Unit Interval Graphs \& Maximum c-Independent Sets Maximizing the Number of Isolated Vertices

Linda Kleist and Kai Kobbe

Machine conflicts and unit interval graphs

Machine conflicts and unit interval graphs

Machine conflicts and unit interval graphs

Machine conflicts and unit interval graphs

blocking intervals

processing interval

2-independent sets are crucial!

2-independent sets are crucial!

2-independent sets are crucial!

Maximizing isolated vertices is crucial!

Given: Unit interval graph

To find: Max-iso c-independent set (c-IS)

Given: Unit interval graph

To find: Max-iso c-independent set (c-IS)

1. c-independent set: Union of c independent sets I_{1}, \ldots, I_{c}.
2. Maximum: No other c-independent set contains more vertices.
3. Max-iso: No other maximum c-independent set contains more isolated vertices.

Given: Unit interval graph

To find: Max-iso c-independent set (c-IS)

1. c-independent set: Union of c independent sets I_{1}, \ldots, I_{c}.
2. Maximum: No other c-independent set contains more vertices.
3. Max-iso: No other maximum c-independent set contains more isolated vertices.

- Theorem 1.1. There exists an algorithm that computes a max-iso c-IS for every unit interval graph on n vertices with a running time in $O(n)$, even if c is part of the input.

Recap: Greedy for maximum c-IS in unit interval graphs

\qquad
[29] Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph problem for chordal graphs. Information Processing Letters, 24(2):133-137, 1987.

Recap: Greedy for maximum c-IS in unit interval graphs

1. Start with $I=\varnothing$.
2. Consider the vertices in left-right-order and add them respectively to I if this maintains a c-IS.

Recap: Greedy for maximum c-IS in unit interval graphs

Example for $c=2$:

1. Start with $I=\varnothing$.
2. Consider the vertices in left-right-order and add them respectively to I if this maintains a c-IS.

Recap: Greedy for maximum c-IS in unit interval graphs

Example for $c=2$:
\qquad

1. Start with $I=\varnothing$.
2. Consider the vertices in left-right-order and add them respectively to I if this maintains a c-IS.

Recap: Greedy for maximum c-IS in unit interval graphs

Example for $c=2$:

1. Start with $I=\varnothing$.
2. Consider the vertices in left-right-order and add them respectively to I if this maintains a c-IS.

Recap: Greedy for maximum c-IS in unit interval graphs

Example for $c=2$:

1. Start with $I=\varnothing$.
2. Consider the vertices in left-right-order and add them respectively to I if this maintains a c-IS.

Recap: Greedy for maximum c-IS in unit interval graphs

Example for $c=2$:

1. Start with $I=\varnothing$.
2. Consider the vertices in left-right-order and add them respectively to I if this maintains a c-IS.

Recap: Greedy for maximum c-IS in unit interval graphs

Example for $c=2$:

1. Start with $I=\varnothing$.
2. Consider the vertices in left-right-order and add them respectively to I if this maintains a c-IS.

Recap: Greedy for maximum c-IS in unit interval graphs

Example for $c=2$:

1. Start with $I=\varnothing$.
2. Consider the vertices in left-right-order and add them respectively to I if this maintains a c-IS.

Identifying candidates

Example for $c=2$:

For every valid candidate, it holds that:

$$
\alpha_{c}(G-N(v))=\alpha_{c}(G)
$$

Identifying candidates

Example for $c=2$:

For every valid candidate, it holds that:

$$
\alpha_{c}(G-N(v))=\alpha_{c}(G)
$$

Identifying candidates

Example for $c=2$:

For every valid candidate, it holds that:

$$
\alpha_{c}(G-N(v))=\alpha_{c}(G)
$$

We should always isolate the leftmost candidate!

Example for $c=2$:

Crucial Lemma:

For the leftmost candidate $v, G-N(v)$ contains a max-iso c-independent set in G.

Quadratic algorithm

Example for $c=2$:

1. Consider the vertices in left-right-order until a vertex v with $\alpha_{c}(G-N(v))=\alpha_{c}(G)$ is found.
2. Delete $N(v)$ from G and repeat 1. with the next vertex.
3. Return a maximum c-IS in the modified graph.

Quadratic algorithm

Example for $c=2$:

1. Consider the vertices in left-right-order until a vertex v with $\alpha_{c}(G-N(v))=\alpha_{c}(G)$ is found.
2. Delete $N(v)$ from G and repeat 1. with the next vertex.
3. Return a maximum c-IS in the modified graph.

Quadratic algorithm

Example for $c=2$:

1. Consider the vertices in left-right-order until a vertex v with $\alpha_{c}(G-N(v))=\alpha_{c}(G)$ is found.
2. Delete $N(v)$ from G and repeat 1. with the next vertex.
3. Return a maximum c-IS in the modified graph.

Quadratic algorithm

Example for $c=2$:

1. Consider the vertices in left-right-order until a vertex v with $\alpha_{c}(G-N(v))=\alpha_{c}(G)$ is found.
2. Delete $N(v)$ from G and repeat 1. with the next vertex.
3. Return a maximum c-IS in the modified graph.

Quadratic algorithm

Example for $c=2$:

1. Consider the vertices in left-right-order until a vertex v with $\alpha_{c}(G-N(v))=\alpha_{c}(G)$ is found.
2. Delete $N(v)$ from G and repeat 1. with the next vertex.
3. Return a maximum c-IS in the modified graph.

Linear-time implementation: Greedy from both sides!

L

u

R

Linear-time implementation: Greedy from both sides!

It will not always work to...

...isolate any candidate vertex.

It will not always work to...

...isolate any candidate vertex.

It will not always work to...

...isolate any candidate vertex.

It will not always work to...

...isolate any candidate vertex.

...isolate the leftmost candidate in general interval graphs.

It will not always work to...

...isolate any candidate vertex.

...isolate the leftmost candidate in general interval graphs.

It will not always work to...

...isolate any candidate vertex.

...isolate the leftmost candidate in general interval graphs.

Summary

- Max-iso c-ISs are crucial for scheduling with machine conflicts.
- For unit interval graphs, a max-iso c-IS can be computed in linear time.
- Surprisingly, the algorithm does not even yield an approximation for general interval graphs (open question!).

Summary

- Max-iso c-ISs are crucial for scheduling with machine conflicts.
- For unit interval graphs, a max-iso c-IS can be computed in linear time.
- Surprisingly, the algorithm does not even yield an approximation for general interval graphs (open question!).

Thank You!

2-independent sets are crucial!

