Bounds on the Edge-length Ratio of 2-outerplanar Graphs

Giuseppe (Beppe) Liotta

University of Perugia, Italy

Joint work with: E.Di Giacomo, W. Didimo, H. Meijer, F.
Montecchiani, and S. Wismath

Outline

Problem definition

State of the art and our contribution

Some technicalities

Open problems

What is the (local) edge-length ratio?

Edge-length Ratio of a Planar Drawing

Let Γ be a planar straight-line drawing of a graph.

The edge-length ratio $\rho(\Gamma)$ of Γ is the maximum ratio between the lengths of every pair of its edges.

Example

Example

$\rho(\Gamma)=5$

Edge-length Ratio of a Planar Graph

Let G be a planar graph and let $\boldsymbol{D}(\boldsymbol{G})$ be the set of all planar straight-line drawings of G.

The edge-length ratio $\rho(G)$ of G is

$$
\rho(G)=\inf _{\{\Gamma \in D(G)\}} \rho(\Gamma)
$$

Local Edge-length Ratio of a Planar Drawing

Let Γ be a planar straight-line drawing of a graph.

The local edge-length ratio $\rho_{\ell}(\Gamma)$ is the maximum ratio between the lengths of every pair of adjacent edges of of Γ.

Example

Example

$$
\rho_{\ell}(\Gamma)=2
$$

Local Edge-length Ratio of a Planar Graph

Let G be a planar graph and let $\boldsymbol{D}(\boldsymbol{G})$ be the set of all planar straight-line drawings of G.

The local edge-length ratio $\rho(G)$ of G is

$$
\rho_{\ell}(\boldsymbol{G})=\inf _{\{\Gamma \in \boldsymbol{D}(G)\}} \rho_{\ell}(\Gamma)
$$

A Natural Question

Establish upper and lower bounds on the (local) edge-length ratios for various families of planar graphs.

Note: A lower bound on the local edge-length ratio is also a lower on the edge-length ratio; an upper bound on the edge-length ratio is also an upper bound on the local edge-length ratio.

What's known about these bounds?

Some recent results

$\omega(1)$ Lower Bounds:

The edge-length ratio over the class of n-vertex 3 -trees is in $\Omega(n)$ [Borrazzo,Frati - 2020]
The edge-length ratio over the class of n-vertex 2 -trees is in $\Omega(\log n)$ [Blazej, Fiala, L. - 2021]

Upper Bounds:

Let G be an n-vertex 2-tree: $\rho(G) \in O\left(n^{0.695}\right)$ [Borrazzo,Frati - 2020]
Let G be an n-vertex 2-tree: $\rho_{\ell}(G) \leq 4$ [Blazej, Fiala, L. - 2021]
Let G be an outerplanar graph: $\rho(G)=2$ [Lazard, Lenhart, L. - 2019]

Our Contribution

Our Contribution

- We prove that the local edge-length ratio over the class of n-vertex 2-outerplanar graphs is in $\Omega(\sqrt{n})$.

Our Contribution

- We prove that the local edge-length ratio over the class of n-vertex 2-outerplanar graphs is in $\Omega(\sqrt{n})$.
- We study family of graphs having outerplanarity 2 for which $\rho(G) \in O(1)$ (and hence $\left.\rho_{\ell}(G) \in O(1)\right)$. In the proceedings: Halin graphs.

A Glance at the Technicalities: Lower Bound

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Fixed Embedding)

Sketch of the Lower Bound (Variable Embedding)

A Glance at the Technicalities: Upper Bound

K-span Weakly Level Planarity

max edge span = 4

4-span weakly level planar drawing

From Weakly Level Planar to Level Planar

4-span weakly level planar drawing

9-span level planar drawing of the same graph

Edge-length Ratio and Level Planarity

9-span level planar drawing of the same graph

Edge-length Ratio and Level Planarity

9-span level planar drawing of the same graph

Edge-length Ratio and Level Planarity

9-span level planar drawing of the same graph

Edge-length Ratio and Level Planarity

9-span level planar drawing of the same graph

Edge-length Ratio and Level Planarity

9-span level planar drawing of the same graph

$\rho(\Gamma) \leq 9+\varepsilon$ for any $\varepsilon>0$

...moral of the story.....

Lemma: If a planar graph G admits a k-span weakly level planar drawing, then $\rho(G) \leq 2 k+1$

Halin Graphs

Theorem: Every Halin graph G different from K_{4} admits a 1-span weakly level planar drawing. Hence, $\rho(G) \leq 3$

Open Problems

Is there an $\omega(\sqrt{n})$ lower bound for the local edgelength ratio?

Is the upper bound on the edge-length ratio of Halin graphs tight?

Investigate trade-offs between (local) edge-length ratio and other aesthetics, for example the angular resolution.

That's all, thank you!!

