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– G ≡ Kn,m (∃R-complete) [Peters (2017)]

▶ Angelini et al. (2019)

Positive Instances

▶ double-wheel
▶ 2-degenerate
▶ subcubic
▶ 4-colorable and the short

edges induce a caterpillar

Negative Instances

▶ double wheel plus one edge
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▶ U = {u1, u2, . . . , un}

– Ci the unit circle centered at ui

▶ If edge (ui, w) is short, then w should be placed in Ci.
▶ V (w) ⊆ U is the ”short neighborhood“ of w ∈ W

Goal: To find an arrangement C of C1, C2, . . . , Cn such that every
V (w) corresponds to a cell r

V (w) = {u1, u3}
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There is a dichotomous ordinalK4,7 that does not admit a geometric
representation.

▶ U = {u1, u2, u3, u4},W = {w1, . . . , w7}
▶ Counterexample:

– All four triplets
– The three pairs that contain u4

f

D4 ▶ We require to cross all singletons, but not fully
cover f .
⇒ A contradiction.
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7 - 7Short Subgraphs of the Grid
Theorem

A dichotomous ordinal graph G = (V,Es ∪Eℓ) admits a geometric
representation if the set of short edges induces a subgraph of the
grid.

▶ Four possible choices for each grid point
(i, j)
– x-coordinates in2 and in2 + i
– y-coordinates jn2 and jn2 + j

▶ Extend Gs by remaing long edges

▶ Long edges have length ≥ n2 + 1
▶ Short edges have length ≤ n2 + 1

2



8Conclusion
Open Problems
Do bipartite dichotomous ordinal graphs always admit a geometric
realization when:
(i) the underlying graph is planar?
(ii) the underlying graph is 3-degenerate?
(iii) the graph induced by the short edges is a 2-tree?

Questions (i) and (ii) are open even for non-bipartite dichotomous
ordinal graphs.
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Theorem

There is a dichotomous ordinalK5,5 that does not admit a geometric
representation.
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Theorem

There is a dichotomous ordinalK5,5 that does not admit a geometric
representation.

▶ U = {u1, u2, u3, u4, u5},W = {w1, w2, w3, w4, w5}
▶ Counterexample:

– V (wi) = {ui, ui⊕1, u5}, for 1 ≤ i ≤ 4
– V (w5) = U \ {u5}

▶ Each V (wi) corresponds to a cell in
arrangement C

▶ Analyze C geometrically to show
that it cannot be realized
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▶ if x has two parents u and v we can
guarantee that they are close


