## Coresets for $(k, \ell)$ -Median under Dynamic Time Warping

#### Jacobus Conradi 🗢, Benedikt Kolbe, Ioannis Psarros, Dennis Rohde



conradi@cs.uni-bonn.de

EuroCG'24, Ioannina

Approximating  $(k, \ell)$ -median 00000

Take-home message

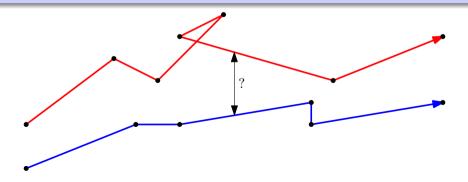
## Prelude

The key players

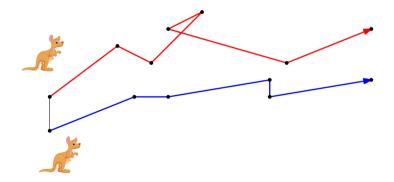
| Problem definition<br>○●000000                  | Sensitivity sampling<br>00 | Approximating $(k, \ell)$ -median | Take-home message<br>00 |  |
|-------------------------------------------------|----------------------------|-----------------------------------|-------------------------|--|
| Polygonal curves and dynamic time warping (dtw) |                            |                                   |                         |  |
| Key player I – curv                             | es of complexity $\leq r$  | n                                 |                         |  |

Central objects  $\mathbb{X}_m^d$  and dtw

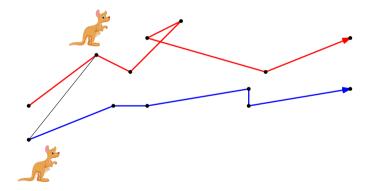
Complexity  $\leq m$  (polygonal) curves in  $\mathbb{X}_m^d$ : point sequences  $\tau = (\tau_1, \ldots, \tau_{m'})$  with  $\tau_i \in \mathbb{R}^d$  and  $m' \leq m$ . Distance measure: dynamic time warping (dtw)



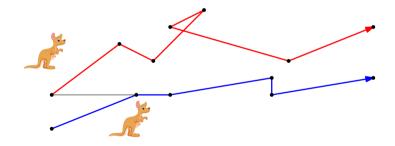
| Problem definition                     | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○○●○○○○○                               | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warp | ing (dtw)            |                                   |                   |



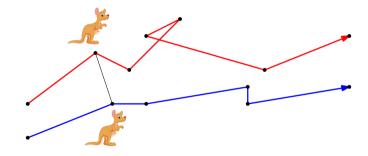
| Problem definition                     | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○0●00000                               | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warp | ng (dtw)             |                                   |                   |



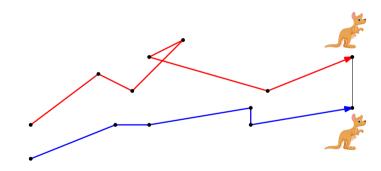
| Problem definition                     | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○○●○○○○○                               | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warp | ing (dtw)            |                                   |                   |



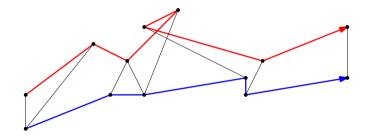
| Problem definition                     | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○○●○○○○○                               | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warp | ing (dtw)            |                                   |                   |



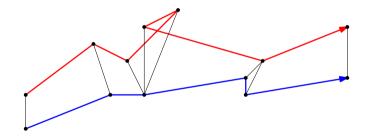
| Problem definition                      | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|-----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○○●○○○○○                                | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warpi | ing (dtw)            |                                   |                   |



| Problem definition                     | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○○●○○○○○                               | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warp | ing (dtw)            |                                   |                   |



| Problem definition                     | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○○●○○○○○                               | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warp | ing (dtw)            |                                   |                   |



joint traversals: Each kangaroo allowed to hop either one step ahead, or stay put. dtw: minimal possible sum of Euclidean distances.

| Problem definition                      | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|-----------------------------------------|----------------------|-----------------------------------|-------------------|
|                                         | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warpi | ng (dtw)             |                                   |                   |

#### Central objects $\mathbb{X}_m^d$ and dtw

Complexity  $\leq m$  (polygonal) curves in  $\mathbb{X}_m^d$ : point sequences  $\tau = (\tau_1, \ldots, \tau_{m'})$  with  $\tau_i \in \mathbb{R}^d$  and  $m' \leq m$ . Distance measure: dynamic time warping (dtw)

# Definition ( DTW) Let $\sigma = (\sigma_1, \dots, \sigma_m) \in \mathbb{X}_{=m}^d, \tau = (\tau_1, \dots, \tau_\ell) \in \mathbb{X}_{=\ell}^d$ . The DTW of $\sigma$ and $\tau$ is $dtw(\sigma, \tau) = \min_{\tau \in \mathcal{T}_{m,\ell}} \sum_{(i,j) \in \mathcal{T}} \|\sigma_i - \tau_j\|_2$ .

b dtw less sensitive to outliers than Fréchet but not a metric
 b dtw<sub>p</sub> <sup>p→∞</sup> → d<sub>discrete Fréchet</sub>; dtw<sub>1</sub> = dtw

| Problem definition                      | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|-----------------------------------------|----------------------|-----------------------------------|-------------------|
|                                         | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warpi | ng (dtw)             |                                   |                   |

#### Central objects $\mathbb{X}_m^d$ and dtw

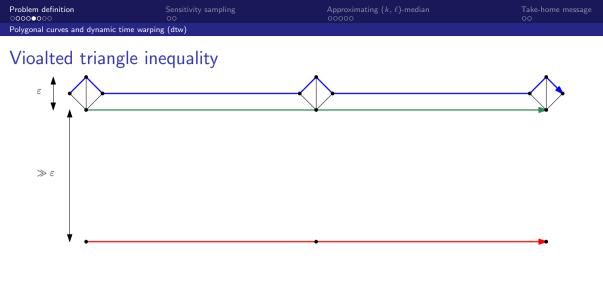
Complexity  $\leq m$  (polygonal) curves in  $\mathbb{X}_m^d$ : point sequences  $\tau = (\tau_1, \ldots, \tau_{m'})$  with  $\tau_i \in \mathbb{R}^d$  and  $m' \leq m$ . Distance measure: dynamic time warping (dtw)

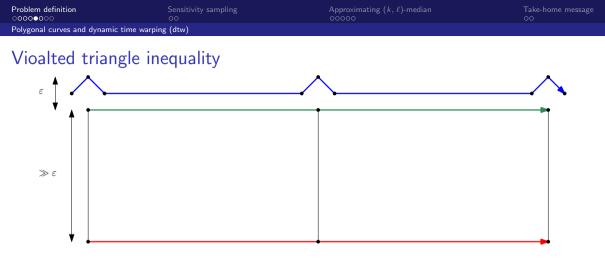
## Definition ( DTW)

Let  $\sigma = (\sigma_1, \ldots, \sigma_m) \in \mathbb{X}^d_{=m}, \tau = (\tau_1, \ldots, \tau_\ell) \in \mathbb{X}^d_{=\ell}$ . The DTW of  $\sigma$  and  $\tau$  is

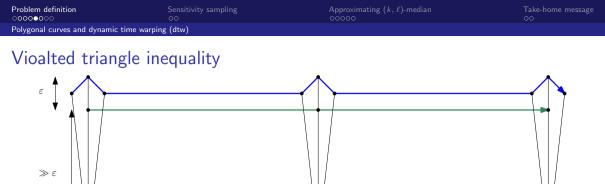
 $dtw(\sigma,\tau) = \min_{T \in \mathcal{T}_{m,\ell}} \sum_{(i,j) \in T} \|\sigma_i - \tau_j\|_2$ 

> dtw less sensitive to outliers than Fréchet but not a metric
 > dtwn p→∞ ddiscrete Fréchet; dtw1 = dtw





dtw(■, ■) ≈ 3



dtw( $\blacksquare$ ,  $\blacksquare$ )  $\approx$  9 but 9  $\not<$  3 + 9 $\epsilon$ 

| Problem definition                      | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|-----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○0000●○○                                | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warpi | ng (dtw)             |                                   |                   |

#### Central objects $\mathbb{X}_m^d$ and dtw

Complexity  $\leq m$  (polygonal) curves in  $\mathbb{X}_m^d$ : point sequences  $\tau = (\tau_1, \ldots, \tau_{m'})$  with  $\tau_i \in \mathbb{R}^d$  and  $m' \leq m$ . Distance measure: dynamic time warping (dtw)

## Definition ( DTW)

Let  $\sigma = (\sigma_1, \ldots, \sigma_m) \in \mathbb{X}^d_{=m}, \tau = (\tau_1, \ldots, \tau_\ell) \in \mathbb{X}^d_{=\ell}$ . The DTW of  $\sigma$  and  $\tau$  is

 $dtw(\sigma,\tau) = \min_{T \in \mathcal{T}_{m,\ell}} \sum_{(i,j) \in T} \|\sigma_i - \tau_j\|_2$ 

> dtw less sensitive to outliers than Fréchet but not a metric
 > dtwn p→∞ ddiscrete Fréchet; dtw1 = dtw

| Problem definition                      | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|-----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○0000●00                                | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warpi | ng (dtw)             |                                   |                   |

#### Central objects $\mathbb{X}_m^d$ and dtw

Complexity  $\leq m$  (polygonal) curves in  $\mathbb{X}_m^d$ : point sequences  $\tau = (\tau_1, \ldots, \tau_{m'})$  with  $\tau_i \in \mathbb{R}^d$  and  $m' \leq m$ . Distance measure: dynamic time warping (dtw)

# Definition (*p*-DTW) Let $\sigma = (\sigma_1, \ldots, \sigma_m) \in \mathbb{X}_{=m}^d, \tau = (\tau_1, \ldots, \tau_\ell) \in \mathbb{X}_{=\ell}^d$ . The *p*-DTW of $\sigma$ and $\tau$ is $dtw_p(\sigma, \tau) = \min_{\tau \in \mathcal{T}_{m,\ell}} \left( \sum_{(i,j) \in \tau} \|\sigma_i - \tau_j\|_2^p \right)^{1/p}$ for $p \in [1, \infty)$ .

dtw less sensitive to outliers than Fréchet but not a metric

 $\blacktriangleright dtw_{p} \stackrel{p \to \infty}{\longrightarrow} d_{discrete \ Fréchet}; \ dtw_{1} = dtw$ 

| Problem definition                      | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|-----------------------------------------|----------------------|-----------------------------------|-------------------|
| ○0000●00                                | 00                   | 00000                             | 00                |
| Polygonal curves and dynamic time warpi | ng (dtw)             |                                   |                   |

#### Central objects $\mathbb{X}_m^d$ and dtw

Complexity  $\leq m$  (polygonal) curves in  $\mathbb{X}_m^d$ : point sequences  $\tau = (\tau_1, \ldots, \tau_{m'})$  with  $\tau_i \in \mathbb{R}^d$  and  $m' \leq m$ . Distance measure: dynamic time warping (dtw)

# Definition (*p*-DTW) Let $\sigma = (\sigma_1, \ldots, \sigma_m) \in \mathbb{X}_{=m}^d, \tau = (\tau_1, \ldots, \tau_\ell) \in \mathbb{X}_{=\ell}^d$ . The *p*-DTW of $\sigma$ and $\tau$ is $dtw_p(\sigma, \tau) = \min_{T \in \mathcal{T}_{m,\ell}} \left( \sum_{(i,j) \in T} \|\sigma_i - \tau_j\|_2^p \right)^{1/p}$ for $p \in [1, \infty)$ .

dtw less sensitive to outliers than Fréchet but not a metric
 dtw<sub>p</sub> → d<sub>discrete Fréchet</sub>; dtw<sub>1</sub> = dtw

| Problem definition      | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|-------------------------|----------------------|-----------------------------------|-------------------|
| ○○○○○●○                 | 00                   | 00000                             | 00                |
| Clustering and Coresets |                      |                                   |                   |

### k-median problem for curves

(k,  $\ell$ )-median problem for  $\mathbb{X}_m^d$  and  $k, \ell \in \mathbb{N}$ : Given a set of  $n \in \mathbb{N}$  curves  $T = \{\tau_1, \ldots, \tau_n\} \subset \mathbb{X}_m^d$ , identify k center curves  $C = \{c_1, \ldots, c_k\} \subset \mathbb{X}_\ell^d$  that minimize  $\operatorname{cost}(T, C) = \sum_{\tau \in T} \min_{c \in C} \operatorname{dtw}_p(\tau, c)$ .

| Problem definition      | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|-------------------------|----------------------|-----------------------------------|-------------------|
| ○○○○○○●○                | 00                   | 00000                             | 00                |
| Clustering and Coresets |                      |                                   |                   |

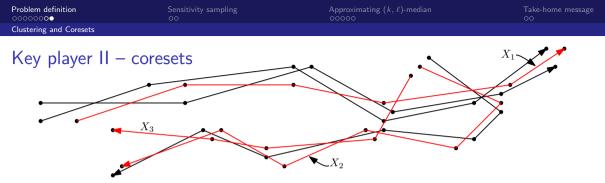
### k-median problem for curves

 $(k, \ell)$ -median problem for  $\mathbb{X}_m^d$  and  $k, \ell \in \mathbb{N}$ : Given a set of  $n \in \mathbb{N}$  curves  $T = \{\tau_1, \ldots, \tau_n\} \subset \mathbb{X}_m^d$ , identify k center curves  $C = \{c_1, \ldots, c_k\} \subset \mathbb{X}_\ell^d$  that minimize  $\operatorname{cost}(T, C) = \sum_{\tau \in T} \min_{c \in C} \operatorname{dtw}_p(\tau, c)$ .

Definition (( $\alpha, \beta$ )-approximation for ( $k, \ell$ )-median) A set  $\hat{C} \subset \mathbb{X}_{\ell}^{d}$  is an ( $\alpha, \beta$ )-approximation of ( $k, \ell$ )-median if  $|\hat{C}| \leq \beta k$  and

$$cost(T, \hat{C}) \leq \alpha cost(T, C) = \alpha \sum_{\tau \in T} \min_{c \in C} dtw_p(\tau, c)$$

for any  $C \subset \mathbb{X}_{\ell}^{d}$  of size k.



#### Definition ( $\epsilon$ -coreset)

Let  $T \subset \mathbb{X}_m^d$  and  $\epsilon \in (0, 1)$ . A weighted multiset  $S \subset \mathbb{X}_m^d$  with weights  $w : S \to \mathbb{R}_{>0}$  is a  $\epsilon$ -coreset for  $(k, \ell)$ -median of T under dtw<sub>p</sub> if  $\forall C \subset \mathbb{X}_\ell^d$  with |C| = k

$$(1-\epsilon) \operatorname{cost}(\mathcal{T}, \mathcal{C}) \leq \sum_{s \in S} w(s) \min_{c \in \mathcal{C}} \operatorname{dtw}_{\mathsf{p}}(s, c) \leq (1+\epsilon) \operatorname{cost}(\mathcal{T}, \mathcal{C}).$$

Approximating  $(k, \ell)$ -median 00000

Take-home message 00

## Part I

## Sensitivity-sampling

or

Identifying our problems

# Sensitivity ( $\cong$ importance) sampling

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- ▶ If there is a  $(\alpha, \beta)$ -approximation algorithm and
- If the metric space has VC dimension  $\rho$
- Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$

# Sensitivity ( $\cong$ importance) sampling

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- If there is a  $(\alpha, \beta)$ -approximation algorithm and
- If the metric space has VC dimension  $\rho$
- Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$

## Sensitivity (≘importance) sampling

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- If there is a  $(\alpha, \beta)$ -approximation algorithm and
- If the metric space has VC dimension  $\rho$

Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$ 

## Sensitivity (≘importance) sampling

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- If there is a  $(\alpha, \beta)$ -approximation algorithm and
- If the metric space has VC dimension  $\rho$
- Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- If there is a  $(\alpha, \beta)$ -approximation algorithm and
- $\blacktriangleright$  If the metric space has VC dimension  $\rho$
- Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$

#### Problems with dtwp:

- No known polynomial  $(\alpha, \beta)$ -approximation algorithm for  $(k, \ell)$ -median
- ▶ VC dimension of dtw<sub>p</sub> is not known
- dtwp is no metric

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- If there is a  $(\alpha, \beta)$ -approximation algorithm and
- $\blacktriangleright$  If the metric space has VC dimension  $\rho$
- Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$

#### Problems with dtw<sub>p</sub>:

- ▶ No known polynomial ( $\alpha, \beta$ )-approximation algorithm for ( $k, \ell$ )-median
- ▶ VC dimension of dtw<sub>p</sub> is not known

dtw<sub>p</sub> is no metric

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- If there is a  $(\alpha, \beta)$ -approximation algorithm and
- If the metric space has VC dimension  $\rho$
- Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$

#### **Problems with** dtw<sub>p</sub>:

- ▶ No known polynomial ( $\alpha, \beta$ )-approximation algorithm for ( $k, \ell$ )-median
- ▶ VC dimension of dtw<sub>p</sub> is not known

dtwp is no metric

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- If there is a  $(\alpha, \beta)$ -approximation algorithm and
- If the metric space has VC dimension  $\rho$
- Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$

#### **Problems with** dtw<sub>p</sub>:

- ▶ No known polynomial ( $\alpha, \beta$ )-approximation algorithm for ( $k, \ell$ )-median
- VC dimension of dtw<sub>p</sub> is not known
- dtw<sub>p</sub> is no metric

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- If there is a  $(\alpha, \beta)$ -approximation algorithm and
- $\blacktriangleright$  If the metric space has VC dimension  $\rho$
- Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$

#### **Problems with** dtw<sub>p</sub>:

- ▶ No known polynomial ( $\alpha, \beta$ )-approximation algorithm for ( $k, \ell$ )-median
- VC dimension of dtwp is not known
- dtw<sub>p</sub> is no metric

### Theorem (C, Kolbe, Psarros, Rohde)

There is a distance  $dtw_p$  with  $dtw_p \leq dtw_p \leq (1 + \varepsilon) dtw_p$ . Its associated ball range space has VC dimension  $O(d\ell \log(\ell m \varepsilon^{-1}))$ .

dtwp is hard-to-compute so computation is circumvented

Framework for  $\epsilon$ -coreset for k-median in metric spaces [Feldman,Langberg'11,Braverman,Feldman,Lang'16,...]

- If there is a  $(\alpha, \beta)$ -approximation algorithm and
- $\blacktriangleright$  If the metric space has VC dimension  $\rho$
- Then we can sample a coreset of size roughly  $\widetilde{O}(\epsilon^{-2}\alpha\beta k\rho \log(n))$

#### **Problems with** dtw<sub>p</sub>:

- ▶ No known polynomial ( $\alpha, \beta$ )-approximation algorithm for ( $k, \ell$ )-median
- VC dimension of dtwp is not known
- dtw<sub>p</sub> is no metric

#### Theorem (C, Kolbe, Psarros, Rohde)

There is a distance  $dtw_p$  with  $dtw_p \leq dtw_p \leq (1 + \varepsilon) dtw_p$ . Its associated ball range space has VC dimension  $O(d\ell \log(\ell m \varepsilon^{-1}))$ .

dtwp is hard-to-compute so computation is circumvented

## Part II

# $(\alpha, \beta)$ -approximations of $(k, \ell)$ -median

or

## How to force DTW to be a metric

| Problem definition               | Sensitivity sampling | Approximating $(k, \ell)$ -median $\circ \bullet \circ \circ \circ$ | Take-home message |
|----------------------------------|----------------------|---------------------------------------------------------------------|-------------------|
| 00000000                         | 00                   |                                                                     | 00                |
| The iterated triangle inequality |                      |                                                                     |                   |

## The iterated triangle inequality

Lemma (Iterated triangle inequality) Let  $s \in \mathbb{X}_{\ell}^d$ ,  $t \in \mathbb{X}_{\ell'}^d$  and  $X = (x_1, \dots, x_r)$  be any ordered set of curves in  $\mathbb{X}_m^d$ . Then

$$\mathsf{dtw}_\mathsf{p}(s,t) \leq (\ell+\ell')^{1/p} \left( \mathsf{dtw}_\mathsf{p}(s,x_1) + \sum_{i < r} \mathsf{dtw}_\mathsf{p}(x_i,x_{i+1}) + \mathsf{dtw}_\mathsf{p}(x_r,t) \right).$$

No dependence on complexities of visited curves

Example Connection to empirical observation that the  $\Delta$ -inequality is only rarely violated

| Problem definition               | Sensitivity sampling | Approximating $(k, \ell)$ -median $\circ \bullet \circ \circ \circ$ | Take-home message |
|----------------------------------|----------------------|---------------------------------------------------------------------|-------------------|
| 00000000                         | 00                   |                                                                     | 00                |
| The iterated triangle inequality |                      |                                                                     |                   |

## The iterated triangle inequality

Lemma (Iterated triangle inequality) Let  $s \in \mathbb{X}_{\ell}^d$ ,  $t \in \mathbb{X}_{\ell'}^d$  and  $X = (x_1, \dots, x_r)$  be any ordered set of curves in  $\mathbb{X}_m^d$ . Then

$$\mathsf{dtw}_{\mathsf{p}}(s,t) \leq (\ell + \ell')^{1/p} \left( \mathsf{dtw}_{\mathsf{p}}(s,x_1) + \sum_{i < r} \mathsf{dtw}_{\mathsf{p}}(x_i,x_{i+1}) + \mathsf{dtw}_{\mathsf{p}}(x_r,t) \right).$$

No dependence on complexities of visited curves

 $\blacktriangleright$  Connection to empirical observation that the  $\Delta$ -inequality is only rarely violated

| Problem definition               | Sensitivity sampling | Approximating $(k, \ell)$ -median $\circ \bullet \circ \circ \circ$ | Take-home message |
|----------------------------------|----------------------|---------------------------------------------------------------------|-------------------|
| 00000000                         | 00                   |                                                                     | 00                |
| The iterated triangle inequality |                      |                                                                     |                   |

## The iterated triangle inequality

Lemma (Iterated triangle inequality) Let  $s \in \mathbb{X}_{\ell}^d$ ,  $t \in \mathbb{X}_{\ell'}^d$  and  $X = (x_1, \dots, x_r)$  be any ordered set of curves in  $\mathbb{X}_m^d$ . Then

$$\mathsf{dtw}_\mathsf{p}(s,t) \leq (\ell+\ell')^{1/p} \left( \mathsf{dtw}_\mathsf{p}(s,x_1) + \sum_{i < r} \mathsf{dtw}_\mathsf{p}(x_i,x_{i+1}) + \mathsf{dtw}_\mathsf{p}(x_r,t) \right).$$

No dependence on complexities of visited curves

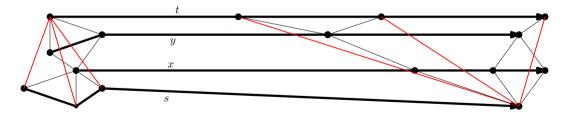
 $\blacktriangleright$  Connection to empirical observation that the  $\Delta$ -inequality is only rarely violated

| Problem definition               | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|----------------------------------|----------------------|-----------------------------------|-------------------|
|                                  | 00                   | $\circ \circ \bullet \circ \circ$ | 00                |
| The iterated triangle inequality |                      |                                   |                   |

## The iterated triangle inequality illustrated

#### Key observation

Proof of  $\Delta$ -inequality boils down to constructing some traversal between the end curves s and t from optimal traversals for the inbetween curves.



| Problem  | definition<br>000                        | Sensitivity sampling<br>00                  | Approximating $(k, \ell)$ -median<br>$\circ \circ \circ \bullet \circ$ | Take-home message<br>00 |
|----------|------------------------------------------|---------------------------------------------|------------------------------------------------------------------------|-------------------------|
| The iter | ated triangle inequality                 |                                             |                                                                        |                         |
|          | lging the gap to<br>Consequences of iter | o a metric space<br>rated Δ-inequality      |                                                                        |                         |
|          | Shortest path fill                       | rom $\sigma$ to $	au$ in ${\mathcal T}$ not | necessarily direct edge betwee                                         | n them                  |
|          | ► However, the d                         | irect edge is not too                       | far off                                                                |                         |
|          | ► Defining dtw <sub>p</sub>              | $\frac{1}{T}$ to be the <b>metric</b> of    | c <b>losure</b> (shortest path metric),                                | we have                 |

 $\overline{\mathrm{dtw}_{\mathsf{p}}|_{\mathcal{T}}} \leq \mathrm{dtw}_{\mathsf{p}}|_{\mathcal{T}} \leq (2m)^{1/p} \overline{\mathrm{dtw}_{\mathsf{p}}|_{\mathcal{T}}} \leq (2m)^{1/p} \mathrm{dtw}_{\mathsf{p}}|_{\mathcal{T}}$ 

| Problem definition               | Sensitivity sampling<br>00                                                                                       | Approximating $(k, \ell)$ -median<br>$\circ \circ \circ \bullet \circ$ | Take-home message<br>00 |
|----------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|
| The iterated triangle inequality |                                                                                                                  |                                                                        |                         |
| Didutanti                        | and the second |                                                                        |                         |

#### Bridging the gap to a metric space

#### Consequences of iterated $\Delta$ -inequality

- Shortest path from  $\sigma$  to  $\tau$  in T not necessarily direct edge between them
- However, the direct edge is not too far off
- Defining  $dtw_p |_T$  to be the **metric closure** (shortest path metric), we have

 $\overline{\mathrm{dtw}_{\mathsf{p}}|_{\mathcal{T}}} \leq \mathrm{dtw}_{\mathsf{p}}|_{\mathcal{T}} \leq (2m)^{1/p} \overline{\mathrm{dtw}_{\mathsf{p}}|_{\mathcal{T}}} \leq (2m)^{1/p} \mathrm{dtw}_{\mathsf{p}}|_{\mathcal{T}}$ 

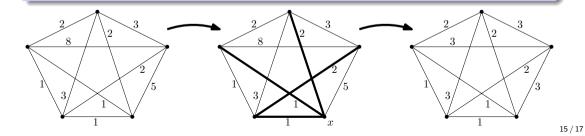
| Problem definition               | Sensitivity sampling | Approximating $(k, \ell)$ -median | Take-home message |
|----------------------------------|----------------------|-----------------------------------|-------------------|
|                                  | 00                   | $\circ \circ \circ \bullet \circ$ | 00                |
| The iterated triangle inequality |                      |                                   |                   |

## Bridging the gap to a metric space

#### Consequences of iterated $\Delta$ -inequality

- Shortest path from  $\sigma$  to  $\tau$  in T not necessarily direct edge between them
- However, the direct edge is not too far off
- Defining  $\overline{\operatorname{dtw}_p|_{\mathcal{T}}}$  to be the **metric closure** (shortest path metric), we have

$$\overline{\mathrm{dtw}_{\mathsf{p}}\,|_{\mathcal{T}}} \leq \, \mathrm{dtw}_{\mathsf{p}}\,|_{\mathcal{T}} \leq \, (2m)^{1/p} \overline{\mathrm{dtw}_{\mathsf{p}}\,|_{\mathcal{T}}} \, \leq \, (2m)^{1/p} \, \mathrm{dtw}_{\mathsf{p}}\,|_{\mathcal{T}}$$



| Problem definition               | Sensitivity sampling | Approximating $(k, \ell)$ -median $\circ \circ \circ \circ \bullet$ | Take-home message |
|----------------------------------|----------------------|---------------------------------------------------------------------|-------------------|
| 00000000                         | 00                   |                                                                     | 00                |
| The iterated triangle inequality |                      |                                                                     |                   |

## Denouement - putting it all together

We can now access the wealth of k-median results in metric spaces:

Theorem (C, Kolbe, Psarros, Rohde) We can compute a  $(O((1 + \epsilon)(m\ell)^{1/p}), 4)$ -approximation for  $(k, \ell)$ -median in  $\mathbb{X}_m^d$  in time

 $\widetilde{O}(n \cdot \operatorname{poly}(m, \ell, k, d, \epsilon^{-1}))$ 

| Problem definition               | Sensitivity sampling<br>00 | Approximating $(k, \ell)$ -median $\circ \circ \circ \circ \bullet$ | Take-home message<br>00 |
|----------------------------------|----------------------------|---------------------------------------------------------------------|-------------------------|
| The iterated triangle inequality |                            |                                                                     |                         |

### Denouement - putting it all together

We can now access the wealth of k-median results in metric spaces:

Theorem (C, Kolbe, Psarros, Rohde) We can compute a  $(O((1 + \epsilon)(m\ell)^{1/p}), 4)$ -approximation for  $(k, \ell)$ -median in  $\mathbb{X}_m^d$  in time

 $\widetilde{O}(n \cdot \operatorname{poly}(m, \ell, k, d, \epsilon^{-1}))$ 

With the last  $dtw_p$ -problem adressed:

| Problem definition               | Sensitivity sampling<br>00 | Approximating $(k, \ell)$ -median $\circ \circ \circ \circ \bullet$ | Take-home message<br>00 |
|----------------------------------|----------------------------|---------------------------------------------------------------------|-------------------------|
| The iterated triangle inequality |                            |                                                                     |                         |

## Denouement - putting it all together

We can now access the wealth of k-median results in metric spaces:

Theorem (C, Kolbe, Psarros, Rohde) We can compute a  $(O((1 + \epsilon)(m\ell)^{1/p}), 4)$ -approximation for  $(k, \ell)$ -median in  $\mathbb{X}_m^d$  in time

 $\widetilde{O}(n \cdot \operatorname{poly}(m, \ell, k, d, \epsilon^{-1}))$ 

With the last dtw<sub>p</sub>-problem adressed:

Theorem (C, Kolbe, Psarros, Rohde)

Given a set  $T \subset \mathbb{X}_m^d$  (|T| = n), sensitivity sampling yields an  $\epsilon$ -coreset for  $(k, \ell)$ -median on T of size (hiding other log factors)

 $\widetilde{O}(\epsilon^{-2}d\ell k^2(m\ell)^{2/p}\log(n)).$ 

## Take-home message

- DTW widespread similarity measure for trajectories; not a metric, but not too far off
- We find new  $(\alpha, \beta)$ -approximations from approximating DTW by a path metric
- We obtain bounds on the VC dimension of dtw<sub>p</sub> that allow coreset constructions from approximations to (k, ℓ)-median

## Take-home message

- DTW widespread similarity measure for trajectories; not a metric, but not too far off
- We find new  $(\alpha, \beta)$ -approximations from approximating DTW by a path metric
- We obtain bounds on the VC dimension of dtw<sub>p</sub> that allow coreset constructions from approximations to (k, ℓ)-median

Thanks for your attention! Questions?

### Main references

- Har-Peled, S., & Sharir, M. (2011). Relative (p,ε)-Approximations in Geometry. Discrete & Computational Geometry, 45(3), 462–496.
- Buchin, M., & Rohde, D. (2022). Coresets for (k, l)-Median Clustering Under the Fréchet Distance. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 13179 LNCS (pp. 167–180).
- Driemel, A., Krivosija, A., & Sohler, C. (2016). Clustering time series under the Fréchet distance. Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 766–785.
- Buchin, M., Driemel, A., & Rohde, D. (2021). Approximating (k, *l*)-median clustering for polygonal curves. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 2697–2716.