Simplified and Improved Bounds on the VC-Dimension for Elastic Distance Measures

Frederik Brüning Anne Driemel

University of Bonn

Ioannina, March 13, 2024

VC-Dimension of a Range Space

Range space \mathcal{R} with ground set X :
Set \mathcal{R} s.t. any $r \in \mathcal{R}$ is of the form $r \subseteq X$

Example:

Balls with ground set $X=\mathbb{R}^{2}$:

$$
\mathcal{R}=\left\{b(c, \Delta) \mid \Delta \in \mathbb{R}_{+}, c \in \mathbb{R}^{2}\right\}
$$

where

$$
b(c, \Delta)=\left\{x \in \mathbb{R}^{2} \mid\|x-c\| \leq \Delta\right\}
$$

$=$

VC-Dimension of a Range Space

Range space \mathcal{R} with ground set X :
Set \mathcal{R} s.t. any $r \in \mathcal{R}$ is of the form $r \subseteq X$
Shattering:
$A \subseteq X$ is shattered by $\mathcal{R} \Longleftrightarrow$
$\forall A^{\prime} \subseteq A \exists r \in \mathcal{R}$ s.t. $A^{\prime}=r \cap A$
(all subsets of A can be realized by ranges in \mathcal{R})
VC-dim (\mathcal{R}) :
Maximal size of a shattered subset $A \subseteq X$

Example:

Balls with ground set $X=\mathbb{R}^{2}$:

$$
\mathcal{R}=\left\{b(c, \Delta) \mid \Delta \in \mathbb{R}_{+}, c \in \mathbb{R}^{2}\right\}
$$

where

$$
b(c, \Delta)=\left\{x \in \mathbb{R}^{2} \mid\|x-c\| \leq \Delta\right\}
$$

$\mathrm{VC}-\operatorname{dim}(\mathcal{R})=3$

VC-Dimension of a Range Space

Range space \mathcal{R} with ground set X :
Set \mathcal{R} s.t. any $r \in \mathcal{R}$ is of the form $r \subseteq X$
Example:
Balls with ground set $X=\mathbb{R}^{2}$:

$$
\mathcal{R}=\left\{b(c, \Delta) \mid \Delta \in \mathbb{R}_{+}, c \in \mathbb{R}^{2}\right\}
$$

Shattering:
$A \subseteq X$ is shattered by $\mathcal{R} \Longleftrightarrow$
$\forall A^{\prime} \subseteq A \exists r \in \mathcal{R}$ s.t. $A^{\prime}=r \cap A$
(all subsets of A can be realized by ranges in \mathcal{R})
VC-dim (\mathcal{R}) :
Maximal size of a shattered subset $A \subseteq X$

$$
b(c, \Delta)=\left\{x \in \mathbb{R}^{2} \mid\|x-c\| \leq \Delta\right\}
$$

$\operatorname{VC-dim}(\mathcal{R})=3$

VC-Dimension of a Range Space

Range space \mathcal{R} with ground set X :
Set \mathcal{R} s.t. any $r \in \mathcal{R}$ is of the form $r \subseteq X$

Example:

Balls with ground set $X=\mathbb{R}^{2}$:

$$
\mathcal{R}=\left\{b(c, \Delta) \mid \Delta \in \mathbb{R}_{+}, c \in \mathbb{R}^{2}\right\}
$$

Shattering:
$A \subseteq X$ is shattered by $\mathcal{R} \Longleftrightarrow$
$\forall A^{\prime} \subseteq A \exists r \in \mathcal{R}$ s.t. $A^{\prime}=r \cap A$
(all subsets of A can be realized by ranges in \mathcal{R})
VC-dim (\mathcal{R}) :
Maximal size of a shattered subset $A \subseteq X$

$$
b(c, \Delta)=\left\{x \in \mathbb{R}^{2} \mid\|x-c\| \leq \Delta\right\}
$$

$\operatorname{VC-dim}(\mathcal{R})=3$

VC-Dimension of a Range Space

Range space \mathcal{R} with ground set X :
Set \mathcal{R} s.t. any $r \in \mathcal{R}$ is of the form $r \subseteq X$
Example:
Balls with ground set $X=\mathbb{R}^{2}$:

$$
\mathcal{R}=\left\{b(c, \Delta) \mid \Delta \in \mathbb{R}_{+}, c \in \mathbb{R}^{2}\right\}
$$

Shattering:
$A \subseteq X$ is shattered by $\mathcal{R} \Longleftrightarrow$
$\forall A^{\prime} \subseteq A \exists r \in \mathcal{R}$ s.t. $A^{\prime}=r \cap A$
(all subsets of A can be realized by ranges in \mathcal{R})
VC-dim (\mathcal{R}) :
Maximal size of a shattered subset $A \subseteq X$

$$
b(c, \Delta)=\left\{x \in \mathbb{R}^{2} \mid\|x-c\| \leq \Delta\right\}
$$

$$
\mathrm{VC}-\operatorname{dim}(\mathcal{R})=3
$$

Motivation: What are VC-Dimension bounds used for?

Sample bounds for computational tasks:

- ϵ-nets, relative-error (p, ϵ)-approximations
- test error of classification model

Applications:

- kernel density estimation
- coresets
- clustering
- object recognition

Range Spaces for Elastic Distance Measures

Range spaces:

$$
\begin{aligned}
d_{\rho} & =\text { distance measure on }\left(\mathbb{R}^{d}\right)^{m} \\
b_{\rho}(c, \Delta) & =\left\{x \in\left(\mathbb{R}^{d}\right)^{m} \mid d_{\rho}(x, c) \leq \Delta\right\} \\
\mathcal{R}_{\rho, k} & =\left\{b_{\rho}(c, \Delta) \mid \Delta \in \mathbb{R}_{+}, c \in\left(\mathbb{R}^{d}\right)^{k}\right\}
\end{aligned}
$$

Distance measures:

- Hausdorff
- (weak) Fréchet
- Dynamic Time Warping

Ground set $\left(\left(\mathbb{R}^{d}\right)^{m}\right) /$ Centers $\left(\left(\mathbb{R}^{d}\right)^{k}\right)$:

- Polygonal regions
- continuous polygonal curves
- discrete polygonal curves

Hausdorff Distance

directed Hausdorff distance:
$d_{\vec{H}}(P, Q)=\sup _{p \in P} \inf _{q \in Q}\|p-q\|$
Hausdorff distance:

$$
d_{H}(P, Q)=\max \left\{d_{\vec{H}}(P, Q), d_{\vec{H}}(Q, P)\right\}
$$

for $P, Q \subseteq \mathbb{R}^{d}$

Results

		new	old
discrete polygonal curves	DTW	$O\left(d k^{2} \log (m)\right)$	-
	Hausdorff	$O(d k m \log (k))$	
	Fréchet	$O(d k \log (k m))$	$O(d k \log (k m))^{(*)}$
continuous polygonal curves	Hausdorff	$O(d k \log (k m))$	
	Fréchet	$O(d k \log (k m))^{(*)}$	
polygons \mathbb{R}^{2}	Hausdorff	$O(k \log (k m))$	
polyéchet	$O(d k \log (k m))^{(*)}$	$O\left(d^{2} k \log (d k m)\right)$	

Table: Overview of VC-dimension bounds. Results marked with ${ }^{(*)}$ were independently obtained by Cheng and Huang [2024]. The old results were obtained by Driemel, Nusser, Phillips and Psarros [2021].

Lower bound (Driemel, Nusser, Phillips and Psarros [2021]): $\Omega(\max (d k \log (k), \log (d m)))$ for $d \geq 4$ for polygonal curves.

General Approach

Approach:

- Split query $d_{H}(P, Q)$ into predicates
- Express predicates as combinations of sign values of polynomials
- Bound VC-dim based on number of cells in arrangement of zero sets of polynomials.

Definition:

F: Class of polynomials of constant degree from $\mathbb{R}^{d k+1} \times \mathbb{R}^{d m}$ to \mathbb{R}
\mathcal{R} is t-combination of $\operatorname{sgn}(F): \exists$ boolean function $g, \exists f_{1}, \ldots, f_{t} \in F$ s.t. $\forall r \in \mathcal{R} \exists y$ s.t.
$r=\left\{x \in X \mid g\left(\operatorname{sgn}\left(f_{1}(y, x)\right), \ldots, \operatorname{sgn}\left(f_{t}(y, x)\right)\right)=1\right\}$

Theorem (Anthony and Bartlett 1999):
Suppose \mathcal{R} is a t-combination of $\operatorname{sgn}(F)$. Then $\operatorname{VC-dim}(\mathcal{R})$ is in $O(d k \log (t))$. Idea goes back to Goldberg and Jerrum [1993] and independently Ben-David and Lindenbaum [1993].

Predicates

Predicates \mathcal{P}_{1} and \mathcal{P}_{2} are by Driemel, Nusser, Phillips and Psarros [2021]

Predicates

Cases:

$d_{\vec{H}}(P, Q)$ maximized at point p at the boundary of P
$d_{\vec{H}}(Q, P)$ maximized at point q in the interior of Q

Predicates:

- (\mathcal{B}) (Boundary): True $\Longleftrightarrow d_{\vec{H}}(\partial P, Q) \leq \Delta$.
- (I) (Interior): True if $d_{\vec{H}}(P, Q) \leq \Delta$. False if $d_{\vec{H}}(P, Q)>d_{\vec{H}}(\partial P, Q)$ and $d_{\vec{H}}(P, Q)>\Delta$.

$$
d_{\vec{H}}(P, Q) \leq \Delta \Longleftrightarrow(\mathcal{B}) \text { and }(\mathcal{I}) \text { true }
$$

Predicate (\mathcal{B})

(B) (Boundary): True $\Longleftrightarrow d_{\vec{H}}(\partial P, Q) \leq \Delta$
$d_{\vec{H}}(\partial P, Q) \leq \Delta \Longleftrightarrow d_{\vec{H}}(e, Q) \leq \Delta$ for every edge e of P

- Find for each e the part that is outside of Q (here $\overline{s t}$)
- Find sequence of edges of Q such that these parts are included in their stadiums (here a, b, c)

Predicate (\mathcal{B})

Find part of e that is outside of Q (here $\overline{s t}$)

- $\mathcal{P}_{3}: p \in Q$?
- $\mathcal{P}_{4}: e_{1} \cap e_{2} \neq \emptyset$?
- $\mathcal{P}_{5}: e_{1}$ intersects e_{2} before e_{3} ?

Predicate (\mathcal{B})

Find stadiums that include s and t (here a and c)

- $\mathcal{P}_{6} / P_{7}: \exists b$ on e_{3} with $\|b-a\| \leq \Delta$?
- $\mathcal{P}_{6}: a$ is first point on e_{1} in $e_{1} \cap e_{2}$
- $\mathcal{P}_{7}: a$ is last point on e_{1} in $e_{1} \cap e_{2}$

Predicate (\mathcal{B})

Find stadiums that include s and p_{2} (here a and c)

- $\mathcal{P}_{1}: \exists q$ on e_{1} with $\|p-q\| \leq \Delta$?

Predicate (\mathcal{B})

Find sequence of stadiums that include $\overline{s t}$ (here a, b, c)

- $D_{\Delta, 2}\left(e_{1}, e_{2}\right)$: intersection of stadiums around e_{1}, e_{2}
- $\mathcal{P}_{2}: \ell\left(\overline{p_{j} p_{j+1}}\right) \cap D_{\Delta, 2}\left(e_{1}, e_{2}\right) \neq \emptyset$?

Predicate (\mathcal{I})

(\mathcal{I}) (Distance realized in interior): We only check vertices of Voronoi diagram of edges of Q.

Predicate (I)

(\mathcal{I}) (Distance realized in interior): We only check vertices of Voronoi diagram of edges of Q.

c)

We check distances of all Voronoi vertices to all edges of Q.
A Voronoi vertex is relevant if it is inside of P and outside of Q.

- $\mathcal{P}_{8}: \exists p$ on e_{4} with $\|v-p\| \leq \Delta$?
- $\mathcal{P}_{9}: v \in Q$?
- $\mathcal{P}_{10}: v \in P$?

Remaining step

Lemma

For any two polygonal regions P and Q (that may contain holes), given the truth values of all predicates of the type $\mathcal{P}_{1}, \ldots, \mathcal{P}_{10}$ one can determine whether $d_{\vec{H}}(P, Q) \leq \Delta$.

Remaining step:

Express predicates $\mathcal{P}_{1}, \ldots, \mathcal{P}_{10}$ as combinations of sign values of polynomials.

Results

		new	old
discrete polygonal curves	DTW	$O\left(d k^{2} \log (m)\right)$	-
	Hausdorff	$O(d k m \log (k))$	
	Fréchet	$O(d k \log (k m))$	$O(d k \log (k m))^{(*)}$
continuous polygonal curves	Hausdorff	$O(d k \log (k m))$	
	Fréchet	$O(d k \log (k m))^{(*)}$	
polygons \mathbb{R}^{2}	Hausdorff	$O(k \log (k m))$	
polyéchet	$O(d k \log (k m))^{(*)}$	$O\left(d^{2} k \log (d k m)\right)$	

Table: Overview of VC-dimension bounds. Results marked with ${ }^{(*)}$ were independently obtained by Cheng and Huang [2024]. The old results were obtained by Driemel, Nusser, Phillips and Psarros [2021]

Lower bound (Driemel, Nusser, Phillips and Psarros [2021]): $\Omega(\max (d k \log (k), \log (d m)))$ for $d \geq 4$ for polygonal curves.

