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Known Results

» NP-hard to decide whether a dichotomous ordinal graph
G = (V,E, U FE,) admits a geometric representation, even if:
— G= K, and G5, = (V, E,) is a planar graph [Alam et al.
(2015)]
— G = K, (GR-complete) [Peters (2017)]
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Known Results

» NP-hard to decide whether a dichotomous ordinal graph
G = (V,Ey U E,) admits a geometric representation, even if:
— G= K, and G5, = (V, E,) is a planar graph [Alam et al.
(2015)]
— G = K, (GR-complete) [Peters (2017)]

> Angelini et al. (2019)

Positive Instances Negative Instances

» double-wheel » double wheel plus one edge
» 2-degenerate

» subcubic
» 4-colorable and the short
edges induce a caterpillar
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XG =Kyr

VG C Kyg
XG = K55

[t/GS = (V, E;) is a subgraph of the rectangular grid

J

[

vG = (V,E; U Ey) is bipartite and G5 = (V, E;) is outerplanar ]
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A characterization of complete bipartite graphs

VG CKs,, VGCKyp
XG=Kir XG=Ksp

[t/GS = (V, E;) is a subgraph of the rectangular grid ]

[l/G = (V, Es U Ey) is bipartite and G5 = (V, E;) is outerplanar ]
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Complete Bipartite Graphs

» G=(UUW,F)
> U = {ul,uz,...,un}
— (; the unit circle centered at w;
> If edge (u;,w) is short, then w should be placed in Cj.
» V(w) C U is the "short neighborhood” of w € W

V(w) ={u1,us}
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Complete Bipartite Graphs

» G=(UUW,FE)
> U = {ul,uz,...,un}
— (; the unit circle centered at w;
> If edge (u;,w) is short, then w should be placed in Cj.

» V(w) C U is the "short neighborhood” of w € W

Goal: To find an arrangement C of C,(, ..., (), such that every
V' (w) corresponds to a cell r

V(w) = {ur, us}

<

b-3



Complete Bipartite Graphs 0 -4

Every dichotomous ordinal K3 ,,, for m € N, and every dichotomous
ordinal K4 ,,, for m < 6, admits a geometric representation.
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Theorem

Every dichotomous ordinal K3 ,,, for m € N, and every dichotomous
ordinal K4 ,,, for m < 6, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n — 1) 4 2 cells
> KS,m .

— all eight subsets of U = {u1,us,u3} can be realized
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— (Case 2: At least three vertices from W are shortly connected to
a pair of U.
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There is a dichotomous ordinal K4 7 that does not admit a geometric
representation.
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» Counterexample:

— All four triplets
— The three pairs that contain uy
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Theorem

There is a dichotomous ordinal K4 7 that does not admit a geometric
representation.

w1
> U = {ul,u2,u3,U4}, W — {wl, .. ,w7}
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— All four triplets
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Theorem

There is a dichotomous ordinal K4 7 that does not admit a geometric
representation.

w1
> U = {ul,u2,u3,U4}, W — {wl, .. ,w7}
» Counterexample:

— All four triplets
— The three pairs that contain uy

Wy
A » We require to cross all singletons, but not fully
o’ cover f.
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Theorem

There is a dichotomous ordinal K4 7 that does not admit a geometric
representation.

w1
> U = {ul,u2,u3,U4}, W — {wl, .. ,w7}
» Counterexample:

— All four triplets
— The three pairs that contain uy

e W4

D
/m » We require to cross all singletons, but not fully
@Y "=
= A contradiction.
\ 4



Short Subgraphs of the Grid r-1

A dichotomous ordinal graph G = (V, Es U Ey) admits a geometric

representation if the set of short edges induces a subgraph of the
grid.
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Short Subgraphs of the Grid -3

A dichotomous ordinal graph G = (V, Es U Ey) admits a geometric
representation if the set of short edges induces a subgraph of the
grid.

» Extend G, by remaing long edges

oo o « o » Four possible choices for each grid point
(i, 7)

— x-coordinates in? and in? + 4

— y-coordinates jn? and jn? + j



Short Subgraphs of the Grid r-4

A dichotomous ordinal graph G = (V, Es U Ey) admits a geometric
representation if the set of short edges induces a subgraph of the
grid.

» Extend G, by remaing long edges

. P « o » Four possible choices for each grid point
SR 6 4)
— x-coordinates in? and in? + i
o Ao — y-coordinates jn? and jn? + j
@ o )
B
C



Short Subgraphs of the Grid [

A dichotomous ordinal graph G = (V, Es U Ey) admits a geometric
representation if the set of short edges induces a subgraph of the
grid.

» Extend G, by remaing long edges

» Four possible choices for each grid point

Qe @ o ® o (Z,j)
— x-coordinates in? and in? + i
.o ¢ .A JumD) — y-coordinates jn? and jn® + j



Short Subgraphs of the Grid r-0

A dichotomous ordinal graph G = (V, Es U Ey) admits a geometric
representation if the set of short edges induces a subgraph of the
grid.

» Extend G, by remaing long edges

» Four possible choices for each grid point

L 2 @ o ® o (Z,j)
— x-coordinates in® and in? + i
oo i A Junw — y-coordinates jn2 and an + 7
Qe ®
B
C



Short Subgraphs of the Grid r-f

A dichotomous ordinal graph G = (V, Es U Ey) admits a geometric
representation if the set of short edges induces a subgraph of the
grid.

» Extend G, by remaing long edges
longest possible short edge

» Four possible choices for each grid point

Qe ) o ° (Z,j)
— x-coordinates in? and in? + i
3 45, Tt — y-coordinates jn? and jn? + j

» Long edges have length > n? 41
» Short edges have length < n? + %

|

shortest possible long edge



Conclusion

Open Problems

Do bipartite dichotomous ordinal graphs always admit a geometric
realization when:

(i) the underlying graph is planar?

(ii) the underlying graph is 3-degenerate?

(iii) the graph induced by the short edges is a 2-tree?

Questions (i) and (ii) are open even for non-bipartite dichotomous
ordinal graphs.
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ordinal K4 ,,, for m < 6, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n — 1) 4 2 cells
> Ky U= {u1,u2,u3,us}

— (Case 2: At least three vertices from W are shortly connected to

a pair of U.
= We have at most three singletons and triplets

U C &
1 Missing Cells:
W4y P w1 R C4g
Ws ‘4“ w2 e C1NCHNCy



Complete Bipartite Graphs ) - 22

Theorem

Every dichotomous ordinal K3 ,,, for m € N, and every dichotomous
ordinal K4 ,,, for m < 6, admits a geometric representation.

Fact [Steiner (1826)] : n unit circles form at most n(n — 1) 4 2 cells
> Ky U= {u1,u2,u3,us}

— (Case 2: At least three vertices from W are shortly connected to

a pair of U.
= We have at most three singletons and triplets

Missing Cells:

® 04
o Clﬂ02ﬂ03
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There is a dichotomous ordinal K5 5 that does not admit a geometric
representation.




Complete Bipartite Graphs 10-2

Theorem
There is a dichotomous ordinal K5 5 that does not admit a geometric

representation.

> U = {uy,us,us, ug, us}, W = {wy, wa, w3, wy, ws}

w1 U1

» Counterexample:
— V(wz) = {ui,ui@l,%}, for 1 S ) S 4 A
- V(ws) =U \ {us} s ”
N~

» Each V(w;) corresponds to a cell in

arrangement C
» Analyze C geometrically to show
that it cannot be realized



Short Outerplanar Graphs 11-1

A bipartite dichotomous ordinal graph admits a geometric represen-
tation if the subgraph induced by the short edges is outerplanar.
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A bipartite dichotomous ordinal graph admits a geometric represen-
tation if the subgraph induced by the short edges is outerplanar.

Layered Drawing




Short Outerplanar Graphs 11-3

A bipartite dichotomous ordinal graph admits a geometric represen-
tation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

» root GG, at arbitrary vertex r




Short Outerplanar Graphs 11-4

A bipartite dichotomous ordinal graph admits a geometric represen-
tation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

» root GG, at arbitrary vertex r
» V., k=0,... is the BFS layer of G




Short Outerplanar Graphs 11-5

A bipartite dichotomous ordinal graph admits a geometric represen-
tation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

» root GG, at arbitrary vertex r

» V., k=0,... is the BFS layer of G
» each V. is placed on horizontal line
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Short Outerplanar Graphs

A bipartite dichotomous ordinal graph admits a geometric represen-
tation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

» root GG, at arbitrary vertex r
» V., k=0,... is the BFS layer of G
» each V. is placed on horizontal line
» (. has y-coordinate
— between £ — 1 and &
— at least the topmost intersection
point of the unit circles of Vj._;




Short Outerplanar Graphs 11 -7

A bipartite dichotomous ordinal graph admits a geometric represen-
tation if the subgraph induced by the short edges is outerplanar.

Layered Drawing

» root GG, at arbitrary vertex r

Vi.,k =0,... is the BFS layer of G
each V. is placed on horizontal line £,
/3. has y-coordinate

— between k£ — 1 and £
— at least the topmost intersection

point of the unit circles of Vj._;
» if x has two parents © and v we can
guarantee that they are close

vVwvyy




