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Polygonal curves and dynamic time warping (dtw)

Key player | — curves of complexity < m
Central objects X9, and dtw
Complexity < m (polygonal) curves in X%: point sequences 7 = (71,...,Ty) with
77 € RY and m' < m.
Distance measure: dynamic time warping (dtw)
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Polygonal curves and dynamic time warping (dtw)

Dynamic Time Warping

joint traversals: Each kangaroo allowed to hop either one step ahead, or stay put.
dtw: minimal possible sum of Euclidean distances. 4/17
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Polygonal curves and dynamic time warping (dtw)

Key player | — curves of complexity < m under dtw

Central objects XZ and dtw

Complexity < m (polygonal) curves in X2: point sequences 7 = (71,...,Ty) with
7i€RYand m' < m.

Distance measure: dynamic time warping (dtw)

Definition ( DTW)
Let o = (01,...,0m) €XL, 7= (r1,...,7) EXie. The DTW of o and 7 is

=m>

dtw(o, 7) = minrer, , Z(i.j)eT i = 7jll2
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Polygonal curves and dynamic time warping (dtw)

Key player | — curves of complexity < m under dtw

Central objects XZ and dtw

Complexity < m (polygonal) curves in X2: point sequences 7 = (71,...,Ty) with
7i€RYand m' < m.

Distance measure: dynamic time warping (dtw)

Definition (p-DTW)
Let o = (01,...,0m) €XL 7= (r1,...,7) € Xie- The p-DTW of o and 7 is

_ 1/p
dtwy(o,7) = minrer,,, (Sper loi = 5l5) " for p € [1,00)

» dtw less sensitive to outliers than Fréchet but not a metric

pP—r00
> dth — ddiscrete Fréchet; dtwy = dtw
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Clustering and Coresets

k-median problem for curves

,£)-median problem for and k,¢ e N:
(k, £)-medi blem for X9 and k,¢ € N
d

Given a set of n € N curves T = {m,...,7,} C X9, identify k center curves C =
{c1,...,c} € XY that minimize cost(T, C) = >+ mincec dtwp(T, €).
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Clustering and Coresets

k-median problem for curves

(k, £)-median problem for X¢ and k, ¢ € N:

Given a set of n € N curves T = {71,...,7,} C X9, identify k center curves C =
{c1,...,c} € XY that minimize cost(T, C) = >+ mincec dtwp(T, €).

Definition ((«, 5)-approximation for (k, ¢)-median)
Aset C C X9 is an («, 3)-approximation of (k,£)-median if |C| < Bk and

cost(T, é) < acost(T,C) =« Z [_nelg dtwp(7, c)
TeT

for any C C X? of size k.
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Clustering and Coresets

Key player Il — coresets

Definition (e-coreset)

Let T X9 and € € (0,1). A weighted multiset S C X9, with weights w : S — R+ is
a e-coreset for (k,£)-median of T under dtw, if YC C X¢ with |C| = k

(1—€)cost(T,C) <D w(s) min dtwp(s, ) < (14 ¢) cost(T, C).
seS
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Sensitivity (=importance) sampling

Framework for e-coreset for k-median in metric Spaces [Feidman Langberg'11,Braverman, Feldman, Lang 16, .|
» If there is a («, 3)-approximation algorithm and
» If the metric space has VC dimension p
» Then we can sample a coreset of size roughly 5(6_2a6kplog(n))

Problems with dtwp:
» No known polynomial («, 3)-approximation algorithm for (k, £)-median
> \C di : b
» dtw, is no metric

Theorem (C, Kolbe, Psarros, Rohde)

There is a distance dtwp with dtw, < dtwp (14 ¢)dtw,. Its associated ball range
space has VC dimension O(d/¢log(¢mes1)).

» dtw, is hard-to-compute so computation is circumvented
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Part 1l

(c, B)-approximations of (k, ¢)-median

How to force DTW to be a metric
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The iterated triangle inequality

The iterated triangle inequality

Lemma (Iterated triangle inequality)
Lets e XY, t € X9 and X = (x1,...,x) be any ordered set of curves in X%,. Then

dtwy(s, t) < (£ 4 £)1/P (dtwp(s,xl) + ) dtwp (i, xi1) + dtwp(xr, t)> :

i<r
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The iterated triangle inequality

Lemma (Iterated triangle inequality)
Lets e XY, t € X9 and X = (x1,...,x) be any ordered set of curves in X%,. Then

dtwy(s, t) < (£ 4 £)1/P (dtwp(s,xl) + ) dtwp (i, xi1) + dtwp(xr, t)> :

i<r

» No dependence on complexities of visited curves

» Connection to empirical observation that the A-inequality is only rarely violated
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The iterated triangle inequality

The iterated triangle inequality illustrated

Key observation

Proof of A-inequality boils down to constructing some traversal between the end curves
s and t from optimal traversals for the inbetween curves.

yt '\w
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The iterated triangle inequality

Bridging the gap to a metric space
Consequences of iterated A-inequality
» Shortest path from ¢ to 7 in T not necessarily direct edge between them
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m definition Sensitivity sampling Approximating (k, £)-median

00 00000
The iterated triangle inequality

Bridging the gap to a metric space
Consequences of iterated A-inequality
» Shortest path from ¢ to 7 in T not necessarily direct edge between them
» However, the direct edge is not too far off

» Defining dtw, |7 to be the metric closure (shortest path metric), we have

dtwy [7 < dtw, |7 < (2m)YPdtw, [T < (2m)1/”dtwp|7-

15/17
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The iterated triangle inequality

Denouement - putting it all together

We can now access the wealth of k-median results in metric spaces:
Theorem (C, Kolbe, Psarros, Rohde)

We can compute a (O((1 + €)(m¢)*/P), 4)-approximation for (k,£)-median in X9, in
time

O(n - poly(m, (, k,d,e™*))
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The iterated triangle inequality

Denouement - putting it all together
We can now access the wealth of k-median results in metric spaces:

Theorem (C, Kolbe, Psarros, Rohde)
We can compute a (O((1 + €)(m¢)*/P), 4)-approximation for (k,£)-median in X9, in
time _
O(n - poly(m, ¢, k,d,e™"))
With the last dtw,-problem adressed:
Theorem (C, Kolbe, Psarros, Rohde)

Given a set T C X% (|T| = n), sensitivity sampling yields an e-coreset for
(k,¢)-median on T of size (hiding other log factors)

O(e2dlk?(me)?/P log(n)).

16/17
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Take-home message

» DTW — widespread similarity measure for trajectories;
not a metric, but not too far off

» We find new (a, 3)-approximations from approximating DTW by a path metric

» We obtain bounds on the VC dimension of dtw, that allow coreset constructions
from approximations to (k,¢)-median
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» DTW — widespread similarity measure for trajectories;
not a metric, but not too far off

» We find new (a, 3)-approximations from approximating DTW by a path metric

» We obtain bounds on the VC dimension of dtw, that allow coreset constructions
from approximations to (k,¢)-median

Thanks for your attention!
Questions?
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