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Abstract
We study maximum c-independent sets that maximize the number of isolated vertices and present
an algorithm that computes such subgraphs for unit interval graphs in linear time. The algorithm
is based on a simple test that gives a certificate whether a specific vertex can be isolated. While
the crucial property seems straight-forward, its proof requires a careful analysis of the structure of
c-independent sets in unit interval graphs. Surprisingly, the techniques do not generalize to interval
graphs and the algorithm does not even yield an approximation on general interval graphs.

1 Introduction

Computing maximum independent sets is a fundamental problem and appears on the list of
Karp’s 21 NP-complete problems. Maximum independent sets and also its generalizations
of maximum c-independent sets find a variety of use cases across various fields in modelling
and solving real-world problems, e.g., wireless sensor networks [3], DNA sequencing in bioin-
formatics [13, 19], VLSI design [13, 23], job scheduling [6, 11] and resource allocation [20],
as well as identifying independent strategies in game theory [28]. For c œ N, a c-independent

set (c-IS) of a graph is the union of c independent sets.
While the special case of c = 1 is the Maximum Independent Set Problem, the special

case of c = 2 is also known as Maximum Bipartite Subgraph, Graph Bipartization, or Odd

Cycle Transversal. Not only that computing a maximum c-IS is NP-complete for general
graphs, it has also been shown that there is no approximation algorithm with a factor in
O(n1≠Á) for any Á > 0 and (possibly fixed) c œ NØ1, unless P = NP [18, 22]. In contrast,
a maximum c-IS can be computed in polynomial time for special graph classes; including
interval graphs, even if c is part of the input [29].

We consider the problem of computing a maximum c-IS for unit interval graphs with
the additional property of maximizing the number of isolated vertices (among all maximum
c-ISs). To this end, we say that a maximum c-IS is max-iso, if no other maximum c-IS has
more isolated vertices. For an example, consider the unit interval graph depicted in Figure 1,
where the thick intervals correspond to a maximum 2-IS with one isolated vertex. Is there
a maximum 2-IS with more isolated vertices?

Figure 1 A unit interval graph where the subset of thick intervals is a maximum 2-IS with one
isolated vertex. Note that exchanging the top four intervals with the bottom four intervals yields a
maximum 2-IS with two isolated vertices, namely the first and last vertex.

Our main result is as follows.

I Theorem 1.1. There exists an algorithm that computes a max-iso c-IS for every unit

interval graph on n vertices with a running time in O(n), even if c is part of the input.
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1. Consider the vertices in left-right-order until a vertex  
with  is found. 

2. Delete  from  and repeat 1. with the next vertex. 

3. Return a maximum -IS in the modified graph.
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Summary
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• Surprisingly, the algorithm does not even yield an approximation for 
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