Faces in Rectilinear Drawings of Complete Graphs

Martin Balko, Anna Brötzner, Fabian Klute, and Josef Tkadlec

• We consider convex drawings *D* of *K_n* where vertices are represented by distinct points in the plane in convex position and edges by line segments connecting the images of its end-vertices.

• A crossing D is a common interior point of at least two edges of D.

• We consider convex drawings *D* of *K_n* where vertices are represented by distinct points in the plane in convex position and edges by line segments connecting the images of its end-vertices.

• A crossing D is a common interior point of at least two edges of D.

- A crossing D is a common interior point of at least two edges of D.
- We say that D is generic if exactly two edges cross in all crossings in D.

- A crossing D is a common interior point of at least two edges of D.
- We say that D is generic if exactly two edges cross in all crossings in D.
- We say that D is regular if vertices of D form regular n-gon.

- A crossing D is a common interior point of at least two edges of D.
- We say that D is generic if exactly two edges cross in all crossings in D.
- We say that *D* is regular if vertices of *D* form regular *n*-gon.

• In every drawing D of K_n , every bounded face F of D is convex polygon.

• The size of *F* is the number of vertices of *F*.

• In every drawing D of K_n , every bounded face F of D is convex polygon.

• The size of *F* is the number of vertices of *F*.

- The size of *F* is the number of vertices of *F*.
- A face of size *k* is called a *k*-face.

- The size of *F* is the number of vertices of *F*.
- A face of size *k* is called a *k*-face.
- How large faces have to appear in convex drawings of K_n with large n?.

- The size of *F* is the number of vertices of *F*.
- A face of size *k* is called a *k*-face.
- How large faces have to appear in convex drawings of K_n with large n?.
- How about generic convex drawings? Or regular drawings?

• Surprisingly, not much!

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_n was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_n was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values a(k), the smallest n such that regular drawing of K_n contains a k-face.

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_n was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values a(k), the smallest n such that regular drawing of Kn contains a k-face.

k	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
a(k)	3	6	5	9	7	13	9	29	11	40	13	43	15	212	17

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_n was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values a(k), the smallest n such that regular drawing of Kn contains a k-face.

k	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
a(k)	3	6	5	9	7	13	9	29	11	40	13	43	15	212	17

• Closely related is the work of Poonen and Rubinstein who gave a formula for the number of crossings in regular drawings of K_n .

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_n was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values a(k), the smallest n such that regular drawing of Kn contains a k-face.

k	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
a(k)	3	6	5	9	7	13	9	29	11	40	13	43	15	212	17

- Closely related is the work of Poonen and Rubinstein who gave a formula for the number of crossings in regular drawings of K_n .
- It follows from their formula that all regular drawings of K_n with odd n are generic.

- Surprisingly, not much!
- The total number of faces in a regular drawing of K_n was considered by Harborth (1969) and Poonen and Rubinstein (1998), but these results do not distinguish faces of different sizes.
- Shannon and Sloane (2021) computed some values a(k), the smallest n such that regular drawing of Kn contains a k-face.

k	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
a(k)	3	6	5	9	7	13	9	29	11	40	13	43	15	212	17

- Closely related is the work of Poonen and Rubinstein who gave a formula for the number of crossings in regular drawings of K_n .
- It follows from their formula that all regular drawings of K_n with odd n are generic. Also that, apart from the center, no crossing is the intersection of more than 7 edges of a regular drawing of K_n for any n.

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

Let *n* be a positive integer and *D* a convex drawing of K_n .

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

Let *n* be a positive integer and *D* a convex drawing of K_n . Then, *D* contains a 3-face if and only if $n \ge 3$.

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

Let *n* be a positive integer and *D* a convex drawing of K_n . Then, *D* contains a 3-face if and only if $n \ge 3$. Moreover, *D* contains a 4-face if and only if $n \ge 6$.

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

• To find larger faces, we restrict ourselves to generic drawings of K_n .

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

Let *n* be a positive integer and *D* a convex drawing of K_n . Then, *D* contains a 3-face if and only if $n \ge 3$. Moreover, *D* contains a 4-face if and only if $n \ge 6$.

• To find larger faces, we restrict ourselves to generic drawings of K_n .

Theorem 1

For every $n \in \mathbb{N}$ and every generic convex drawing D of K_n , the drawing D contains a 5-face if and only if $n \geq 5$.

• Finding faces of size 3 or 4 in convex drawings of K_n is not difficult.

Proposition

Let *n* be a positive integer and *D* a convex drawing of K_n . Then, *D* contains a 3-face if and only if $n \ge 3$. Moreover, *D* contains a 4-face if and only if $n \ge 6$.

• To find larger faces, we restrict ourselves to generic drawings of K_n .

Theorem 1

For every $n \in \mathbb{N}$ and every generic convex drawing D of K_n , the drawing D contains a 5-face if and only if $n \ge 5$.

• We do not know if every convex drawing of large K_n contains a 5-face.

• It is possible to avoid faces of size at least 6.

• It is possible to avoid faces of size at least 6.

Theorem 2

• It is possible to avoid faces of size at least 6.

Theorem 2

For every $n \in \mathbb{N}$, there is a generic convex drawing of K_n that does not contain any k-face with $k \ge 6$.

•

• It is possible to avoid faces of size at least 6.

Theorem 2

• It is possible to avoid faces of size at least 6.

Theorem 2

• It is possible to avoid faces of size at least 6.

Theorem 2

• It is possible to avoid faces of size at least 6.

Theorem 2

• It is possible to avoid faces of size at least 6.

Theorem 2

• It is possible to avoid faces of size at least 6.

Theorem 2

For every $n \in \mathbb{N}$, there is a generic convex drawing of K_n that does not contain any k-face with $k \ge 6$.

• This settles the question about the largest face we can always find in generic convex drawings.

• It is possible to avoid faces of size at least 6.

Theorem 2

- This settles the question about the largest face we can always find in generic convex drawings.
- The problem of finding 5-faces is difficult if we allow crossings of more than two edges.

• It is possible to avoid faces of size at least 6.

Theorem 2

- This settles the question about the largest face we can always find in generic convex drawings.
- The problem of finding 5-faces is difficult if we allow crossings of more than two edges. We know that every convex drawing of K_7 has a 5-face.

• However, we can solve the problem about 5-faces for regular drawings.

• However, we can solve the problem about 5-faces for regular drawings.

Theorem 3 For $n \in \mathbb{N}$, a regular drawing of K_n contains a 5-face if and only if $n \notin \{1, 2, 3, 4, 6, 8, 12\}.$

Theorem 3

• However, we can solve the problem about 5-faces for regular drawings.

For $n \in \mathbb{N}$, a regular drawing of K_n contains a 5-face if and only if

 $n \notin \{1, 2, 3, 4, 6, 8, 12\}.$

• However, we can solve the problem about 5-faces for regular drawings.

Theorem 3 For $n \in \mathbb{N}$, a regular drawing of K_n contains a 5-face if and only if

 $n \notin \{1, 2, 3, 4, 6, 8, 12\}.$

Theorem 3

• However, we can solve the problem about 5-faces for regular drawings.

For $n \in \mathbb{N}$, a regular drawing of K_n contains a 5-face if and only if

 $n \notin \{1, 2, 3, 4, 6, 8, 12\}.$

Theorem 3

• However, we can solve the problem about 5-faces for regular drawings.

For $n \in \mathbb{N}$, a regular drawing of K_n contains a 5-face if and only if

 $n \notin \{1, 2, 3, 4, 6, 8, 12\}.$

• The proof is quite involved and uses results of Poonen and Rubinstein.

• Seems to be a new unexplored area.

• Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

• Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$ every convex drawing of K_n contains a 5-face?

• Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$ every convex drawing of K_n contains a 5-face?

Problem

Is it true that for every integer $k \ge 3$ there is an integer n(k) such that every regular drawing of K_n with $n \ge n(k)$ contains a k-face?

• Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$ every convex drawing of K_n contains a 5-face?

Problem

Is it true that for every integer $k \ge 3$ there is an integer n(k) such that every regular drawing of K_n with $n \ge n(k)$ contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of K_n ? What if the drawing is generic or regular?

• Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$ every convex drawing of K_n contains a 5-face?

Problem

Is it true that for every integer $k \ge 3$ there is an integer n(k) such that every regular drawing of K_n with $n \ge n(k)$ contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of K_n ? What if the drawing is generic or regular?

• You can consider problems about faces of size at least k

• Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$ every convex drawing of K_n contains a 5-face?

Problem

Is it true that for every integer $k \ge 3$ there is an integer n(k) such that every regular drawing of K_n with $n \ge n(k)$ contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of K_n ? What if the drawing is generic or regular?

• You can consider problems about faces of size at least k and for drawings that are not convex.

• Seems to be a new unexplored area. \Rightarrow Plenty of open problems!

Problem

Is there $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$ every convex drawing of K_n contains a 5-face?

Problem

Is it true that for every integer $k \ge 3$ there is an integer n(k) such that every regular drawing of K_n with $n \ge n(k)$ contains a k-face?

Problem

What is the minimum number of 3-faces in a convex drawing of K_n ? What if the drawing is generic or regular?

• You can consider problems about faces of size at least k and for drawings that are not convex.

Thank you for your attention.