Unit Interval Graphs & Maximum c-Independent
Sets Maximizing the Number of Isolated Vertices
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Machine conflicts and unit interval graphs
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2-Independent sets are crucial!
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Maximizing isolated vertices iIs crucial!
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Given: Unit interval graph
To find: Max-iso c-independent set (c-IS)
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Given: Unit interval graph
To find: Max-iso c-independent set (c-IS)

. c-independent set: Union of ¢ independent sets 1, ..., ..

. Maximum: No other c-iIndependent set contains more vertices.

. Max-iso: No other maximum c-independent set contains more
Isolated vertices.
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Given: Unit interval graph
To find: Max-iso c-independent set (c-IS)

1. c-independent set: Union of ¢ independent sets [, ..., [..

2. Maximum: No other c-independent set contains more vertices.

3. Max-iso: No other maximum c-independent set contains more
Isolated vertices.

» Theorem 1.1. There exists an algorithm that computes a max-iso c-1S for every unit
interval graph on n vertices with a running time in O(n), even if ¢ is part of the input.
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Recap: Greedy for maximum c¢-IS In
unit interval graphs

129] Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph
poroblem for chordal graphs. Information Processing Letters, 24(2):133-137, 1987 5/10
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1. Start with [ = @).

2. Consider the vertices In left-right-order and add
them respectively to [ if this maintains a c-IS.
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Identifying candidates

Example for ¢ = 2:

For every valid candidate, 1t holds that:

a (G — N(V)) = a.(G)
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We should always isolate the leftmost candidate!

Example for ¢ = 2:

Crucial Lemma:
For the leftmost candidate v, G — N(v) contains a

max-iso c-independent set in G.
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Quadratic algorithm

Example for ¢ = 2:

1. Consider the vertices in left-right-order until a vertex v
with a (G — N(v)) = a.(G) is found.

2. Delete N(v) from G and repeat 1. with the next vertex.

3. Return a maximum c-IS in the modified graph.
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Linear-time implementation: Greedy from both sides!
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It will not always work to...

...Isolate any candidate vertex.

w1 U1 v U2 W2
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It will not always work to...

...Isolate any candidate vertex.

w1 Ui v u9 w9

...Isolate the leftmost candidate in general interval graphs.

v U W1 W
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Summary

- Max-iso c-ISs are crucial for scheduling with machine conflicts.

- For unit interval graphs, a max-iso c-IS can be computed in linear time.

+ - Surprisingly, the algorithm does not even yield an approximation for
general interval graphs (open question!).
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- Max-iso c-ISs are crucial for scheduling with machine conflicts.

- For unit interval graphs, a max-iso c-IS can be computed in linear time.

+ - Surprisingly, the algorithm does not even yield an approximation for
general interval graphs (open question!).

Thank You!




2-Independent sets are crucial!
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