Bipartite Dichotomous Ordinal Graphs

P. Angelini, S. Cornelsen, C. Haase, M. Hoffmann, E. Katsanou, F. Montecchiani, A. Symvonis

EuroCG 2024

Introduction

2-1

Dichotomous Ordinal Graphs

- Given:
- Graph $G=(V, E)$
- A partition of edges into short and long, $E=E_{s} \cup E_{\ell}$

Introduction
 $2-2$

Dichotomous Ordinal Graphs

- Given:
- Graph $G=(V, E)$
- A partition of edges into short and long, $E=E_{s} \cup E_{\ell}$

Question:
Does G admit a geometric representation?

Introduction

Dichotomous Ordinal Graphs

- Given:
- Graph $G=(V, E)$
- A partition of edges into short and long, $E=E_{s} \cup E_{\ell}$

Question:
Does G admit a geometric representation?

Known Results
3-1

Known Results

3-2

- NP-hard to decide whether a dichotomous ordinal graph $G=\left(V, E_{\ell} \cup E_{s}\right)$ admits a geometric representation, even if:
- $G \equiv K_{n}$ and $G_{s}=\left(V, E_{s}\right)$ is a planar graph [Alam et al. (2015)]
- $G \equiv K_{n, m}$ ($\exists \mathbb{R}$-complete) [Peters (2017)]

Known Results

- NP-hard to decide whether a dichotomous ordinal graph $G=\left(V, E_{\ell} \cup E_{s}\right)$ admits a geometric representation, even if:
- $G \equiv K_{n}$ and $G_{s}=\left(V, E_{s}\right)$ is a planar graph [Alam et al. (2015)]
- $G \equiv K_{n, m}$ ($\exists \mathbb{R}$-complete) [Peters (2017)]
- Angelini et al. (2019)

Positive Instances

- double-wheel
- 2-degenerate
- subcubic
- 4-colorable and the short edges induce a caterpillar

Negative Instances

- double wheel plus one edge

Our Results
4-1

Our Results

A characterization of complete bipartite graphs

$$
\begin{array}{ll}
\mathcal{\cup} G \subseteq K_{3, m} & \mathcal{\cup} G \subseteq K_{4,6} \\
\boldsymbol{X}_{G}=K_{4,7} & \chi_{G}=K_{5,5}
\end{array}
$$

Our Results

A characterization of complete bipartite graphs

$$
\begin{array}{ll}
\mathcal{\cup} G \subseteq K_{3, m} & \mathcal{\cup} G \subseteq K_{4,6} \\
\boldsymbol{X}_{G}=K_{4,7} & \text { Х } G=K_{5,5}
\end{array}
$$

$\checkmark G_{s}=\left(V, E_{s}\right)$ is a subgraph of the rectangular grid

Our Results

A characterization of complete bipartite graphs
$\checkmark G \subseteq K_{3, m} \quad \cup G \subseteq K_{4,6}$
$\chi_{G}=K_{4,7} \quad \chi_{G}=K_{5,5}$
$\checkmark G_{s}=\left(V, E_{s}\right)$ is a subgraph of the rectangular grid
$\checkmark G=\left(V, E_{s} \cup E_{\ell}\right)$ is bipartite and $G_{s}=\left(V, E_{s}\right)$ is outerplanar

Our Results

A characterization of complete bipartite graphs
$\checkmark G \subseteq K_{3, m} \quad \cup G \subseteq K_{4,6}$
$\chi_{G}=K_{4,7} \quad X_{G}=K_{5,5}$
$\checkmark G_{s}=\left(V, E_{s}\right)$ is a subgraph of the rectangular grid
$\checkmark G=\left(V, E_{s} \cup E_{\ell}\right)$ is bipartite and $G_{s}=\left(V, E_{s}\right)$ is outerplanar

Complete Bipartite Graphs
5-1

Complete Bipartite Graphs

$5-2$

- $G=(U \cup W, E)$
- $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
- C_{i} the unit circle centered at u_{i}
- If edge $\left(u_{i}, w\right)$ is short, then w should be placed in C_{i}.
- $V(w) \subseteq U$ is the "short neighborhood " of $w \in W$

Complete Bipartite Graphs

- $G=(U \cup W, E)$
- $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
- C_{i} the unit circle centered at u_{i}
- If edge $\left(u_{i}, w\right)$ is short, then w should be placed in C_{i}.
- $V(w) \subseteq U$ is the "short neighborhood " of $w \in W$

Goal: To find an arrangement \mathcal{C} of $C_{1}, C_{2}, \ldots, C_{n}$ such that every $V(w)$ corresponds to a cell r

Complete Bipartite Graphs

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Complete Bipartite Graphs

$5-5$

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)]: n unit circles form at most $n(n-1)+2$ cells

Complete Bipartite Graphs

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{3, m}$:
- all eight subsets of $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ can be realized

Complete Bipartite Graphs

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$

Complete Bipartite Graphs

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Complete Bipartite Graphs

5-9

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Complete Bipartite Graphs

$5-10$

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

$5-11$

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

$5-12$

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

$5-13$

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

$5-14$

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

$5-15$

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

$5-16$

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

5-17

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Complete Bipartite Graphs

5-18

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

5-19

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

5-20

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

5-21

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 2: At least three vertices from W are shortly connected to a pair of U.

Complete Bipartite Graphs

6-1

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

Complete Bipartite Graphs

6-2

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

- $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, W=\left\{w_{1}, \ldots, w_{7}\right\}$
- Counterexample:
- All four triplets
- The three pairs that contain u_{4}

Complete Bipartite Graphs

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

- $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, W=\left\{w_{1}, \ldots, w_{7}\right\}$
- Counterexample:
- All four triplets
- The three pairs that contain u_{4}

Complete Bipartite Graphs

6-4

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

- $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, W=\left\{w_{1}, \ldots, w_{7}\right\}$
- Counterexample:
- All four triplets
- The three pairs that contain u_{4}

Complete Bipartite Graphs

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

- $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, W=\left\{w_{1}, \ldots, w_{7}\right\}$
- Counterexample:
- All four triplets
- The three pairs that contain u_{4}

- We require to cross all singletons, but not fully cover f.

Complete Bipartite Graphs

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

- $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, W=\left\{w_{1}, \ldots, w_{7}\right\}$
- Counterexample:
- All four triplets
- The three pairs that contain u_{4}

- We require to cross all singletons, but not fully cover f.
\Rightarrow A contradiction.

Short Subgraphs of the Grid

Theorem

A dichotomous ordinal graph $G=\left(V, E_{s} \cup E_{\ell}\right)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

Short Subgraphs of the Grid

Theorem

A dichotomous ordinal graph $G=\left(V, E_{s} \cup E_{\ell}\right)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Extend G_{s} by remaing long edges

Short Subgraphs of the Grid

Theorem

A dichotomous ordinal graph $G=\left(V, E_{s} \cup E_{\ell}\right)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Extend G_{s} by remaing long edges

- Four possible choices for each grid point (i, j)
- x-coordinates $i n^{2}$ and $i n^{2}+i$
- y-coordinates $j n^{2}$ and $j n^{2}+j$

Short Subgraphs of the Grid

Theorem

A dichotomous ordinal graph $G=\left(V, E_{s} \cup E_{\ell}\right)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Extend G_{s} by remaing long edges

- Four possible choices for each grid point (i, j)
- x-coordinates $i n^{2}$ and $i n^{2}+i$
- y-coordinates $j n^{2}$ and $j n^{2}+j$

Short Subgraphs of the Grid 7-5

Theorem

A dichotomous ordinal graph $G=\left(V, E_{s} \cup E_{\ell}\right)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Extend G_{s} by remaing long edges

- Four possible choices for each grid point (i, j)
- x-coordinates $i n^{2}$ and $i n^{2}+i$
- y-coordinates $j n^{2}$ and $j n^{2}+j$

Short Subgraphs of the Grid

Theorem

A dichotomous ordinal graph $G=\left(V, E_{s} \cup E_{\ell}\right)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Extend G_{s} by remaing long edges

- Four possible choices for each grid point (i, j)
- x-coordinates $i n^{2}$ and $i n^{2}+i$
- y-coordinates $j n^{2}$ and $j n^{2}+j$

Short Subgraphs of the Grid

Theorem

A dichotomous ordinal graph $G=\left(V, E_{s} \cup E_{\ell}\right)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Extend G_{s} by remaing long edges
longest possible short edge

- Four possible choices for each grid point (i, j)
- x-coordinates $i n^{2}$ and $i n^{2}+i$
- y-coordinates $j n^{2}$ and $j n^{2}+j$
- Long edges have length $\geq n^{2}+1$
- Short edges have length $\leq n^{2}+\frac{1}{2}$
shortest possible long edge

Conclusion

Open Problems

Do bipartite dichotomous ordinal graphs always admit a geometric realization when:
(i) the underlying graph is planar?
(ii) the underlying graph is 3-degenerate?
(iii) the graph induced by the short edges is a 2-tree?

Questions (i) and (ii) are open even for non-bipartite dichotomous ordinal graphs.

Complete Bipartite Graphs

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$

Complete Bipartite Graphs

9-2

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Complete Bipartite Graphs

9-3

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Complete Bipartite Graphs

9-4

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

9-5

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

9-7

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

9-8

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

9-9

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

9-10

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

9-11

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Complete Bipartite Graphs

9-12

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

9-13

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

9-14

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Missing Cells:

- $C_{1} \cap C_{3}$
- $C_{2} \cap C_{4}$

Complete Bipartite Graphs

9-15

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 2: At least three vertices from W are shortly connected to a pair of U.

Complete Bipartite Graphs

$9-16$

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 2: At least three vertices from W are shortly connected to a pair of U.

Complete Bipartite Graphs

9-17

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 2: At least three vertices from W are shortly connected to a pair of U.

Missing Cells:

- C_{4}

Complete Bipartite Graphs

9-18

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 2: At least three vertices from W are shortly connected to a pair of U.

Missing Cells:

- C_{4}

Complete Bipartite Graphs

9-19

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 2: At least three vertices from W are shortly connected to a pair of U.

Missing Cells:

- C_{4}
- $C_{1} \cap C_{2} \cap C_{3}$

Complete Bipartite Graphs

9-20

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 2: At least three vertices from W are shortly connected to a pair of U.

Missing Cells:

- C_{4}
- $C_{1} \cap C_{2} \cap C_{3}$

Complete Bipartite Graphs

9-21

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 2: At least three vertices from W are shortly connected to a pair of U.
\Rightarrow We have at most three singletons and triplets

Missing Cells:

- C_{4}
- $C_{1} \cap C_{2} \cap C_{3}$

Complete Bipartite Graphs

9-22

Theorem

Every dichotomous ordinal $K_{3, m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4, m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most $n(n-1)+2$ cells

- $K_{4,6}: U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- Case 2: At least three vertices from W are shortly connected to a pair of U.
\Rightarrow We have at most three singletons and triplets

Missing Cells:

- C_{4}
- $C_{1} \cap C_{2} \cap C_{3}$

Complete Bipartite Graphs

$10-1$

Theorem

There is a dichotomous ordinal $K_{5,5}$ that does not admit a geometric representation.

Complete Bipartite Graphs

10-2

Theorem

There is a dichotomous ordinal $K_{5,5}$ that does not admit a geometric representation.

- $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}, W=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$
- Counterexample:
- $V\left(w_{i}\right)=\left\{u_{i}, u_{i \oplus 1}, u_{5}\right\}$, for $1 \leq i \leq 4$
$-V\left(w_{5}\right)=U \backslash\left\{u_{5}\right\}$
- Each $V\left(w_{i}\right)$ corresponds to a cell in arrangement \mathcal{C}

- Analyze \mathcal{C} geometrically to show that it cannot be realized

Short Outerplanar Graphs

11-1

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Short Outerplanar Graphs

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

Short Outerplanar Graphs

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

- root G_{s} at arbitrary vertex r

Short Outerplanar Graphs

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

- root G_{s} at arbitrary vertex r
- $V_{k}, k=0, \ldots$ is the BFS layer of G_{s}

Short Outerplanar Graphs

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

- root G_{s} at arbitrary vertex r
- $V_{k}, k=0, \ldots$ is the BFS layer of G_{s}
- each V_{k} is placed on horizontal line ℓ_{k}

Short Outerplanar Graphs

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

- root G_{s} at arbitrary vertex r
- $V_{k}, k=0, \ldots$ is the BFS layer of G_{s}
- each V_{k} is placed on horizontal line ℓ_{k}
- ℓ_{k} has y-coordinate
- between $k-1$ and k
- at least the topmost intersection point of the unit circles of V_{k-1}

Short Outerplanar Graphs

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

- root G_{s} at arbitrary vertex r
- $V_{k}, k=0, \ldots$ is the BFS layer of G_{s}
- each V_{k} is placed on horizontal line ℓ_{k}
- ℓ_{k} has y-coordinate
- between $k-1$ and k
- at least the topmost intersection point of the unit circles of V_{k-1}
- if x has two parents u and v we can guarantee that they are close

