Recognition of Unit Segment and Polyline Graphs is ∃ℝ-Complete Michael Hoffmann, Tillmann Miltzow, Lasse Wulf and <u>Simon Weber</u> €

Department of Computer Science

Simon Weber EuroCG'24

Intersection Graphs

Intersection Graphs

Intersection Graphs

Intersection Graph Recognition

Definition: For a family \mathcal{F} of subsets of \mathbb{R}^2 , the problem RECOGNITION(\mathcal{F}) is to determine whether a given graph G = (V, E) is the intersection graph of some sets in \mathcal{F} .

Intersection Graph Recognition

Definition: For a family \mathcal{F} of subsets of \mathbb{R}^2 , the problem RECOGNITION(\mathcal{F}) is to determine whether a given graph G = (V, E) is the intersection graph of some sets in \mathcal{F} .

We consider the families of

all unit segments in \mathbb{R}^2

all polylines with k bends (for any fixed k)

Proof Techniques: Hardness

Reduction from SIMPLESTRETCHABILITY:

G =intersection graph of these curves

Realizability \Rightarrow Stretchability

If G is a unit segment intersection graph, then the pseudoline arrangement is stretchable.

Realizability \Rightarrow Stretchability

If G is a unit segment intersection graph, then the pseudoline arrangement is stretchable.

Realizability \Rightarrow Stretchability

If G is a unit segment intersection graph, then the pseudoline arrangement is stretchable.

Hardness for *k*-Polylines

Department of Computer Science

Simon Weber EuroCG'24

Open Questions

Can we find any more general results?

Open Questions

Can we find any more general results?

 $\mathcal{F} = \text{translates of } C$ $\mathcal{F} = \text{rotated translates of } C$ $\mathcal{F} = \text{homothets of } C$

Open Questions

Can we find any more general results?

 $\mathcal{F} = \text{translates of } C$ $\mathcal{F} = \text{rotated translates of } C$ $\mathcal{F} = \text{homothets of } C$

For which shapes C is recognition of these families $\exists \mathbb{R}$ -complete?