Bipartite Dichotomous Ordinal Graphs

P. Angelini, S. Cornelsen, C. Haase, M. Hoffmann, **E. Katsanou**, F. Montecchiani, A. Symvonis

EuroCG 2024

Introduction

Dichotomous Ordinal Graphs

- ► Given:
 - Graph G = (V, E)
 - A partition of edges into short and long, $E=E_s\cup E_\ell$

Introduction

Dichotomous Ordinal Graphs

- ► Given:
 - Graph G = (V, E)
 - A partition of edges into short and long, $E=E_s\cup E_\ell$

Question:

Does G admit a geometric representation?

Introduction

Dichotomous Ordinal Graphs

- ► Given:
 - Graph G = (V, E)
 - A partition of edges into short and long, $E=E_s\cup E_\ell$

Question:

Does G admit a geometric representation?

Known Results

3 - 1

Known Results

- NP-hard to decide whether a dichotomous ordinal graph $G = (V, E_{\ell} \cup E_s)$ admits a geometric representation, even if:
 - $G \equiv K_n$ and $G_s = (V, E_s)$ is a planar graph [Alam et al. (2015)]
 - $G \equiv K_{n,m}$ ($\exists \mathbb{R}$ -complete) [Peters (2017)]

Known Results

- NP-hard to decide whether a dichotomous ordinal graph G = (V, E_ℓ ∪ E_s) admits a geometric representation, even if:
 G ≡ K_n and G_s = (V, E_s) is a planar graph [Alam et al. (2015)]
 G ≡ K_{n,m} (∃ℝ-complete) [Peters (2017)]
- ► Angelini et al. (2019)

Positive Instances	Negative Instances
 double-wheel 2-degenerate subcubic 4-colorable and the short edges induce a caterpillar 	double wheel plus one edge

A characterization of complete bipartite graphs

 $\checkmark G \subseteq K_{3,m} \quad \checkmark G \subseteq K_{4,6}$ $\bigstar G = K_{4,7} \quad \And G = K_{5,5}$

A characterization of complete bipartite graphs

$$\checkmark G \subseteq K_{3,m} \quad \checkmark G \subseteq K_{4,6}$$
$$\checkmark G = K_{4,7} \quad \checkmark G = K_{5,5}$$

 $\checkmark G_s = (V, E_s)$ is a subgraph of the rectangular grid

A characterization of complete bipartite graphs

$$\checkmark G \subseteq K_{3,m} \quad \checkmark G \subseteq K_{4,6}$$
$$\checkmark G = K_{4,7} \quad \checkmark G = K_{5,5}$$

 $\checkmark G_s = (V, E_s)$ is a subgraph of the rectangular grid

 $\checkmark G = (V, E_s \cup E_\ell)$ is bipartite and $G_s = (V, E_s)$ is outerplanar

 $\checkmark G$

A characterization of complete bipartite graphs

$$\checkmark G \subseteq K_{3,m} \qquad \checkmark G \subseteq K_{4,6}$$
$$\checkmark G = K_{4,7} \qquad \checkmark G = K_{5,5}$$

 $\checkmark G_s = (V, E_s)$ is a subgraph of the rectangular grid

$$\checkmark G = (V, E_s \cup E_\ell)$$
 is bipartite and $G_s = (V, E_s)$ is outerplanar

5 - 1

$$\blacktriangleright G = (U \cup W, E)$$

$$\blacktriangleright U = \{u_1, u_2, \dots, u_n\}$$

- C_i the unit circle centered at u_i
- ▶ If edge (u_i, w) is short, then w should be placed in C_i .
- ▶ $V(w) \subseteq U$ is the "short neighborhood" of $w \in W$

$$\blacktriangleright G = (U \cup W, E)$$

$$\blacktriangleright U = \{u_1, u_2, \dots, u_n\}$$

- C_i the unit circle centered at u_i
- ▶ If edge (u_i, w) is short, then w should be placed in C_i .
- ▶ $V(w) \subseteq U$ is the "short neighborhood" of $w \in W$

Goal: To find an arrangement C of C_1, C_2, \ldots, C_n such that every V(w) corresponds to a cell r

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

_ h

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells $\blacktriangleright K_{3,m}$:

- all eight subsets of $U = \{u_1, u_2, u_3\}$ can be realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

ト _ /

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells $K_{4,6}$: $U = \{u_1, u_2, u_3, u_4\}$

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

$$\underbrace{\text{Missing Cells:}}_{\bullet \ C_1 \cap C_3}$$

5 - 10

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

5 - 11

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

5 - 12

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

5 - 13

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

$$\frac{\text{Missing Cells:}}{\bullet \ C_1 \cap C_3}$$

5 - 14

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

5 - 15

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

5 - 16

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

5 - 17

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

5 - 18

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

5 - 19

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

5 - 20

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

5 - 21

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

– Case 2: At least three vertices from W are shortly connected to a pair of $U. \end{tabular}$

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

- 1

6

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

$$U = \{u_1, u_2, u_3, u_4\}, W = \{w_1, \dots, w_7\}$$

- Counterexample:
 - All four triplets
 - The three pairs that contain u_4

6 - 2

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

$$U = \{u_1, u_2, u_3, u_4\}, W = \{w_1, \dots, w_7\}$$

- Counterexample:
 - All four triplets
 - The three pairs that contain u_4

6 - 3

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

$$U = \{u_1, u_2, u_3, u_4\}, W = \{w_1, \dots, w_7\}$$

- Counterexample:
 - All four triplets
 - The three pairs that contain u_4

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

$$U = \{u_1, u_2, u_3, u_4\}, W = \{w_1, \dots, w_7\}$$

- Counterexample:
 - All four triplets
 - The three pairs that contain u_4

We require to cross all singletons, but not fully cover f.

Theorem

There is a dichotomous ordinal $K_{4,7}$ that does not admit a geometric representation.

$$U = \{u_1, u_2, u_3, u_4\}, W = \{w_1, \dots, w_7\}$$

- Counterexample:
 - All four triplets
 - The three pairs that contain u_4

- We require to cross all singletons, but not fully cover f.
 - \Rightarrow A contradiction.

Theorem

A dichotomous ordinal graph $G=(V,E_s\cup E_\ell)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

_ 1

Theorem

A dichotomous ordinal graph $G = (V, E_s \cup E_\ell)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

Theorem

A dichotomous ordinal graph $G = (V, E_s \cup E_\ell)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Four possible choices for each grid point (i, j)
 - x-coordinates in^2 and $in^2 + i$
 - y-coordinates jn^2 and $jn^2 + j$

Theorem

A dichotomous ordinal graph $G = (V, E_s \cup E_\ell)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Four possible choices for each grid point (i, j)
 - x-coordinates in^2 and $in^2 + i$
 - y-coordinates jn^2 and $jn^2 + j$

Theorem

A dichotomous ordinal graph $G = (V, E_s \cup E_\ell)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Four possible choices for each grid point (i, j)
 - x-coordinates in^2 and $in^2 + i$
 - y-coordinates jn^2 and $jn^2 + j$

Theorem

A dichotomous ordinal graph $G = (V, E_s \cup E_\ell)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

- Four possible choices for each grid point
 (i, j)
 - x-coordinates in^2 and $in^2 + i$
 - y-coordinates jn^2 and $jn^2 + j$

Theorem

A dichotomous ordinal graph $G = (V, E_s \cup E_\ell)$ admits a geometric representation if the set of short edges induces a subgraph of the grid.

• Extend G_s by remaing *long* edges

longest possible short edge

Four possible choices for each grid point
 (i, j)

(_ 7

- x-coordinates in^2 and $in^2 + i$
- y-coordinates jn^2 and $jn^2 + j$
- Long edges have length $\ge n^2 + 1$
- ▶ Short edges have length $\leq n^2 + \frac{1}{2}$

Conclusion

Open Problems

Do bipartite dichotomous ordinal graphs always admit a geometric realization when:

- (i) the underlying graph is planar?
- (ii) the underlying graph is 3-degenerate?
- (iii) the graph induced by the short edges is a 2-tree?

Questions (i) and (ii) are open even for non-bipartite dichotomous ordinal graphs.

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells $K_{4,6}$: $U = \{u_1, u_2, u_3, u_4\}$

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

$$\frac{\text{Missing Cells:}}{\bullet \ C_1 \cap C_3}$$

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

- 5

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

- 11

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

- 12

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

- 13

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

- 14

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

- Case 1: At most two vertices from W are shortly connected to a pair of U.
- All subsets, except for the two pairs that correspond to opposite circles, are realized

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

- 15

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

$$\blacktriangleright K_{4,6}: U = \{u_1, u_2, u_3, u_4\}$$

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

9 - 16

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

$$\blacktriangleright K_{4,6}: U = \{u_1, u_2, u_3, u_4\}$$

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

9 - 17

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

$$\blacktriangleright K_{4,6}: U = \{u_1, u_2, u_3, u_4\}$$

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

9 - 18

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

$$\blacktriangleright K_{4,6}: U = \{u_1, u_2, u_3, u_4\}$$

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

- 19

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

$$\blacktriangleright K_{4,6}: U = \{u_1, u_2, u_3, u_4\}$$

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

9 - 20

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

$$\blacktriangleright K_{4,6}: U = \{u_1, u_2, u_3, u_4\}$$

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

9 - 21

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

•
$$K_{4,6}$$
: $U = \{u_1, u_2, u_3, u_4\}$

– Case 2: At least three vertices from W are shortly connected to a pair of $U. \end{tabular}$

 \Rightarrow We have at most three singletons and triplets

Theorem

Every dichotomous ordinal $K_{3,m}$, for $m \in \mathbb{N}$, and every dichotomous ordinal $K_{4,m}$, for $m \leq 6$, admits a geometric representation.

9 - 22

Fact [Steiner (1826)] : n unit circles form at most n(n-1) + 2 cells

$$\blacktriangleright K_{4,6}: U = \{u_1, u_2, u_3, u_4\}$$

– Case 2: At least three vertices from W are shortly connected to a pair of U.

 \Rightarrow We have at most three singletons and triplets

Theorem

There is a dichotomous ordinal $K_{5,5}$ that does not admit a geometric representation.

Theorem

There is a dichotomous ordinal $K_{5,5}$ that does not admit a geometric representation.

$$U = \{u_1, u_2, u_3, u_4, u_5\}, W = \{w_1, w_2, w_3, w_4, w_5\}$$

Counterexample:

$$-V(w_i) = \{u_i, u_{i\oplus 1}, u_5\}, \text{ for } 1 \le i \le 4$$

$$-V(w_5) = U \setminus \{u_5\}$$

- Each V(w_i) corresponds to a cell in arrangement C
- Analyze C geometrically to show that it cannot be realized

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

• root G_s at arbitrary vertex r

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

- root G_s at arbitrary vertex r
- ► $V_k, k = 0, ...$ is the BFS layer of G_s

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

- \blacktriangleright root G_s at arbitrary vertex r
- ► $V_k, k = 0, ...$ is the BFS layer of G_s
- each V_k is placed on horizontal line ℓ_k

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

- \blacktriangleright root G_s at arbitrary vertex r
- $V_k, k = 0, \ldots$ is the BFS layer of G_s
- ▶ each V_k is placed on horizontal line ℓ_k
- ℓ_k has y-coordinate
 - between $k-1 \ \mathrm{and} \ k$
 - at least the topmost intersection point of the unit circles of V_{k-1}

Theorem

A bipartite dichotomous ordinal graph admits a geometric representation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

- \blacktriangleright root G_s at arbitrary vertex r
- ► $V_k, k = 0, ...$ is the BFS layer of G_s
- ▶ each V_k is placed on horizontal line ℓ_k
- ℓ_k has y-coordinate
 - between $k-1 \ \mathrm{and} \ k$
 - at least the topmost intersection point of the unit circles of V_{k-1}
- if x has two parents u and v we can guarantee that they are close

