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A hike in Perugia

How can the angry dog maximize the time it barks at us?
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Formal definition
P , Q polygonal curves
f : [0, 1] → P fixed (uniform) traversal of P
g : [0, 1] → Q (non-monotone) traversal of Q
s: speed bound for g
θ: threshold function (barking radius)

DB(P,Q) =
∫
g′≤s θ(f(t), g(t))dt

P

Q
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Detour detection
Fréchet can’t distinguish

DTW can’t distinguish
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Dynamic programming + right
data structures

Runtime O(nm log s)



Department of Computer Science Patrick Schnider EuroCG, Mar. 13, 2024

Other settings



Department of Computer Science Patrick Schnider EuroCG, Mar. 13, 2024

Other settings

Semi-discrete setting:
Traversal for hiker is discrete, traversal for dog is continuous.



Department of Computer Science Patrick Schnider EuroCG, Mar. 13, 2024

Other settings

Semi-discrete setting:
Traversal for hiker is discrete, traversal for dog is continuous.

O(nm log(nm)) time algorithm



Department of Computer Science Patrick Schnider EuroCG, Mar. 13, 2024

Other settings

Semi-discrete setting:
Traversal for hiker is discrete, traversal for dog is continuous.

O(nm log(nm)) time algorithm

Continuous setting:
Both traversals continuous.



Department of Computer Science Patrick Schnider EuroCG, Mar. 13, 2024

Other settings

Semi-discrete setting:
Traversal for hiker is discrete, traversal for dog is continuous.

O(nm log(nm)) time algorithm

Continuous setting:
Both traversals continuous.

O(n4m3 log(nm)) time algorithm



Department of Computer Science Patrick Schnider EuroCG, Mar. 13, 2024

Other settings

Semi-discrete setting:
Traversal for hiker is discrete, traversal for dog is continuous.

O(nm log(nm)) time algorithm

Continuous setting:
Both traversals continuous.

O(n4m3 log(nm)) time algorithm

For n = m no O(n2−ε) algorithm exists, assuming SETH.
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Conclusion

• Barking distance as a new measure for detour detection

• Efficient algorithms for many settings

• Matching lower bound (up to logarithmic factors) for two
settings

• More efficient algorithm for the continuous
setting?

• Algorithms for optimizing speed or barking
radius?

Thank you!


