On Maximal 3-planar Graphs

Michael Hoffmann ¹ Meghana M. Reddy ¹ Shengzhe Wang ¹ 🖾

¹Department of Computer Science, ETH Zürich, Switzerland

March 13, 2024

Definition (Planar Graphs)

A graph is planar if it admits a drawning in the plane without crossings.

Figure: K_4 is a planar graph, while K_5 is not.

k-planar Graphs

Definition (*k*-planar Graphs)

A graph is k-planar if it admits a drawing in the plane such that every edge is crossed at most k times.

Figure: $(Left)K_5$ is a 1-planar. $(Middle)K_7$ is 2-planar. $(Right)K_8$ is 3-planar.

Edges are colored to indicate the number of crossings over them. Planar edges — green; Singly crossed edges — purple; Doubly crossed edges — orange; Triply crossed edges — blue.

Definition (k-planar Graphs)

A graph is k-planar if it admits a drawing in the plane such that every edge is crossed at most k times.

Figure: A drawing of K_9 where red edges are crossed more than 3 times.

Definition (k-planar Graphs)

A graph is k-planar if it admits a drawing in the plane such that every edge is crossed at most k times.

• There always exists an edge with at least four crossings.

Definition (Maximal k-planar Graphs)

Definition (Maximal *k*-planar Graphs)

Definition (Maximal k-planar Graphs)

Figure: $K_9 \setminus \{\{x_3, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}$

Definition (Maximal *k*-planar Graphs)

Figure: $K_9 \setminus \{\{x_3, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}$

Definition (Maximal *k*-planar Graphs)

Figure: $K_9 \setminus \{\{x_3, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}$

Definition (Simple Drawings)

A drawing is simple if every pair of edges shares at most one common point, including end points, and any edge does not cross itself.

Figure: Forbidden structures in simple drawings.

Every 3-planar graph admits a simple 3-plane drawing.

Every 3-planar graph admits a simple 3-plane drawing.

Lemma

If a 3-planar graph G is not maximal 3-planar, then there exists a simple 3-plane drawing of G that is not maximal 3-plane.

Every 3-planar graph admits a simple 3-plane drawing.

Lemma

If a 3-planar graph G is not maximal 3-planar, then there exists a simple 3-plane drawing of G that is not maximal 3-plane.

• If every simple 3-plane drawing of G is maximal, then G is a maximal 3-planar graph.

Every 3-planar graph admits a simple 3-plane drawing.

Lemma

If a 3-planar graph G is not maximal 3-planar, then there exists a simple 3-plane drawing of G that is not maximal 3-plane.

• If every simple 3-plane drawing of G is maximal, then G is a maximal 3-planar graph.

Proof.

There exists an edge *e* s.t. $G' = G \cup e$ is still 3-planar, and admits a simple 3-plane drawing. Remove *e* from the drawing, we get a simple 3-plane drawing for *G*.

K₉ Based Graphs

Graphs	Simple 3-plane Drawing
K ₉	×
K_9/K_2	×
$K_{9}/(K_{2}+K_{2})$	×
$K_{9}/(P_{3})$	×
$K_9/(K_2 + K_2 + K_2)$	\checkmark
$K_{9}/(P_{3}+K_{2})$	\checkmark
$K_9/(P_4)$	\checkmark
$K_9/(K_3)$	\checkmark
$K_9/(3-Star)$	\checkmark

K₉ Based Graphs

Graphs	Simple 3-plane Drawing
K ₉	×
K_9/K_2	×
$K_{9}/(K_{2}+K_{2})$	×
$K_{9}/(P_{3})$	×
$K_9/(K_2+K_2+K_2)$	\checkmark
$K_{9}/(P_{3}+K_{2})$	\checkmark
$K_9/(P_4)$	\checkmark
$K_9/(K_3)$	\checkmark
$K_9/(3-Star)$	\checkmark

Theorem

A graph on nine vertices is 3-planar if and only if it has at most 33 edges, and it is maximal 3-planar if and only if it has exactly 33 edges.

Unique Simple 3-plane Drawing

• $G_1 \cong K_{10} \setminus \{\{x_0, x_1\}, \{x_2, x_3\}, \{x_4, x_5\}, \{x_6, x_7\}, \{x_8, x_9\}\}$

Unique Simple 3-plane Drawing

• $G_1 \cong K_{10} \setminus \{\{x_0, x_1\}, \{x_2, x_3\}, \{x_4, x_5\}, \{x_6, x_7\}, \{x_8, x_9\}\}$

2-connectivity for Maximal Near-planar Graphs

Theorem (Michael Hoffmann, Meghana M. Reddy 2023)

For $k \leq 2$, every maximal k-planar graph on $n \geq 3$ vertices is 2-connected.

Theorem (Michael Hoffmann, Meghana M. Reddy 2023)

For $k \leq 2$, every maximal k-planar graph on $n \geq 3$ vertices is 2-connected.

Theorem

There exist infinitely many maximal 3-planar graphs that are not 2-connected.

• $G_2 \cong G_1 \cup \{\{x_{10}, x_0\}, \{x_{10}, x_2\}, \{x_{10}, x_4\}, \{x_{10}, x_6\}, \{x_{10}, x_8\}\}$ (5-star).

• $G_2 \cong G_1 \cup \{\{x_{10}, x_0\}, \{x_{10}, x_2\}, \{x_{10}, x_4\}, \{x_{10}, x_6\}, \{x_{10}, x_8\}\}$ (5-star). • G_2 is also maximal 3-planar.

• $G_3 \cong$ Two copies of G_2 glued together at five-degree vertex.

- $G_3 \cong$ Two copies of G_2 glued together at five-degree vertex.
- G_3 is also maximal 3-planar.

• For connected graphs on *n* vertices.

- For connected graphs on *n* vertices.
- Every maximal planar graph has 3n 6 edges.

- For connected graphs on *n* vertices.
- Every maximal planar graph has 3n 6 edges.

Graph Families	Minimal Ec	Optimal	
	Lower Bound	Upper Bound	Optimar
Maximal 1-planar Graphs	2.22n	2.647 <i>n</i>	4 <i>n</i> – 8
Maximal 2-planar Graphs	2 <i>n</i>	2n + O(1)	5 <i>n</i> – 10

- For connected graphs on *n* vertices.
- Every maximal planar graph has 3n 6 edges.

Graph Families	Minimal E	Ontimal	
	Lower Bound	Upper Bound	Optimai
Maximal 1-planar Graphs	2.22 <i>n</i>	2.647 <i>n</i>	4 <i>n</i> – 8
Maximal 2-planar Graphs	2 <i>n</i>	2n + O(1)	5 <i>n</i> — 10
Maximal 3-planar Graphs	?	2.375n + O(1)	5.5 <i>n</i> – 11

• Attach a two-degree vertex to each planar edge.

- Attach a two-degree vertex to each planar edge.
- Attach a triangle to each x_i .

• Sparser maximal 3-planar graphs?

- It is conjectured that there exist maximal 3-planar graphs on *n* vertices with 2n + O(1) edges.
- More tools are needed for maximality proof.
- Lower bound of the edge density of maximal 3-planar graphs?
 - Looking into the local property of drawings.
 - Existence and density of low-degree vertices.
 - Often faced with exhaustive case analysis.

o . . .

Enumerating Drawings

• Adding edges one by one.

Enumerating Drawings

• Adding edges one by one.

• Attemp to add edge $\{x_2, x_4\}$.

Enumerating Drawings

• Adding edges one by one.

• Attemp to add edge $\{x_3, x_4\}$.

