The Complexity of Geodesic Spanners using Steiner Points

Sarita de Berg, Tim Ophelders, Irene Parada, Frank Staals, Jules Wulms

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

We study geodesic spanners for point sites in a simple polygon P

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

We study geodesic spanners for point sites in a simple polygon P

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

We study geodesic spanners for point sites in a simple polygon P

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

We study geodesic spanners for point sites in a simple polygon P
Measure "compactness" by: spanner complexity

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

We study geodesic spanners for point sites in a simple polygon P
Measure "compactness" by: spanner complexity \# line segments

Geodesic spanners

A geometric t-spanner \mathcal{G} connects the points in a set S using few links s.t.:

- Each link is a shortest path between two points in S
- The distance $d_{\mathcal{G}}(p, q)$ between two points p, q is at most $t \cdot d(p, q)$

We study geodesic spanners for point sites in a simple polygon P
Measure "compactness" by: spanner complexity \# line segments

A ($3-\varepsilon$)-spanner has $\Omega(m n)$ complexity
A $4 \sqrt{2}$-spanner with $O\left(m \sqrt{n}+n \log ^{2} n\right)$ complexity [dB, van Kreveld, Staals, 2023]

Introducing Steiner points

Can we do better?

Can we do better?

What if we are allowed to use Steiner points?

Can we do better?

What if we are allowed to use Steiner points?

Can we do better?

What if we are allowed to use Steiner points?

Complexity: $\Omega(m n)$

Can we do better?

What if we are allowed to use Steiner points?

Complexity: $\Omega(m n)$

Can we do better?

What if we are allowed to use Steiner points?

Complexity: $\Omega(m n) \rightarrow \Omega(m)$

Can we do better?

What if we are allowed to use Steiner points?
m Steiner points $\Rightarrow(1+\varepsilon)$-spanner with $O((n+m) / \varepsilon)$ complexity [Clarkson, 1987]

Can we do better?

What if we are allowed to use Steiner points?
m Steiner points $\Rightarrow(1+\varepsilon)$-spanner with $O((n+m) / \varepsilon)$ complexity [Clarkson, 1987]
What if we are allowed to use only k Steiner points?

Can we do better?

What if we are allowed to use Steiner points?
m Steiner points $\Rightarrow(1+\varepsilon)$-spanner with $O((n+m) / \varepsilon)$ complexity [Clarkson, 1987]
What if we are allowed to use only k Steiner points?
A ($3-\varepsilon$)-spanner has complexity $\Omega(m n / k)$

Can we do better?

Spanning ratio	Complexity	Complexity k Steiner
$2-\varepsilon$	$\Omega\left(m n^{2}\right)$	$\Omega\left(m n^{2} / k^{2}\right)$
$3-\varepsilon$	$\Omega(m n)$	$\Omega(m n / k)$
$t-\varepsilon$	$\Omega\left(m n^{\frac{1}{t-1}}\right)$	$\Omega\left(m n^{\frac{1}{t+1}} / k \frac{1}{t+1}\right)$

Can we do better?

Spanning ratio	Complexity	Complexity k Steiner
$2-\varepsilon$	$\Omega\left(m n^{2}\right)$	$\Omega\left(m n^{2} / k^{2}\right)$
$3-\varepsilon$	$\Omega(m n)$	$\Omega(m n / k)$
$t-\varepsilon$	$\Omega\left(m n^{\frac{1}{t-1}}\right)$	$\Omega\left(m n^{\frac{1}{t+1}} / k^{\frac{1}{t+1}}\right)$

Not so much :(

Can we do better?

Spanning ratio	Complexity	Complexity k Steiner
$2-\varepsilon$	$\Omega\left(m n^{2}\right)$	$\Omega\left(m n^{2} / k^{2}\right)$
$3-\varepsilon$	$\Omega(m n)$	$\Omega(m n / k)$
$t-\varepsilon$	$\Omega\left(m n^{\frac{1}{t-1}}\right)$	$\Omega\left(m n^{\frac{1}{t+1}} / k \frac{1}{t+1}\right)$

Not so much :(
$2 \sqrt{2} t$-spanner of complexity $\tilde{O}\left(m n^{\frac{1}{t}} / k^{\frac{1}{t}}\right)$

simple polygon

n points
m vertices

Where to place Steiner points?

Look at easier setting: weighted tree n leaves m vertices

simple polygon n points m vertices

Where to place Steiner points?

Look at easier setting: weighted tree n leaves m vertices

simple polygon n points m vertices

Where to place Steiner points?

Look at easier setting: weighted tree n leaves m vertices

simple polygon n points m vertices

Where to place Steiner points?

Look at easier setting: weighted tree n leaves m vertices

simple polygon n points m vertices

Where to place Steiner points?

Look at easier setting: weighted tree n leaves m vertices

simple polygon n points m vertices

Where to place Steiner points?

Look at easier setting: weighted tree n leaves m vertices

simple polygon n points m vertices

Where to place Steiner points?

Look at easier setting: weighted tree
n leaves
m vertices

simple polygon n points
m vertices

Spanning ratio Complexity

Where to place Steiner points?

Look at easier setting: weighted tree
n leaves
m vertices

simple polygon n points
m vertices

$$
\begin{array}{ccc}
2 t & \text { Spanning ratio } & 2 \sqrt{2} t \\
O\left(m n^{\frac{1}{t}} / k^{\frac{1}{t}}\right) & \text { Complexity } & O\left(m n^{\frac{1}{t}} / k^{\frac{1}{t}} \cdot(\log k)^{\frac{t+1}{t}}\right)
\end{array}
$$

Spanning ratio

$$
2-\varepsilon
$$

$$
3-\varepsilon
$$

$$
t-\varepsilon
$$

$2 \sqrt{2} t$

Complexity k Steiner

$\Omega\left(m n^{2} / k^{2}\right)$
$\Omega(m n / k)$
$\Omega\left(m n^{\frac{1}{1+t}} / k^{\frac{1}{1+t}}\right)$

$$
O\left(m n^{\frac{1}{t}} / k^{\frac{1}{t}} \cdot(\log k)^{\frac{t+1}{t}}\right)
$$

Spanning ratio

$$
2-\varepsilon
$$

$$
3-\varepsilon
$$

$$
t-\varepsilon
$$

Complexity k Steiner

$\Omega\left(m n^{2} / k^{2}\right)$
$\Omega(m n / k)$
$\Omega\left(m n^{\frac{1}{1+t}} / k^{\frac{1}{1+t}}\right)$
$2 \sqrt{2} t$
$6 t$

$$
O\left(m n^{\frac{1}{t}} / k^{\frac{1}{t}} \cdot(\log k)^{\frac{t+1}{t}}\right)
$$

Results

Spanning ratio

$$
\begin{aligned}
& 2-\varepsilon \\
& 3-\varepsilon \\
& t-\varepsilon
\end{aligned}
$$

$2 \sqrt{2} t$

Complexity k Steiner
$\Omega\left(m n^{2} / k^{2}\right)$
$\Omega(m n / k)$
$\Omega\left(m n^{\frac{1}{1+t}} / k^{\frac{1}{1+t}}\right)$

$$
O\left(m n^{\frac{1}{t}} / k^{\frac{1}{t}} \cdot(\log k)^{\frac{t+1}{t}}\right)
$$

Thank you

Where to place Steiner points?

Look at a simpler setting: a tree

Where to place Steiner points?

Look at a simpler setting: a tree

$$
k=3
$$

1. Split vertices in k groups by inorder-traversal

Where to place Steiner points?

Look at a simpler setting: a tree

$$
k=3
$$

1. Split vertices in k groups by inorder-traversal
2. Color the tree

Where to place Steiner points?

Look at a simpler setting: a tree

$$
k=3
$$

1. Split vertices in k groups by inorder-traversal
2. Color the tree

Where to place Steiner points?

Look at a simpler setting: a tree

$$
k=3
$$

1. Split vertices in k groups by inorder-traversal
2. Color the tree

Where to place Steiner points?

Look at a simpler setting: a tree

$$
k=3
$$

1. Split vertices in k groups by inorder-traversal
2. Color the tree

Where to place Steiner points?

Look at a simpler setting: a tree

$$
k=3
$$

1. Split vertices in k groups by inorder-traversal
2. Color the tree
3. Place Steiner points

Where to place Steiner points?

Look at a simpler setting: a tree

$$
k=3
$$

1. Split vertices in k groups by inorder-traversal
2. Color the tree
3. Place Steiner points

Where to place Steiner points?

Look at a simpler setting: a tree

$$
k=3
$$

1. Split vertices in k groups by inorder-traversal
2. Color the tree
3. Place Steiner points
4. Split tree into k subtrees

Where to place Steiner points?

Look at a simpler setting: a tree

$$
k=3
$$

1. Split vertices in k groups by inorder-traversal
2. Color the tree
3. Place Steiner points
4. Split tree into k subtrees

Where to place Steiner points?

Look at a simpler setting: a tree

1. Split vertices in k groups by inorder-traversal
2. Color the tree
3. Place Steiner points
4. Split tree into k subtrees

$$
k=3
$$

Where to place Steiner points?

Look at a simpler setting: a tree

1. Split vertices in k groups by inorder-traversal
2. Color the tree
3. Place Steiner points
4. Split tree into k subtrees

$$
k=3
$$

Where to place Steiner points?

Look at a simpler setting: a tree

1. Split vertices in k groups by inorder-traversal
2. Color the tree
3. Place Steiner points
4. Split tree into k subtrees
5. Build spanner on each subtree

$$
k=3
$$

