Barking Dogs:

A Fréchet distance variant for detour detection

 Ivor van der Hoog, Fabian Klute, Irene Parada, Patrick SchniderEuroCG 2024

캐zürich

A hike in Perugia

ЕНzürich

A hike in Perugia

ЕНzürich

A hike in Perugia

ElHzürich

A hike in Perugia

A hike in Perugia

How can the angry dog maximize the time it barks at us?

EHzürich

Formal definition

- H Hürich

Formal definition

P, Q polygonal curves

ЕНzürich

Formal definition

P, Q polygonal curves
$f:[0,1] \rightarrow P$ fixed (uniform) traversal of P

ElHzürich

Formal definition

P, Q polygonal curves
$f:[0,1] \rightarrow P$ fixed (uniform) traversal of P
$g:[0,1] \rightarrow Q$ (non-monotone) traversal of Q

ElHzürich

Formal definition

P, Q polygonal curves
$f:[0,1] \rightarrow P$ fixed (uniform) traversal of P
$g:[0,1] \rightarrow Q$ (non-monotone) traversal of Q

ElHzürich

Formal definition

P, Q polygonal curves
$f:[0,1] \rightarrow P$ fixed (uniform) traversal of P
$g:[0,1] \rightarrow Q$ (non-monotone) traversal of Q

ElHzürich

Formal definition

P, Q polygonal curves
$f:[0,1] \rightarrow P$ fixed (uniform) traversal of P
$g:[0,1] \rightarrow Q$ (non-monotone) traversal of Q
s : speed bound for g

ElHzürich

Formal definition

P, Q polygonal curves
$f:[0,1] \rightarrow P$ fixed (uniform) traversal of P
$g:[0,1] \rightarrow Q$ (non-monotone) traversal of Q
s : speed bound for g

ElHzürich

Formal definition

P, Q polygonal curves
$f:[0,1] \rightarrow P$ fixed (uniform) traversal of P
$g:[0,1] \rightarrow Q$ (non-monotone) traversal of Q
s : speed bound for g
θ : threshold function (barking radius)

ElHzürich

Formal definition

P, Q polygonal curves
$f:[0,1] \rightarrow P$ fixed (uniform) traversal of P
$g:[0,1] \rightarrow Q$ (non-monotone) traversal of Q
s : speed bound for g
θ : threshold function (barking radius)

$$
D_{B}(P, Q)=\int_{g^{\prime} \leq s} \theta(f(t), g(t)) d t
$$

EHzürich

Detour detection

ЕНzürich

Detour detection

Detour detection

Fréchet can't distinguish

- H Hürich

Detour detection

Fréchet can't distinguish

DTW can't distinguish

EHzürich

The discrete setting

ElHzürich

The discrete setting

Traversals are discrete (both hiker and dog are frogs)

ElHzürich

The discrete setting

Traversals are discrete (both hiker and dog are frogs)

캑ürich

The discrete setting

Traversals are discrete (both hiker and dog are frogs)

$Q |$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |

ElHzürich

The discrete setting

Traversals are discrete (both hiker and dog are frogs)

optimal traversal: lattice path minimizing number of zeros

ElHzürich

The discrete setting

Traversals are discrete (both hiker and dog are frogs)

The discrete setting

Traversals are discrete (both hiker and dog are frogs)

The discrete setting

Traversals are discrete (both hiker and dog are frogs)

optimal traversal: lattice path minimizing number of zeros speed bound: max. number of vertical steps
$R_{i}\left(j_{1}, j_{2}\right)$: cost of horizontal path
$C_{j}\left(i_{1}, i_{2}\right)$: cost of vertical path $F_{\delta}(i, j)$: min. cost to (i, j) if last step was $\delta \in\{\uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}$

ElHzürich

The discrete setting

Traversals are discrete (both hiker and dog are frogs)
$\begin{cases}\min \left\{C_{j}(i-k, i)+F_{\delta}(i-k, j) \mid \delta \in\{\nearrow, \rightarrow, \searrow\} \wedge k \in[1, s]\right\} & \text { if } d=\uparrow \\ F(i-1, j-1)+w\left(v_{i-1, j-1}\right) & \text { if } d=\nearrow \\ \min \left\{R_{i}(j-k, j)+F_{\delta}(i, j-k) \mid \delta \in\{\uparrow, \nearrow, \searrow, \downarrow\} \wedge k \in[1, s]\right\} & \text { if } d=\rightarrow \\ F(i+1, j+1)+w\left(v_{i+1, j+1}\right) & \text { if } d=\searrow \\ \min \left\{C_{j}(i+k, i)+F_{\delta}(i+k, j) \mid \delta \in\{\nearrow, \rightarrow, \searrow\} \wedge k \in[1, s]\right\} & \text { if } d=\downarrow\end{cases}$

$R_{i}\left(j_{1}, j_{2}\right)$: cost of horizontal path $C_{j}\left(i_{1}, i_{2}\right)$: cost of vertical path $F_{\delta}(i, j)$: min. cost to (i, j) if last step was $\delta \in\{\uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}$

캐Hürich

The discrete setting

Traversals are discrete (both hiker and dog are frogs)
$\begin{cases}\min \left\{C_{j}(i-k, i)+F_{\delta}(i-k, j) \mid \delta \in\{\nearrow, \rightarrow, \searrow\} \wedge k \in[1, s]\right\} & \text { if } d=\uparrow \\ F(i-1, j-1)+w\left(v_{i-1, j-1}\right) & \text { if } d=\nearrow \\ \min \left\{R_{i}(j-k, j)+F_{\delta}(i, j-k) \mid \delta \in\{\uparrow, \nearrow, \searrow, \downarrow\} \wedge k \in[1, s]\right\} & \text { if } d=\rightarrow \\ F(i+1, j+1)+w\left(v_{i+1, j+1}\right) & \text { if } d=\searrow \\ \min \left\{C_{j}(i+k, i)+F_{\delta}(i+k, j) \mid \delta \in\{\nearrow, \rightarrow, \searrow\} \wedge k \in[1, s]\right\} & \text { if } d=\downarrow\end{cases}$

$$
\begin{aligned}
& 010001-0^{\circ} 000000 \quad R_{i}\left(j_{1}, j_{2}\right) \text { : cost of horizontal path } \\
& C_{j}\left(i_{1}, i_{2}\right) \text { : cost of vertical path } \\
& F_{\delta}(i, j) \text { : min. cost to }(i, j) \text { if last } \\
& \text { step was } \delta \in\{\uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}
\end{aligned}
$$

Dynamic programming + right data structures

ElHzürich

The discrete setting

Traversals are discrete (both hiker and dog are frogs)
$\begin{cases}\min \left\{C_{j}(i-k, i)+F_{\delta}(i-k, j) \mid \delta \in\{\nearrow, \rightarrow, \searrow\} \wedge k \in[1, s]\right\} & \text { if } d=\uparrow \\ F(i-1, j-1)+w\left(v_{i-1, j-1}\right) & \text { if } d=\nearrow \\ \min \left\{R_{i}(j-k, j)+F_{\delta}(i, j-k) \mid \delta \in\{\uparrow, \nearrow, \searrow, \downarrow\} \wedge k \in[1, s]\right\} & \text { if } d=\rightarrow \\ F(i+1, j+1)+w\left(v_{i+1, j+1}\right) & \text { if } d=\searrow \\ \min \left\{C_{j}(i+k, i)+F_{\delta}(i+k, j) \mid \delta \in\{\nearrow, \rightarrow, \searrow\} \wedge k \in[1, s]\right\} & \text { if } d=\downarrow\end{cases}$

$$
\left\{\begin{array}{l}
0 \\
1-1
\end{array} \begin{array}{lllllllll}
-1 & 0 & 1 & -0 & 0 & 0 & 0 & 0 & R_{i}\left(j_{1}, j_{2}\right): \text { cost of horizontal path } \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
C_{j}\left(i_{1}, i_{2}\right): \text { cost of vertical path } \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
F_{\delta}(i, j): \text { min. cost to }(i, j) \text { if last } \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & \text { step was } \delta \in\{\uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}
\end{array}\right.
$$

Dynamic programming + right data structures

Runtime $O(n m \log s)$

GHzürich

Other settings

ElHzürich

Other settings

Semi-discrete setting:
 Traversal for hiker is discrete, traversal for dog is continuous.

ElHzürich

Other settings

Semi-discrete setting:

Traversal for hiker is discrete, traversal for dog is continuous.
$O(n m \log (n m))$ time algorithm

ElHzürich

Other settings

Semi-discrete setting:

Traversal for hiker is discrete, traversal for dog is continuous.
$O(n m \log (n m))$ time algorithm

Continuous setting:
Both traversals continuous.

Other settings

Semi-discrete setting:

Traversal for hiker is discrete, traversal for dog is continuous.

$$
O(n m \log (n m)) \text { time algorithm }
$$

Continuous setting:
Both traversals continuous.

$$
O\left(n^{4} m^{3} \log (n m)\right) \text { time algorithm }
$$

Other settings

Semi-discrete setting:

Traversal for hiker is discrete, traversal for dog is continuous.

$$
O(n m \log (n m)) \text { time algorithm }
$$

Continuous setting:
Both traversals continuous.

$$
O\left(n^{4} m^{3} \log (n m)\right) \text { time algorithm }
$$

For $n=m$ no $O\left(n^{2-\varepsilon}\right)$ algorithm exists, assuming SETH.

ㅋHzürich

Conclusion

ElHzürich

Conclusion

- Barking distance as a new measure for detour detection

ElHzürich

Conclusion

- Barking distance as a new measure for detour detection
- Efficient algorithms for many settings

ElHzürich

Conclusion

- Barking distance as a new measure for detour detection
- Efficient algorithms for many settings
- Matching lower bound (up to logarithmic factors) for two settings

Conclusion

- Barking distance as a new measure for detour detection
- Efficient algorithms for many settings
- Matching lower bound (up to logarithmic factors) for two settings
- More efficient algorithm for the continuous setting?

Conclusion

- Barking distance as a new measure for detour detection
- Efficient algorithms for many settings
- Matching lower bound (up to logarithmic factors) for two settings
- More efficient algorithm for the continuous setting?
- Algorithms for optimizing speed or barking radius?

Conclusion

- Barking distance as a new measure for detour detection
- Efficient algorithms for many settings
- Matching lower bound (up to logarithmic factors) for two settings
- More efficient algorithm for the continuous setting?
- Algorithms for optimizing speed or barking radius?

Thank you!

