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Prelude

The key players
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Polygonal curves and dynamic time warping (dtw)

Key player I – curves of complexity ≤ m
Central objects Xd

m and dtw

Complexity ≤ m (polygonal) curves in Xd
m: point sequences τ = (τ1, . . . , τm′) with

τi ∈ Rd and m′ ≤ m.
Distance measure: dynamic time warping (dtw)

?
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Polygonal curves and dynamic time warping (dtw)

Dynamic Time Warping

joint traversals: Each kangaroo allowed to hop either one step ahead, or stay put.

dtw: minimal possible sum of Euclidean distances.
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Polygonal curves and dynamic time warping (dtw)

Key player I – curves of complexity ≤ m under dtw

Central objects Xd
m and dtw

Complexity ≤ m (polygonal) curves in Xd
m: point sequences τ = (τ1, . . . , τm′) with

τi ∈ Rd and m′ ≤ m.
Distance measure: dynamic time warping (dtw)

Definition (

p-

DTW)

Let σ = (σ1, . . . , σm) ∈ Xd
=m, τ = (τ1, . . . , τℓ) ∈ Xd

=ℓ. The

p-

DTW of σ and τ is

dtw(σ, τ) = minT∈Tm,ℓ

∑
(i ,j)∈T ∥σi − τj∥2

dtwp(σ, τ) = minT∈Tm,ℓ

(∑
(i ,j)∈T ∥σi − τj∥p2

)1/p
for p ∈ [1,∞)

.

▶ dtw less sensitive to outliers than Fréchet but not a metric

▶ dtwp
p→∞−→ ddiscrete Fréchet; dtw1 = dtw
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Polygonal curves and dynamic time warping (dtw)

Vioalted triangle inequality

ε

� ε

dtw(■,■) ≈ 9ϵ
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Polygonal curves and dynamic time warping (dtw)

Vioalted triangle inequality

ε

� ε

dtw(■,■) ≈ 3
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Clustering and Coresets

k-median problem for curves

(k , ℓ)-median problem for Xd
m and k , ℓ ∈ N:

Given a set of n ∈ N curves T = {τ1, . . . , τn} ⊂ Xd
m, identify k center curves C =

{c1, . . . , ck} ⊂ Xd
ℓ that minimize cost(T ,C ) =

∑
τ∈T minc∈C dtwp(τ, c).

Definition ((α, β)-approximation for (k , ℓ)-median)

A set Ĉ ⊂ Xd
ℓ is an (α, β)-approximation of (k , ℓ)-median if |Ĉ | ≤ βk and

cost
(
T , Ĉ

)
≤ α cost(T ,C ) = α

∑
τ∈T

min
c∈C

dtwp(τ, c)

for any C ⊂ Xd
ℓ of size k.
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Clustering and Coresets

Key player II – coresets X1

X2

X3

Definition (ϵ-coreset)

Let T ⊂ Xd
m and ϵ ∈ (0, 1). A weighted multiset S ⊂ Xd

m with weights w : S → R>0 is
a ϵ-coreset for (k , ℓ)-median of T under dtwp if ∀C ⊂ Xd

ℓ with |C | = k

(1− ϵ) cost(T ,C ) ≤
∑
s∈S

w(s)min
c∈C

dtwp(s, c) ≤ (1 + ϵ) cost(T ,C ).
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Part I

Sensitivity-sampling

or

Identifying our problems
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Sensitivity sampling crash course and dtwp-complications

Sensitivity (=̂importance) sampling
Framework for ϵ-coreset for k-median in metric spaces [Feldman,Langberg’11,Braverman,Feldman,Lang’16,...]

▶ If there is a (α, β)-approximation algorithm and

▶ If the metric space has VC dimension ρ

▶ Then we can sample a coreset of size roughly Õ(ϵ−2αβkρ log(n))

Problems with dtwp:
▶ No known polynomial (α, β)-approximation algorithm for (k , ℓ)-median

▶ VC dimension of dtwp is not known

▶ dtwp is no metric

Theorem (C, Kolbe, Psarros, Rohde)

There is a distance d̃twp with dtwp ≤ d̃twp ≤ (1 + ε) dtwp. Its associated ball range
space has VC dimension O(dℓ log(ℓmε−1)).

▶ d̃twp is hard-to-compute so computation is circumvented

11 / 17



Problem definition Sensitivity sampling Approximating (k, ℓ)-median Take-home message

Sensitivity sampling crash course and dtwp-complications

Sensitivity (=̂importance) sampling
Framework for ϵ-coreset for k-median in metric spaces [Feldman,Langberg’11,Braverman,Feldman,Lang’16,...]

▶ If there is a (α, β)-approximation algorithm and

▶ If the metric space has VC dimension ρ

▶ Then we can sample a coreset of size roughly Õ(ϵ−2αβkρ log(n))
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Part II

(α, β)-approximations of (k , ℓ)-median

or

How to force DTW to be a metric
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The iterated triangle inequality

The iterated triangle inequality

Lemma (Iterated triangle inequality)

Let s ∈ Xd
ℓ , t ∈ Xd

ℓ′ and X = (x1, . . . , xr ) be any ordered set of curves in Xd
m. Then

dtwp(s, t) ≤ (ℓ+ ℓ′)1/p

(
dtwp(s, x1) +

∑
i<r

dtwp(xi , xi+1) + dtwp(xr , t)

)
.

▶ No dependence on complexities of visited curves

▶ Connection to empirical observation that the ∆-inequality is only rarely violated
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The iterated triangle inequality

The iterated triangle inequality illustrated

Key observation

Proof of ∆-inequality boils down to constructing some traversal between the end curves
s and t from optimal traversals for the inbetween curves.

s

x

y

t
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The iterated triangle inequality

Bridging the gap to a metric space
Consequences of iterated ∆-inequality

▶ Shortest path from σ to τ in T not necessarily direct edge between them

▶ However, the direct edge is not too far off

▶ Defining dtwp |T to be the metric closure (shortest path metric), we have

dtwp |T ≤ dtwp |T ≤ (2m)1/pdtwp |T ≤ (2m)1/p dtwp |T
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The iterated triangle inequality

Denouement - putting it all together
We can now access the wealth of k-median results in metric spaces:

Theorem (C, Kolbe, Psarros, Rohde)

We can compute a (O((1 + ϵ)(mℓ)1/p), 4)-approximation for (k , ℓ)-median in Xd
m in

time
Õ(n · poly(m, ℓ, k , d , ϵ−1))

With the last dtwp-problem adressed:

Theorem (C, Kolbe, Psarros, Rohde)

Given a set T ⊂ Xd
m (|T | = n), sensitivity sampling yields an ϵ-coreset for

(k , ℓ)-median on T of size (hiding other log factors)

Õ(ϵ−2dℓk2(mℓ)2/p log(n)).
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Take-home message

▶ DTW – widespread similarity measure for trajectories;
not a metric, but not too far off

▶ We find new (α, β)-approximations from approximating DTW by a path metric

▶ We obtain bounds on the VC dimension of dtwp that allow coreset constructions
from approximations to (k, ℓ)-median

Thanks for your attention!
Questions?
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