Computing an ε-net of a closed hyperbolic surface

Vincent Despré, Camille Lanuel, Monique Teillaud

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
EuroCG 2024

Euclidean geometry

Axioms of Euclidean geometry:

(1) There is one and only one line segment between any two given points.
(2) Any line segment can be extended continuously to a line.
(3) There is one and only one circle with any given center and any given radius.
(4) All right angles are congruent to one another.

5 (Parallel postulate) Given a line and a point not on the line, there is exactly one line through the point that is parallel to the given line.

Hyperbolic geometry

Axioms of hyperbolic geometry:

(1) There is one and only one line segment between any two given points.
(2) Any line segment can be extended continuously to a line.
(3) There is one and only one circle with any given center and any given radius.
(4) All right angles are congruent to one another.
(5) Given a line and a point not on the line, there are infinitely many lines through the point that are parallel to the given line.

The Poincaré disk model of the hyperbolic plane

Model $=$ metric space satisfying the axioms

Definition

The Poincaré disk model of the hyperbolic plane is

$$
\mathbb{D}=\left\{u+i v \in \mathbb{C}: u^{2}+v^{2}<1\right\}
$$

equipped with the metric $d s^{2}=\frac{4\left(d u^{2}+d v^{2}\right)}{\left(1-\left(u^{2}+v^{2}\right)\right)^{2}}$.

Geodesics in the Poincaré disk model.

The Poincaré disk model of the hyperbolic plane

Model $=$ metric space satisfying the axioms

Definition

The Poincaré disk model of the hyperbolic plane is

$$
\mathbb{D}=\left\{u+i v \in \mathbb{C}: u^{2}+v^{2}<1\right\}
$$

equipped with the metric $d s^{2}=\frac{4\left(d u^{2}+d v^{2}\right)}{\left(1-\left(u^{2}+v^{2}\right)\right)^{2}}$.

Hyperbolic surface

- Surface $=2$-dimensional compact $\&$ connected manifold without boundary.
- Hyperbolic surface $=$ surface + metric s.t. it is locally isometric to the hyperbolic plane \mathbb{H}^{2}.

Hyperbolic surface

- Surface $=2$-dimensional compact $\&$ connected manifold without boundary.
- Hyperbolic surface $=$ surface + metric s.t. it is locally isometric to the hyperbolic plane \mathbb{H}^{2}.
- Any surface with genus $g \geqslant 2$ (number of handles) admits a hyperbolic metric.

Fundamental domain

Fundamental domain for the flat torus ($g=1$, Euclidean metric):

Fundamental domain

Fundamental domain for a genus 2 hyperbolic surface:

Dirichlet domain

Hyperbolic surface $S=\mathbb{H}^{2} / \Gamma$
$\Gamma=$ group of orientation-preserving isometries

Ex: the Bolza surface. (CGAL documentation.)

Dirichlet domain

Hyperbolic surface $S=\mathbb{H}^{2} / \Gamma$
$\Gamma=$ group of orientation-preserving isometries
Dirichlet domain $\mathcal{D}_{\widetilde{b}}$ of a point $\widetilde{b} \in \mathbb{H}^{2}=$
Voronoi cell of \widetilde{b} in the Voronoi diagram of $\Gamma \widetilde{b}$

Ex: the Bolza surface. (CGAL documentation.)

ε-net

(X, d) a metric space
$\varepsilon>0$
A subset $P \subset X$ is an ε-net if:

- the closed balls $\{x \in X \mid d(x, p) \leqslant \varepsilon\}_{p \in P}$ cover X,
- if $p \neq q \in P$ then $d(p, q) \geqslant \varepsilon$.

Upper bound on the size

Hyperbolic surface $S=\mathbb{H}^{2} / \Gamma$ of genus g and systole σ

Area: $\mathcal{A}(S)=4 \pi(g-1)$

Upper bound on the size

Hyperbolic surface $S=\mathbb{H}^{2} / \Gamma$ of genus g and systole σ N := number of points of an ε-net of S

Proposition

$$
N \leqslant 16(g-1)\left(\frac{1}{\varepsilon^{2}}+\frac{1}{\sigma^{2}}\right)
$$

If $\varepsilon<\sigma$, then $N \leqslant \frac{16(g-1)}{\varepsilon^{2}}$.

Algorithm overview

Input:

- DT of S with a single vertex $b \in S$,
- Dirichlet domain $\mathcal{D}_{\widetilde{b}}$ of a repres. \widetilde{b} of b, (Despré, Kolbe, Parlier, Teillaud, 2023)
- group Γ.

Output: ε-net P_{N} and Delaunay triangulation $D T\left(P_{N}\right)$.

Algorithm overview

Input:

- DT of S with a single vertex $b \in S$,
- Dirichlet domain $\mathcal{D}_{\widetilde{b}}$ of a repres. \widetilde{b} of b, (Despré, Kolbe, Parlier, Teillaud, 2023)
- group Γ.

Output: ε-net P_{N} and Delaunay triangulation $D T\left(P_{N}\right)$.
Key idea: (Shewchuck, 2002)

- insert circumcenter of a Delaunay triangle with circumradius $>\varepsilon$
- update the DT with flip algo
- repeat until all triangles have circumradius $\leqslant \varepsilon$.

Data structure: contains a repres. of each vertex in $\mathcal{D}_{\widetilde{b}}$.

Details of the algorithm

- Step 1: $P_{1}=\{b\}$.
- Step i:

Details of the algorithm

- Step 1: $P_{1}=\{b\}$.
- Step i:
(1) Find triangle Δ with circumradius $>\varepsilon$.
$c:=$ circumcenter of Δ.
$P_{i}:=P_{i-1} \cup\{c\}$.
$\widetilde{\Delta_{0}}:=$ repres. of Δ with $\geqslant 1$ vertex in $\mathcal{D}_{\widetilde{b}}$
Compute $\widetilde{c}:=$ circumcenter of $\widetilde{\Delta_{0}}$.

Details of the algorithm

- Step 1: $P_{1}=\{b\}$.
- Step i:
(1) Find triangle Δ with circumradius $>\varepsilon$.
$c:=$ circumcenter of Δ.
$P_{i}:=P_{i-1} \cup\{c\}$.
$\Delta_{0}:=$ repres. of Δ with $\geqslant 1$ vertex in $\mathcal{D}_{\widetilde{b}}$
Compute $\widetilde{c}:=$ circumcenter of \triangle_{0}.
(2) Locate \widetilde{c} in the copies of $\mathcal{D}_{\widetilde{b}}$:
walk along the geodesic segment $\widetilde{p_{0}^{\triangle}} \widetilde{c}$.

Details of the algorithm

- Step 1: $P_{1}=\{b\}$.
- Step i:
(1) Find triangle Δ with circumradius $>\varepsilon$.
$c:=$ circumcenter of Δ.
$P_{i}:=P_{i-1} \cup\{c\}$.
$\widetilde{\Delta_{0}}:=$ repres. of Δ with $\geqslant 1$ vertex in $\mathcal{D}_{\tilde{b}}$
Compute $\widetilde{c}:=$ circumcenter of $\widetilde{\Delta}_{0}$.
(2) Locate \widetilde{c} in the copies of $\mathcal{D}_{\widetilde{b}}$:
walk along the geodesic segment $\widetilde{p_{0}^{\Delta}} \widetilde{c}$.
(3) Compute repres. of c in $\mathcal{D}_{\overparen{b}}$.

Details of the algorithm

- Step 1: $P_{1}=\{b\}$.
- Step i:
(1) Find triangle Δ with circumradius $>\varepsilon$.
$c:=$ circumcenter of Δ.
$P_{i}:=P_{i-1} \cup\{c\}$.
$\widetilde{\Delta_{0}}:=$ repres. of Δ with $\geqslant 1$ vertex in $\mathcal{D}_{\tilde{b}}$
Compute $\widetilde{c}:=$ circumcenter of $\widetilde{\Delta_{0}}$.
(2) Locate \widetilde{c} in the copies of $\mathcal{D}_{\widetilde{b}}$:
walk along the geodesic segment $\widetilde{p_{0}^{\Delta}} \widetilde{c}$.
(3) Compute repres. of c in $\mathcal{D}_{\tilde{b}}$.
(4) Find in which triangle it lies and split it.
(5) Update the DT with flip algo. (Despré, Schlenker, Teillaud, 2020).

Details of the algorithm

- Step 1: $P_{1}=\{b\}$.
- Step i:
(1) Find triangle Δ with circumradius $>\varepsilon$.
$c:=$ circumcenter of Δ.
$P_{i}:=P_{i-1} \cup\{c\}$.
$\widetilde{\Delta_{0}}:=$ repres. of Δ with $\geqslant 1$ vertex in $\mathcal{D}_{\tilde{b}}$
Compute $\widetilde{c}:=$ circumcenter of $\widetilde{\Delta_{0}}$.
(2) Locate \widetilde{c} in the copies of $\mathcal{D}_{\widetilde{b}}$:
walk along the geodesic segment $\widetilde{p_{0}^{\Delta}} \widetilde{c}$.
(3) Compute repres. of c in $\mathcal{D}_{\tilde{b}}$.
(4) Find in which triangle it lies and split it.
(5) Update the DT with flip algo. (Despré, Schlenker, Teillaud, 2020).

Details of the algorithm

- Step 1: $P_{1}=\{b\}$.
- Step i:
(1) Find triangle Δ with circumradius $>\varepsilon$.
$c:=$ circumcenter of Δ.
$P_{i}:=P_{i-1} \cup\{c\}$.
$\widetilde{\Delta_{0}}:=$ repres. of \triangle with $\geqslant 1$ vertex in $\mathcal{D}_{\widetilde{b}}$
Compute $\widetilde{c}:=$ circumcenter of $\widetilde{\Delta}_{0}$.
(2) Locate \widetilde{c} in the copies of $\mathcal{D}_{\widetilde{b}}$:
walk along the geodesic segment $\widetilde{p_{0}^{\Delta}} \widetilde{c}$.
(3) Compute repres. of c in $\mathcal{D}_{\overparen{b}}$.
(4) Find in which triangle it lies and split it.
(5) Update the DT with flip algo. (Despré, Schlenker, Teillaud, 2020).
- Repeat Step i until all triangles have circumradius $\leqslant \varepsilon$.

Complexity of the algorithm

Recall

$N:=$ number of points of an ε-net of S.
$N \leqslant 16(g-1)\left(\frac{1}{\varepsilon^{2}}+\frac{1}{\sigma^{2}}\right)$. If $\varepsilon<\sigma$, then $N \leqslant \frac{16(g-1)}{\varepsilon^{2}}$.

Complexity of the algorithm

Recall

$N:=$ number of points of an ε-net of S.
$N \leqslant 16(g-1)\left(\frac{1}{\varepsilon^{2}}+\frac{1}{\sigma^{2}}\right)$. If $\varepsilon<\sigma$, then $N \leqslant \frac{16(g-1)}{\varepsilon^{2}}$.

Proposition

This algorithm computes an ε-net using at most

$$
\left(10+C_{h}^{\prime} \operatorname{Diam}(S)^{6 g-4}\right) N^{2}+(N-1)\left(144 g^{2}-104 g+35\right)-10
$$

elementary operations.
(C_{h}^{\prime} : constant depending on the metric h of S, $\operatorname{Diam}(S)$: diameter of S)
For a fixed surface, the complexity is then $O\left(1 / \varepsilon^{4}\right)$.

Complexity of the algorithm

Recall

$N:=$ number of points of an ε-net of S.
$N \leqslant 16(g-1)\left(\frac{1}{\varepsilon^{2}}+\frac{1}{\sigma^{2}}\right)$. If $\varepsilon<\sigma$, then $N \leqslant \frac{16(g-1)}{\varepsilon^{2}}$.

Proposition

This algorithm computes an ε-net using at most

$$
\left(10+C_{h}^{\prime} \operatorname{Diam}(S)^{6 g-4}\right) N^{2}+(N-1)\left(144 g^{2}-104 g+35\right)-10
$$

elementary operations.
(C_{h}^{\prime} : constant depending on the metric h of S, $\operatorname{Diam}(S)$: diameter of S)
For a fixed surface, the complexity is then $O\left(1 / \varepsilon^{4}\right)$.
The complexity depends on the complexity of the flip algorithm.

Thank you!

