Computing an ε -net of a closed hyperbolic surface

Vincent Despré, Camille Lanuel, Monique Teillaud

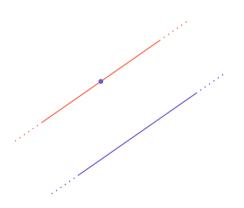
Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

EuroCG 2024

Euclidean geometry

Axioms of Euclidean geometry:

- There is one and only one line segment between any two given points.
- 2 Any line segment can be extended continuously to a line.
- 3 There is one and only one circle with any given center and any given radius.
- 4 All right angles are congruent to one another.
- (Parallel postulate) Given a line and a point not on the line, there is exactly one line through the point that is parallel to the given line.



Hyperbolic geometry

Axioms of hyperbolic geometry:

- There is one and only one line segment between any two given points.
- 2 Any line segment can be extended continuously to a line.
- 3 There is one and only one circle with any given center and any given radius.
- 4 All right angles are congruent to one another.
- 6 Given a line and a point not on the line, there are infinitely many lines through the point that are parallel to the given line.

/ /

The Poincaré disk model of the hyperbolic plane

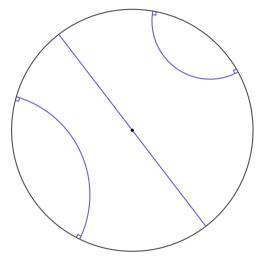
 $\mathsf{Model} = \mathsf{metric} \ \mathsf{space} \ \mathsf{satisfying} \ \mathsf{the} \ \mathsf{axioms}$

Definition

The Poincaré disk model of the hyperbolic plane is

$$\mathbb{D}=\left\{ u+ {\it i} {\it v}\in \mathbb{C}: u^2+{\it v}^2<1
ight\}$$

equipped with the metric $ds^2 = \frac{4(du^2+dv^2)}{(1-(u^2+v^2))^2}$.



Geodesics in the Poincaré disk model.

The Poincaré disk model of the hyperbolic plane

 $\mathsf{Model} = \mathsf{metric} \ \mathsf{space} \ \mathsf{satisfying} \ \mathsf{the} \ \mathsf{axioms}$

Definition

The Poincaré disk model of the hyperbolic plane is

$$\mathbb{D}=\left\{ u+ {\it i} {\it v}\in \mathbb{C}: u^2+{\it v}^2<1
ight\}$$

equipped with the metric $ds^2 = \frac{4(du^2+dv^2)}{(1-(u^2+v^2))^2}$.

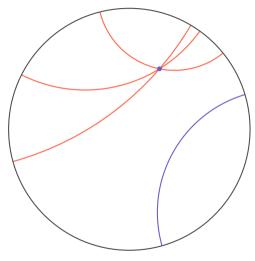


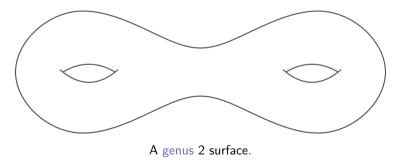
Illustration of the 5th axiom.

Hyperbolic surface

- Surface = 2-dimensional compact & connected manifold without boundary.
- Hyperbolic surface = surface + metric s.t. it is locally isometric to the hyperbolic plane \mathbb{H}^2 .

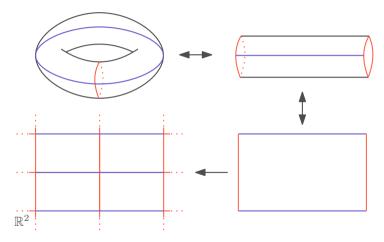
Hyperbolic surface

- Surface = 2-dimensional compact & connected manifold without boundary.
- Hyperbolic surface = surface + metric s.t. it is locally isometric to the hyperbolic plane \mathbb{H}^2 .
- Any surface with genus $g \ge 2$ (number of handles) admits a hyperbolic metric.



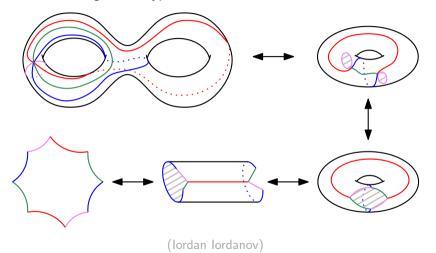
Fundamental domain

Fundamental domain for the flat torus (g = 1, Euclidean metric):



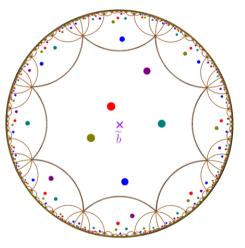
Fundamental domain

Fundamental domain for a genus 2 hyperbolic surface:



Dirichlet domain

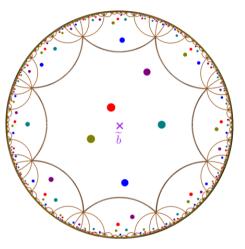
Hyperbolic surface $S = \mathbb{H}^2/\Gamma$ Γ = group of orientation-preserving isometries



Ex: the Bolza surface. (CGAL documentation.)

Dirichlet domain

Hyperbolic surface $S = \mathbb{H}^2/\Gamma$ Γ = group of orientation-preserving isometries Dirichlet domain $\mathcal{D}_{\widetilde{b}}$ of a point $\widetilde{b} \in \mathbb{H}^2$ = Voronoi cell of \widetilde{b} in the Voronoi diagram of $\Gamma \widetilde{b}$

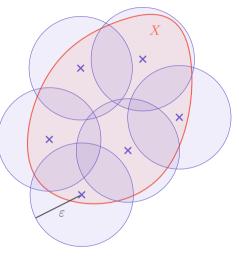


Ex: the Bolza surface. (CGAL documentation.)

(X, d) a metric space $\varepsilon > 0$

A subset $P \subset X$ is an ε -net if:

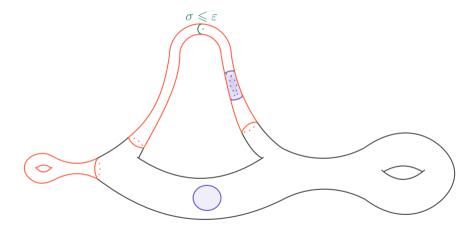
- the closed balls $\{x \in X \mid d(x, p) \leq \varepsilon\}_{p \in P}$ cover X,
- if $p \neq q \in P$ then $d(p,q) \ge \varepsilon$.



 ε -net of a metric space.

Upper bound on the size

Hyperbolic surface $S = \mathbb{H}^2/\Gamma$ of genus g and systole σ



Upper bound on the size

Hyperbolic surface $S = \mathbb{H}^2/\Gamma$ of genus g and systole σ N:= number of points of an ε -net of S

Proposition

$$N \leqslant 16(g-1)\left(rac{1}{arepsilon^2}+rac{1}{\sigma^2}
ight).$$

If
$$\varepsilon < \sigma$$
, then $N \leqslant \frac{16(g-1)}{\varepsilon^2}$.

Algorithm overview

Input:

- DT of S with a single vertex $b \in S$,
- Dirichlet domain $\mathcal{D}_{\widetilde{b}}$ of a repres. \widetilde{b} of *b*, (Despré, Kolbe, Parlier, Teillaud, 2023)
- group Γ.

Output: ε -net P_N and Delaunay triangulation $DT(P_N)$.

Algorithm overview

Input:

- DT of S with a single vertex $b \in S$,
- Dirichlet domain $\mathcal{D}_{\widetilde{b}}$ of a repres. \widetilde{b} of *b*, (Despré, Kolbe, Parlier, Teillaud, 2023)
- group Γ.
- Output: ε -net P_N and Delaunay triangulation $DT(P_N)$. Key idea: (Shewchuck, 2002)
 - insert circumcenter of a Delaunay triangle with circumradius $> \varepsilon$
 - update the DT with flip algo
 - repeat until all triangles have circumradius $\leq \varepsilon$.

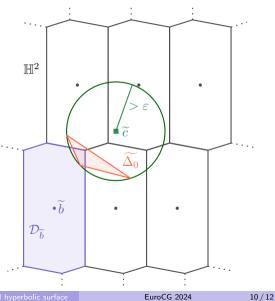
<u>Data structure</u>: contains a repres. of each vertex in $\mathcal{D}_{\tilde{b}}$.

- Step 1: $P_1 = \{ b \}.$
- Step i:

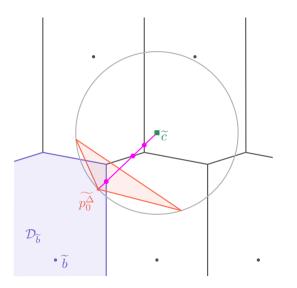
• Step 1: $P_1 = \{ b \}.$

• Step i:

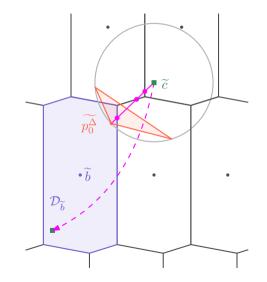
1 Find triangle Δ with circumradius $> \varepsilon$. $c := \text{circumcenter of } \Delta$. $P_i := P_{i-1} \cup \{c\}.$ Δ_0 := repres. of Δ with ≥ 1 vertex in $\mathcal{D}_{\widetilde{h}}$ Compute $\tilde{c} :=$ circumcenter of Δ_0 .



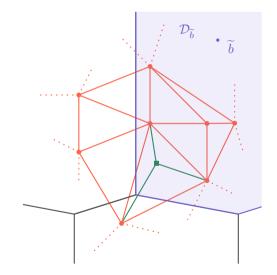
- Step 1: $P_1 = \{b\}.$
- Step i:
 - Find triangle Δ with circumradius > ε.
 c := circumcenter of Δ.
 P_i := P_{i-1} ∪ {c}.
 Δ₀ := repres. of Δ with ≥ 1 vertex in D_b
 Compute c̃ := circumcenter of Δ₀.
 Locate c̃ in the copies of D_b:
 walk along the geodesic segment p₀^Δ c̃.



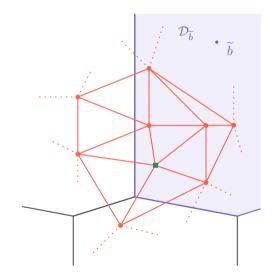
- Step 1: $P_1 = \{b\}.$
- Step i:
 - Find triangle Δ with circumradius > ε.
 c := circumcenter of Δ.
 P_i := P_{i-1} ∪ {c}.
 Δ₀ := repres. of Δ with ≥ 1 vertex in D_b
 Compute c̃ := circumcenter of Δ₀.
 Locate c̃ in the copies of D_b:
 walk along the geodesic segment p₀^Δ c̃.
 Compute repres. of c in D_b.



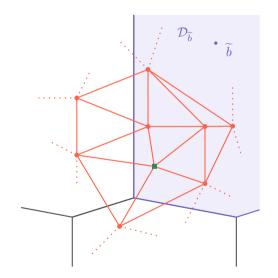
- Step 1: $P_1 = \{b\}.$
- Step i:
 - **1** Find triangle Δ with circumradius $> \varepsilon$. $c := circumcenter of \Delta$. $P_i := P_{i-1} \cup \{c\}.$ $\Delta_0 :=$ repres. of Δ with ≥ 1 vertex in $\mathcal{D}_{\widetilde{L}}$ Compute $\tilde{c} :=$ circumcenter of Δ_0 . 2 Locate \tilde{c} in the copies of $\mathcal{D}_{\tilde{b}}$: walk along the geodesic segment $p_0^{\Delta} \widetilde{c}$. Compute repres. of c in $\mathcal{D}_{\widetilde{b}}$. Find in which triangle it lies and split it. **5** Update the DT with flip algo. (Despré, Schlenker, Teillaud, 2020).



- Step 1: $P_1 = \{b\}.$
- Step i:
 - **1** Find triangle Δ with circumradius $> \varepsilon$. $c := circumcenter of \Delta$. $P_i := P_{i-1} \cup \{c\}.$ $\Delta_0 :=$ repres. of Δ with ≥ 1 vertex in $\mathcal{D}_{\widetilde{L}}$ Compute $\tilde{c} :=$ circumcenter of Δ_0 . 2 Locate \tilde{c} in the copies of $\mathcal{D}_{\tilde{b}}$: walk along the geodesic segment $p_0^{\Delta} \widetilde{c}$. Compute repres. of c in $\mathcal{D}_{\widetilde{b}}$. Find in which triangle it lies and split it. **5** Update the DT with flip algo. (Despré, Schlenker, Teillaud, 2020).



- Step 1: $P_1 = \{b\}.$
- Step i:
 - **1** Find triangle Δ with circumradius $> \varepsilon$. $c := circumcenter of \Delta$. $P_i := P_{i-1} \cup \{c\}.$ $\Delta_0 :=$ repres. of Δ with ≥ 1 vertex in $\mathcal{D}_{\widetilde{L}}$ Compute $\tilde{c} :=$ circumcenter of Δ_0 . 2 Locate \tilde{c} in the copies of $\mathcal{D}_{\tilde{b}}$: walk along the geodesic segment $p_0^{\Delta} \widetilde{c}$. **3** Compute repres. of *c* in $\mathcal{D}_{\tilde{L}}$. 4 Find in which triangle it lies and split it. **5** Update the DT with flip algo. (Despré, Schlenker, Teillaud, 2020).
- Repeat Step *i* until all triangles have circumradius ≤ ε.



Complexity of the algorithm

Recall

$$\begin{split} & \textit{N} := \text{ number of points of an } \varepsilon \text{-net of } S. \\ & \textit{N} \leqslant 16(g-1)\left(\frac{1}{\varepsilon^2} + \frac{1}{\sigma^2}\right). \text{ If } \varepsilon < \sigma \text{, then } \textit{N} \leqslant \frac{16(g-1)}{\varepsilon^2}. \end{split}$$

Complexity of the algorithm

Recall

$$\begin{split} & \textit{N} := \text{ number of points of an } \varepsilon \text{-net of } \mathcal{S}. \\ & \textit{N} \leqslant 16(g-1)\left(\frac{1}{\varepsilon^2} + \frac{1}{\sigma^2}\right). \text{ If } \varepsilon < \sigma \text{, then } \textit{N} \leqslant \frac{16(g-1)}{\varepsilon^2}. \end{split}$$

Proposition

This algorithm computes an ε -net using at most

$$(10 + C'_h \operatorname{Diam}(S)^{6g-4}) N^2 + (N-1)(144g^2 - 104g + 35) - 10$$

elementary operations.

 $(C'_h: \text{ constant depending on the metric } h \text{ of } S, \text{ Diam}(S): \text{ diameter of } S)$ For a fixed surface, the complexity is then $O(1/\varepsilon^4)$.

Complexity of the algorithm

Recall

$$\begin{split} & \textit{N} := \text{ number of points of an } \varepsilon \text{-net of } \mathcal{S}. \\ & \textit{N} \leqslant 16(g-1)\left(\frac{1}{\varepsilon^2} + \frac{1}{\sigma^2}\right). \text{ If } \varepsilon < \sigma \text{, then } \textit{N} \leqslant \frac{16(g-1)}{\varepsilon^2}. \end{split}$$

Proposition

This algorithm computes an ε -net using at most

$$(10 + C'_h \operatorname{Diam}(S)^{6g-4}) N^2 + (N-1)(144g^2 - 104g + 35) - 10$$

elementary operations.

 $(C'_h: \text{ constant depending on the metric } h \text{ of } S, \text{ Diam}(S): \text{ diameter of } S)$ For a fixed surface, the complexity is then $O(1/\varepsilon^4)$.

The complexity depends on the complexity of the flip algorithm.

Thank you!