Bounds on the Edge-length Ratio of 2-outerplanar Graphs

Giuseppe (Beppe) Liotta

University of Perugia, Italy

Joint work with: E.Di Giacomo, W. Didimo, H. Meijer, F. Montecchiani, and S. Wismath

Outline

Problem definition

State of the art and our contribution

Some technicalities

Open problems

What is the (local) edge-length ratio?

Edge-length Ratio of a Planar Drawing

Let Γ be a planar straight-line drawing of a graph.

The edge-length ratio $\rho(\Gamma)$ of Γ is the maximum ratio between the lengths of every pair of its edges.

Example

Example

 $\rho(\Gamma) = 5$

Edge-length Ratio of a Planar Graph

Let G be a planar graph and let D(G) be the set of all planar straight-line drawings of G.

The edge-length ratio $\rho(G)$ of G is

$$\rho(G) = \inf_{\{\Gamma \in D(G)\}} \rho(\Gamma)$$

Local Edge-length Ratio of a Planar Drawing

Let Γ be a planar straight-line drawing of a graph.

The local edge-length ratio $\rho_{\ell}(\Gamma)$ is the maximum ratio between the lengths of every pair of adjacent edges of of Γ .

Example

 $\rho_\ell(\Gamma) = 2$

Local Edge-length Ratio of a Planar Graph

Let G be a planar graph and let D(G) be the set of all planar straight-line drawings of G.

The local edge-length ratio $\rho(G)$ of G is

$$\rho_{\ell}(G) = \inf_{\{\Gamma \in D(G)\}} \rho_{\ell}(\Gamma)$$

A Natural Question

Establish upper and lower bounds on the (local) edge-length ratios for various families of planar graphs.

Note: A lower bound on the local edge-length ratio is also a lower on the edge-length ratio; an upper bound on the edge-length ratio is also an upper bound on the local edge-length ratio.

What's known about these bounds?

Some recent results

 $\omega(1)$ Lower Bounds:

The edge-length ratio over the class of n-vertex 3-trees is in $\Omega(n)$ [Borrazzo,Frati – 2020]

The edge-length ratio over the class of n-vertex 2-trees is in $\Omega(\log n)$ [Blazej, Fiala, L. - 2021]

Upper Bounds:

Let G be an n-vertex 2-tree: $\rho(G) \in O(n^{0.695})$ [Borrazzo,Frati – 2020]

Let G be an n-vertex 2-tree: $\rho_{\ell}(G) \leq 4$ [Blazej, Fiala, L. - 2021]

Let G be an outerplanar graph: $\rho(G) = 2$ [Lazard, Lenhart, L. - 2019]

Our Contribution

Our Contribution

• We prove that the <u>local</u> edge-length ratio over the class of n-vertex 2-outerplanar graphs is in $\Omega(\sqrt{n})$.

Our Contribution

• We prove that the <u>local</u> edge-length ratio over the class of n-vertex 2-outerplanar graphs is in $\Omega(\sqrt{n})$.

•We study family of graphs having outerplanarity 2 for which $\rho(G) \in O(1)$ (and hence $\rho_{\ell}(G) \in O(1)$). In the proceedings: Halin graphs.

A Glance at the Technicalities: Lower Bound

 $P(\Delta_k) > P(\Delta_{k-1}) + 0.3$

Sketch of the Lower Bound (Variable Embedding)

A Glance at the Technicalities: Upper Bound

K-span Weakly Level Planarity

max edge span = 4

4-span weakly level planar drawing

From Weakly Level Planar to Level Planar

4-span weakly level planar drawing

9-span level planar drawing of the same graph

9-span level planar drawing of the same graph

9-span level planar drawing of the same graph

9-span level planar drawing of the same graph

...moral of the story.....

Lemma: If a planar graph G admits a k-span weakly level planar drawing, then $\rho(G) \le 2k + 1$

Halin Graphs

Theorem: Every Halin graph G different from K_4 admits a 1-span weakly level planar drawing. Hence, $\rho(G) \leq 3$

Open Problems

Is there an $\omega(\sqrt{n})$ lower bound for the local edgelength ratio?

Is the upper bound on the edge-length ratio of Halin graphs tight?

Investigate trade-offs between (local) edge-length ratio and other aesthetics, for example the angular resolution. That's all, thank you!!