Simplified and Improved Bounds on the VC-Dimension for Elastic Distance Measures

Frederik Brüning Anne Driemel

University of Bonn

Ioannina, March 13, 2024

Example: Balls with ground set $X = \mathbb{R}^2$: $\mathcal{R} = \{b(c, \Delta) \mid \Delta \in \mathbb{R}_+, c \in \mathbb{R}^2\}$ where $b(c, \Delta) = \{x \in \mathbb{R}^2 \mid ||x - c|| \le \Delta\}$

Example: Balls with ground set $X = \mathbb{R}^2$: $\mathcal{R} = \{b(c, \Delta) \mid \Delta \in \mathbb{R}_+, c \in \mathbb{R}^2\}$ where $b(c, \Delta) = \{x \in \mathbb{R}^2 \mid ||x - c|| \le \Delta\}$ VC-dim $(\mathcal{R}) = 3$

Example: Balls with ground set $X = \mathbb{R}^2$: $\mathcal{R} = \{b(c, \Delta) \mid \Delta \in \mathbb{R}_+, c \in \mathbb{R}^2\}$ where $b(c, \Delta) = \{x \in \mathbb{R}^2 \mid ||x - c|| \le \Delta\}$ VC-dim $(\mathcal{R}) = 3$

Maximal size of a shattered subset $A \subseteq X$

Example: Balls with ground set $X = \mathbb{R}^2$: $\mathcal{R} = \{b(c, \Delta) \mid \Delta \in \mathbb{R}_+, c \in \mathbb{R}^2\}$ where $b(c, \Delta) = \{x \in \mathbb{R}^2 \mid ||x - c|| \le \Delta\}$ VC-dim $(\mathcal{R}) = 3$

Sample bounds for computational tasks:

- ϵ -nets, relative-error (p, ϵ)-approximations
- test error of classification model

Applications:

- kernel density estimation
- coresets
- clustering
- object recognition
- ...

Range Spaces for Elastic Distance Measures

Range spaces:

$$egin{aligned} &d_{
ho}= ext{distance measure on }(\mathbb{R}^d)^m\ &b_{
ho}(c,\Delta)=\{x\in(\mathbb{R}^d)^m\mid d_{
ho}(x,c)\leq\Delta\}\ &\mathcal{R}_{
ho,k}=\{b_{
ho}(c,\Delta)\mid\Delta\in\mathbb{R}_+,c\in(\mathbb{R}^d)^k\}\end{aligned}$$

Distance measures:

- Hausdorff
- (weak) Fréchet
- Dynamic Time Warping

Ground set $((\mathbb{R}^d)^m)$ /Centers $((\mathbb{R}^d)^k)$:

- Polygonal regions
- continuous polygonal curves
- discrete polygonal curves

directed Hausdorff distance: $d_{\overrightarrow{H}}(P,Q) = \sup_{p \in P} \inf_{q \in Q} \|p - q\|$

Hausdorff distance: $d_{H}(P,Q) = \max\{d_{\overrightarrow{H}}(P,Q), d_{\overrightarrow{H}}(Q,P)\}$

for $P, Q \subseteq \mathbb{R}^d$

•		new	old
discrete polygonal curves	DTW	$O(dk^2\log(m))$	_
		$O(dkm\log(k))$	
	Hausdorff	$O(dk \log(km))$	$O(dk \log(dkm))$
	Fréchet	$O(dk \log(km))^{(*)}$	
continuous polygonal curves	Hausdorff	$O(dk \log(km))$	$O(d^2k^2\log(dkm))$
	Fréchet	$O(dk \log(km))^{(*)}$	
	weak Fréchet	$O(dk \log(km))^{(*)}$	$O(d^2k\log(dkm))$
polygons \mathbb{R}^2	Hausdorff	$O(k \log(km))$	-

Table: Overview of VC-dimension bounds. Results marked with $^{(*)}$ were independently obtained by Cheng and Huang [2024]. The old results were obtained by Driemel, Nusser, Phillips and Psarros [2021].

Lower bound (Driemel, Nusser, Phillips and Psarros [2021]): $\Omega(\max(dk \log(k), \log(dm)))$ for $d \ge 4$ for polygonal curves.

General Approach

Approach:

- Split query $d_H(P, Q)$ into predicates
- Express predicates as combinations of sign values of polynomials
- Bound VC-dim based on number of cells in arrangement of zero sets of polynomials.

Definition:

 $F\colon$ Class of polynomials of constant degree from $\mathbb{R}^{dk+1}\times\mathbb{R}^{dm}$ to \mathbb{R}

 \mathcal{R} is *t*-combination of $\operatorname{sgn}(F)$: \exists boolean function *g*, $\exists f_1, \ldots, f_t \in F$ s.t. $\forall r \in \mathcal{R} \exists y \text{ s.t.}$

 $r = \{x \in X \mid g(\operatorname{sgn}(f_1(y, x)), \dots, \operatorname{sgn}(f_t(y, x))) = 1\}$

Theorem (Anthony and Bartlett 1999): Suppose \mathcal{R} is a *t*-combination of sgn(F). Then VC-dim(\mathcal{R}) is in $O(dk \log(t))$. Idea goes back to Goldberg and Jerrum [1993] and independently Ben-David and Lindenbaum [1993].

Frederik Brüning, Anne Driemel

Predicates

Predicates \mathcal{P}_1 and \mathcal{P}_2 are by Driemel, Nusser, Phillips and Psarros [2021]

Predicates

Cases:

 $d_{\overrightarrow{H}}(P,Q)$ maximized at point p at the boundary of P $d_{\overrightarrow{H}}(Q,P)$ maximized at point q in the interior of Q

Predicates:

- (B) (Boundary): True $\iff d_{\overrightarrow{H}}(\partial P, Q) \leq \Delta$.
- (*I*) (Interior): True if $d_{\overrightarrow{H}}(P,Q) \leq \Delta$. False if $d_{\overrightarrow{H}}(P,Q) > d_{\overrightarrow{H}}(\partial P,Q)$ and $d_{\overrightarrow{H}}(P,Q) > \Delta$.

$$d_{\overrightarrow{H}}(P,Q) \leq \Delta \iff (\mathcal{B}) \text{ and } (\mathcal{I}) \text{ true}$$

 (\mathcal{B}) (Boundary): True $\iff d_{\overrightarrow{H}}(\partial P, Q) \leq \Delta$

 $d_{\overrightarrow{H}}(\partial P,Q) \leq \Delta \iff d_{\overrightarrow{H}}(e,Q) \leq \Delta \text{ for every edge } e \text{ of } P$

- Find for each e the part that is outside of Q (here \overline{st})
- Find sequence of edges of Q such that these parts are included in their stadiums (here a, b, c)

$\mathsf{Predicate}\ (\mathcal{B})$

Find part of e that is outside of Q (here \overline{st})

- \mathcal{P}_3 : $p \in Q$?
- \mathcal{P}_4 : $e_1 \cap e_2 \neq \emptyset$?
- \mathcal{P}_5 : e_1 intersects e_2 before e_3 ?

Frederik Brüning, Anne Driemel

$\mathsf{Predicate}\ (\mathcal{B})$

Find stadiums that include s and t (here a and c)

- \mathcal{P}_6/P_7 : $\exists b \text{ on } e_3 \text{ with } \|b-a\| \leq \Delta$?
- \mathcal{P}_6 : *a* is first point on e_1 in $e_1 \cap e_2$
- \mathcal{P}_7 : *a* is last point on e_1 in $e_1 \cap e_2$

Predicate (\mathcal{B})

Find stadiums that include s and p_2 (here a and c)

• \mathcal{P}_1 : $\exists q \text{ on } e_1 \text{ with } \|p-q\| \leq \Delta$?

$\mathsf{Predicate}\ (\mathcal{B})$

Find sequence of stadiums that include \overline{st} (here a, b, c)

- $D_{\Delta,2}(e_1,e_2)$: intersection of stadiums around e_1,e_2
- \mathcal{P}_2 : $\ell(\overline{p_j p_{j+1}}) \cap D_{\Delta,2}(e_1, e_2) \neq \emptyset$?

$\mathsf{Predicate}\ (\mathcal{I})$

 (\mathcal{I}) (Distance realized in interior): We only check vertices of Voronoi diagram of edges of Q.

$\mathsf{Predicate}\ (\mathcal{I})$

 (\mathcal{I}) (Distance realized in interior): We only check vertices of Voronoi diagram of edges of Q.

We check distances of all Voronoi vertices to all edges of Q. A Voronoi vertex is relevant if it is inside of P and outside of Q.

- \mathcal{P}_8 : $\exists p \text{ on } e_4 \text{ with } \|v p\| \leq \Delta$?
- \mathcal{P}_9 : $v \in Q$?
- \mathcal{P}_{10} : $v \in \mathbf{P}$?

Lemma

For any two polygonal regions P and Q (that may contain holes), given the truth values of all predicates of the type $\mathcal{P}_1, \ldots, \mathcal{P}_{10}$ one can determine whether $d_{\overrightarrow{u}}(P, Q) \leq \Delta$.

Remaining step:

Express predicates $\mathcal{P}_1, \ldots, \mathcal{P}_{10}$ as combinations of sign values of polynomials.

•		new	old
discrete polygonal curves	DTW	$O(dk^2\log(m))$	_
		$O(dkm\log(k))$	
	Hausdorff	$O(dk \log(km))$	$O(dk \log(dkm))$
	Fréchet	$O(dk \log(km))^{(*)}$	
continuous polygonal curves	Hausdorff	$O(dk \log(km))$	$O(d^2k^2\log(dkm))$
	Fréchet	$O(dk \log(km))^{(*)}$	
	weak Fréchet	$O(dk \log(km))^{(*)}$	$O(d^2k\log(dkm))$
polygons \mathbb{R}^2	Hausdorff	$O(k \log(km))$	-

Table: Overview of VC-dimension bounds. Results marked with ^(*) were independently obtained by Cheng and Huang [2024]. The old results were obtained by Driemel, Nusser, Phillips and Psarros [2021]

Lower bound (Driemel, Nusser, Phillips and Psarros [2021]): $\Omega(\max(dk \log(k), \log(dm)))$ for $d \ge 4$ for polygonal curves.