we allow crossings of more than two edges. We know that every convex drawing of K_{7} has a 5-face.

Our results III

Our results III

- However, we can solve the problem about 5-faces for regular drawings.

Our results III

- However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For $n \in \mathbb{N}$, a regular drawing of K_{n} contains a 5-face if and only if

$$
n \notin\{1,2,3,4,6,8,12\} .
$$

Our results III

- However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For $n \in \mathbb{N}$, a regular drawing of K_{n} contains a 5-face if and only if

$$
n \notin\{1,2,3,4,6,8,12\} .
$$

Our results III

- However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For $n \in \mathbb{N}$, a regular drawing of K_{n} contains a 5-face if and only if

$$
n \notin\{1,2,3,4,6,8,12\} .
$$

Our results III

- However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For $n \in \mathbb{N}$, a regular drawing of K_{n} contains a 5-face if and only if

$$
n \notin\{1,2,3,4,6,8,12\} .
$$

Our results III

- However, we can solve the problem about 5-faces for regular drawings.

Theorem 3

For $n \in \mathbb{N}$, a regular drawing of K_{n} contains a 5-face if and only if

$$
n \notin\{1,2,3,4,6,8,12\} .
$$

- The proof is quite involved and uses results of Poonen and Rubinstein.

Open problems

Open problems

- Seems to be a new unexplored area.

Open problems

- Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Open problems

- Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ every convex drawing of K_{n} contains a 5-face?

Open problems

- Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ every convex drawing of K_{n} contains a 5-face?

Problem

Is it true that for every integer $k \geq 3$ there is an integer $n(k)$ such that every regular drawing of K_{n} with $n \geq n(k)$ contains a k-face?

Open problems

- Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ every convex drawing of K_{n} contains a 5-face?

Problem

Is it true that for every integer $k \geq 3$ there is an integer $n(k)$ such that every regular drawing of K_{n} with $n \geq n(k)$ contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of K_{n} ? What if the drawing is generic or regular?

Open problems

- Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ every convex drawing of K_{n} contains a 5-face?

Problem

Is it true that for every integer $k \geq 3$ there is an integer $n(k)$ such that every regular drawing of K_{n} with $n \geq n(k)$ contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of K_{n} ? What if the drawing is generic or regular?

- You can consider problems about faces of size at least k

Open problems

- Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ every convex drawing of K_{n} contains a 5-face?

Problem

Is it true that for every integer $k \geq 3$ there is an integer $n(k)$ such that every regular drawing of K_{n} with $n \geq n(k)$ contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of K_{n} ? What if the drawing is generic or regular?

- You can consider problems about faces of size at least k and for drawings that are not convex.

Open problems

- Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ every convex drawing of K_{n} contains a 5-face?

Problem

Is it true that for every integer $k \geq 3$ there is an integer $n(k)$ such that every regular drawing of K_{n} with $n \geq n(k)$ contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of K_{n} ? What if the drawing is generic or regular?

- You can consider problems about faces of size at least k and for drawings that are not convex.

Thank you for your attention.

