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Inaba’s puzzle

Show that any set of n = 10 points in
R2 can be covered by disjoint unit
disks.

Inaba: Probabilistic proof – randomly
shift hexagonal packing.

For which n does this work?

Aloupis-Hearn-Iwasawa-Uehara (2012):

▶ lower bound: 12,
▶ upper bound: 44.

We consider a relaxation.
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Exact covering with unit disks

Show that any set of n points in R2 can
be covered exactly by unit disks (every
point is contained in exactly one disk).

Relaxation: disks are allowed to
overlap, but not in a point.

For which n does this work?

Chun-K.-Roch:

▶ lower bound: 17,
▶ upper bound: 656.
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The dual formulation

Given: X ⊂ R2 finite.

Consider the family of unit disks with
midpoints in X .

▶ Find Y ⊂ R2 finite such that every
disk contains exactly one point.

▶ There are only finitely many cells in
such a circle arrangement.

Special case of EXACT COVER.

▶ Can be solved with Algorithm X, SAT
solvers or integer programming.
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The lower bound

Let X ⊂ R2 be finite.

Extension argument: find disjoint cover
of the points in the interior of convX ,
extend to an exact cover of X .

▶ This yields a lower bound of 12+3.

Studying generalized boundary points,
we get 12+4.

Alternative approach: adapt Inaba’s
probabilistic argument, refined
extension argument ⇝ 16 again.

Careful analysis of case distinctions
improves the lower bound to 17.
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Intuitive idea behind the upper bound

Let X ⊂ R2 be finite and Y ⊂ R2 be a
the set of disk centers of an exact cover.

Consider the Voronoi diagram of Y .

If X is “sufficiently dense”, then the
Voronoi regions of Y must be almost
spherical.

But three almost spherical polytopes
cannot meet at a common vertex.
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The upper bound

Let M ⊂ R2 and ε > 0.

X is an ε-net of M if M ⊂ X + εD,
where D is the unit disk centered at 0.

M is an ε-blocker if no ε-net of M has
an exact cover.

Thm. Every disk of radius R > 1 is an
ε-blocker for some ε > 0.

Upper bound of 656 is obtained by
constructing an ε-net of 3+3ε

2 D, where
ε ≈ 0.07.

Chun, Kipp, Roch Exact covering with unit disks EuroCG 2024 7 / 7



The upper bound

Let M ⊂ R2 and ε > 0.

X is an ε-net of M if M ⊂ X + εD,
where D is the unit disk centered at 0.

M is an ε-blocker if no ε-net of M has
an exact cover.

Thm. Every disk of radius R > 1 is an
ε-blocker for some ε > 0.

Upper bound of 656 is obtained by
constructing an ε-net of 3+3ε

2 D, where
ε ≈ 0.07.

Chun, Kipp, Roch Exact covering with unit disks EuroCG 2024 7 / 7



The upper bound

Let M ⊂ R2 and ε > 0.

X is an ε-net of M if M ⊂ X + εD,
where D is the unit disk centered at 0.

M is an ε-blocker if no ε-net of M has
an exact cover.

Thm. Every disk of radius R > 1 is an
ε-blocker for some ε > 0.

Upper bound of 656 is obtained by
constructing an ε-net of 3+3ε

2 D, where
ε ≈ 0.07.

Chun, Kipp, Roch Exact covering with unit disks EuroCG 2024 7 / 7



The upper bound

Let M ⊂ R2 and ε > 0.

X is an ε-net of M if M ⊂ X + εD,
where D is the unit disk centered at 0.

M is an ε-blocker if no ε-net of M has
an exact cover.

Thm. Every disk of radius R > 1 is an
ε-blocker for some ε > 0.

Upper bound of 656 is obtained by
constructing an ε-net of 3+3ε

2 D, where
ε ≈ 0.07.

Chun, Kipp, Roch Exact covering with unit disks EuroCG 2024 7 / 7



The upper bound

Let M ⊂ R2 and ε > 0.

X is an ε-net of M if M ⊂ X + εD,
where D is the unit disk centered at 0.

M is an ε-blocker if no ε-net of M has
an exact cover.

Thm. Every disk of radius R > 1 is an
ε-blocker for some ε > 0.

Upper bound of 656 is obtained by
constructing an ε-net of 3+3ε

2 D, where
ε ≈ 0.07.

Chun, Kipp, Roch Exact covering with unit disks EuroCG 2024 7 / 7


