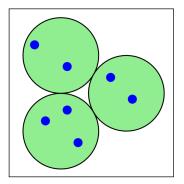
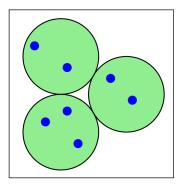
Ji Hoon Chun, Christian Kipp, Sandro Roch

EuroCG 2024

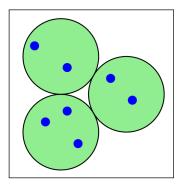
 Show that any set of n = 10 points in ℝ² can be covered by disjoint unit disks.



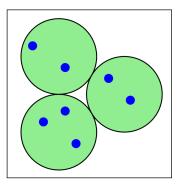
- Show that any set of n = 10 points in ℝ² can be covered by disjoint unit disks.
- Inaba: Probabilistic proof randomly shift hexagonal packing.



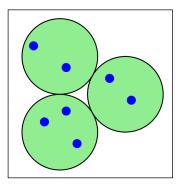
- Show that any set of n = 10 points in ℝ² can be covered by disjoint unit disks.
- Inaba: Probabilistic proof randomly shift hexagonal packing.
- For which *n* does this work?



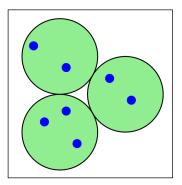
- Show that any set of n = 10 points in ℝ² can be covered by disjoint unit disks.
- Inaba: Probabilistic proof randomly shift hexagonal packing.
- For which *n* does this work?
- Aloupis-Hearn-Iwasawa-Uehara (2012):



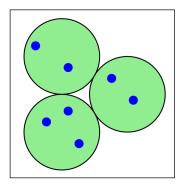
- Show that any set of n = 10 points in ℝ² can be covered by disjoint unit disks.
- Inaba: Probabilistic proof randomly shift hexagonal packing.
- For which *n* does this work?
- Aloupis-Hearn-Iwasawa-Uehara (2012):
 - Iower bound: 12,



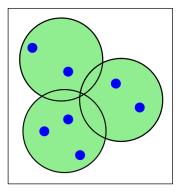
- Show that any set of n = 10 points in ℝ² can be covered by disjoint unit disks.
- Inaba: Probabilistic proof randomly shift hexagonal packing.
- For which *n* does this work?
- Aloupis-Hearn-Iwasawa-Uehara (2012):
 - Iower bound: 12,
 - upper bound: 44.



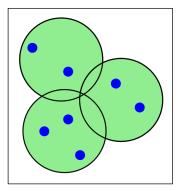
- Show that any set of n = 10 points in ℝ² can be covered by disjoint unit disks.
- Inaba: Probabilistic proof randomly shift hexagonal packing.
- For which *n* does this work?
- Aloupis-Hearn-Iwasawa-Uehara (2012):
 - Iower bound: 12,
 - upper bound: 44.
- We consider a relaxation.



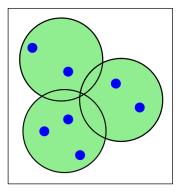
 Show that any set of n points in ℝ² can be covered exactly by unit disks (every point is contained in exactly one disk).



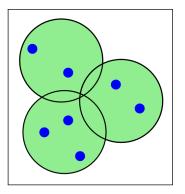
- Show that any set of n points in ℝ² can be covered exactly by unit disks (every point is contained in exactly one disk).
- Relaxation: disks are allowed to overlap, but not in a point.



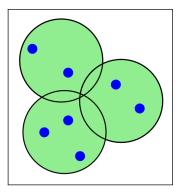
- Show that any set of n points in ℝ² can be covered exactly by unit disks (every point is contained in exactly one disk).
- Relaxation: disks are allowed to overlap, but not in a point.
- For which *n* does this work?



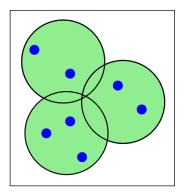
- Show that any set of n points in ℝ² can be covered exactly by unit disks (every point is contained in exactly one disk).
- Relaxation: disks are allowed to overlap, but not in a point.
- For which *n* does this work?
- Chun-K.-Roch:



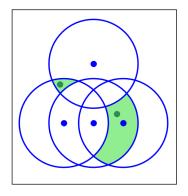
- Show that any set of n points in ℝ² can be covered exactly by unit disks (every point is contained in exactly one disk).
- Relaxation: disks are allowed to overlap, but not in a point.
- For which *n* does this work?
- Chun-K.-Roch:
 - Iower bound: 17,



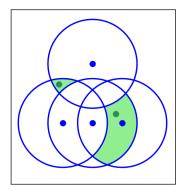
- Show that any set of n points in ℝ² can be covered exactly by unit disks (every point is contained in exactly one disk).
- Relaxation: disks are allowed to overlap, but not in a point.
- For which *n* does this work?
- Chun-K.-Roch:
 - Iower bound: 17,
 - upper bound: 656.



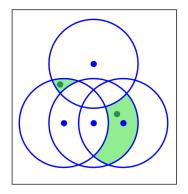
• Given: $X \subset \mathbb{R}^2$ finite.



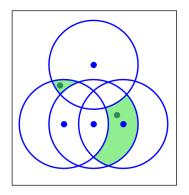
- Given: $X \subset \mathbb{R}^2$ finite.
- Consider the family of unit disks with midpoints in *X*.



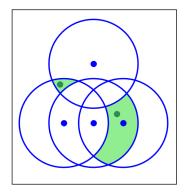
- Given: $X \subset \mathbb{R}^2$ finite.
- Consider the family of unit disks with midpoints in *X*.
 - Find Y ⊂ ℝ² finite such that every disk contains exactly one point.



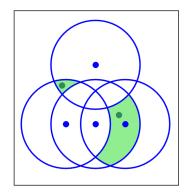
- Given: $X \subset \mathbb{R}^2$ finite.
- Consider the family of unit disks with midpoints in *X*.
 - Find Y ⊂ ℝ² finite such that every disk contains exactly one point.
 - There are only finitely many cells in such a circle arrangement.



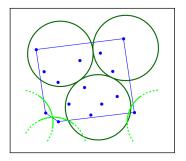
- Given: $X \subset \mathbb{R}^2$ finite.
- Consider the family of unit disks with midpoints in *X*.
 - Find Y ⊂ ℝ² finite such that every disk contains exactly one point.
 - There are only finitely many cells in such a circle arrangement.
- Special case of EXACT COVER.



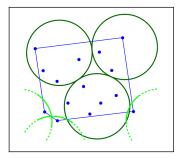
- Given: $X \subset \mathbb{R}^2$ finite.
- Consider the family of unit disks with midpoints in *X*.
 - Find Y ⊂ ℝ² finite such that every disk contains exactly one point.
 - There are only finitely many cells in such a circle arrangement.
- Special case of EXACT COVER.
 - Can be solved with Algorithm X, SAT solvers or integer programming.



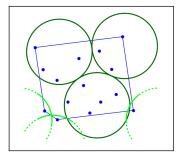
• Let $X \subset \mathbb{R}^2$ be finite.



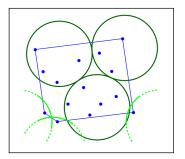
- Let $X \subset \mathbb{R}^2$ be finite.
- Extension argument: find disjoint cover of the points in the interior of conv X, extend to an exact cover of X.



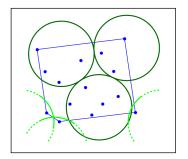
- Let $X \subset \mathbb{R}^2$ be finite.
- Extension argument: find disjoint cover of the points in the interior of conv X, extend to an exact cover of X.
 - This yields a lower bound of 12+3.



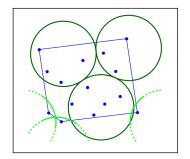
- Let $X \subset \mathbb{R}^2$ be finite.
- Extension argument: find disjoint cover of the points in the interior of conv X, extend to an exact cover of X.
 - This yields a lower bound of 12+3.
- Studying *generalized boundary points*, we get 12+4.



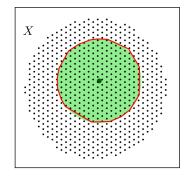
- Let $X \subset \mathbb{R}^2$ be finite.
- Extension argument: find disjoint cover of the points in the interior of conv X, extend to an exact cover of X.
 - This yields a lower bound of 12+3.
- Studying *generalized boundary points*, we get 12+4.
- Alternative approach: adapt Inaba's probabilistic argument, refined extension argument → 16 again.



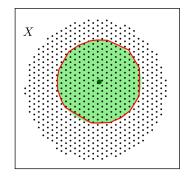
- Let $X \subset \mathbb{R}^2$ be finite.
- Extension argument: find disjoint cover of the points in the interior of conv X, extend to an exact cover of X.
 - This yields a lower bound of 12+3.
- Studying *generalized boundary points*, we get 12+4.
- Alternative approach: adapt Inaba's probabilistic argument, refined extension argument → 16 again.
- Careful analysis of case distinctions improves the lower bound to 17.



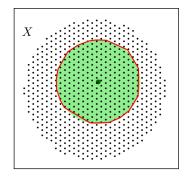
• Let $X \subset \mathbb{R}^2$ be finite and $Y \subset \mathbb{R}^2$ be a the set of disk centers of an exact cover.



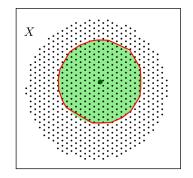
- Let $X \subset \mathbb{R}^2$ be finite and $Y \subset \mathbb{R}^2$ be a the set of disk centers of an exact cover.
- Consider the Voronoi diagram of Y.



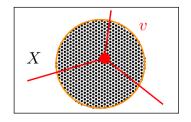
- Let $X \subset \mathbb{R}^2$ be finite and $Y \subset \mathbb{R}^2$ be a the set of disk centers of an exact cover.
- Consider the Voronoi diagram of Y.
- If X is "sufficiently dense", then the Voronoi regions of Y must be almost spherical.



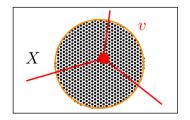
- Let $X \subset \mathbb{R}^2$ be finite and $Y \subset \mathbb{R}^2$ be a the set of disk centers of an exact cover.
- Consider the Voronoi diagram of Y.
- If X is "sufficiently dense", then the Voronoi regions of Y must be almost spherical.
- But three almost spherical polytopes cannot meet at a common vertex.



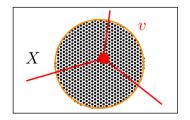
• Let $M \subset \mathbb{R}^2$ and $\varepsilon > 0$.



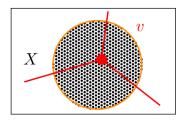
- Let $M \subset \mathbb{R}^2$ and $\varepsilon > 0$.
- X is an ε-net of M if M ⊂ X + εD, where D is the unit disk centered at 0.



- Let $M \subset \mathbb{R}^2$ and $\varepsilon > 0$.
- X is an ε -net of M if $M \subset X + \varepsilon D$, where D is the unit disk centered at 0.
- M is an ε-blocker if no ε-net of M has an exact cover.



- Let $M \subset \mathbb{R}^2$ and $\varepsilon > 0$.
- X is an ε-net of M if M ⊂ X + εD, where D is the unit disk centered at 0.
- M is an ε-blocker if no ε-net of M has an exact cover.
- Thm. Every disk of radius R > 1 is an ε-blocker for some ε > 0.



- Let $M \subset \mathbb{R}^2$ and $\varepsilon > 0$.
- X is an ε-net of M if M ⊂ X + εD, where D is the unit disk centered at 0.
- M is an ε-blocker if no ε-net of M has an exact cover.
- Thm. Every disk of radius R > 1 is an ε -blocker for some $\varepsilon > 0$.
- Upper bound of 656 is obtained by constructing an ε-net of ^{3+3ε}/₂D, where ε ≈ 0.07.

