On Maximal 3-planar Graphs

Michael Hoffmann ${ }^{1} \quad$ Meghana M. Reddy ${ }^{1}$ Shengzhe Wang ${ }^{1}{ }^{50}$

${ }^{1}$ Department of Computer Science, ETH Zürich, Switzerland

March 13, 2024

Planar Graphs

Definition (Planar Graphs)

A graph is planar if it admits a drawning in the plane without crossings.

Figure: K_{4} is a planar graph, while K_{5} is not.

k-planar Graphs

Definition (k-planar Graphs)

A graph is k-planar if it admits a drawing in the plane such that every edge is crossed at most k times.

Figure: (Left) K_{5} is a 1-planar. (Middle) K_{7} is 2-planar. (Right) K_{8} is 3 -planar.

Edges are colored to indicate the number of crossings over them. Planar edges - green; Singly crossed edges - purple; Doubly crossed edges - orange; Triply crossed edges - blue.

k-planar Graphs

Definition (k-planar Graphs)

A graph is k-planar if it admits a drawing in the plane such that every edge is crossed at most k times.

Figure: A drawing of K_{9} where red edges are crossed more than 3 times.

k-planar Graphs

Definition (k-planar Graphs)

A graph is k-planar if it admits a drawing in the plane such that every edge is crossed at most k times.

- There always exists an edge with at least four crossings.

Maximal k-planar Graphs

Definition (Maximal k-planar Graphs)

A k-planar graph is maximal if addition of any edge results in a graph that is not k-planar.

Maximal k-planar Graphs

Definition (Maximal k-planar Graphs)

A k-planar graph is maximal if addition of any edge results in a graph that is not k-planar.

Maximal k-planar Graphs

Definition (Maximal k-planar Graphs)

A k-planar graph is maximal if addition of any edge results in a graph that is not k-planar.

Figure: $K_{9} \backslash\left\{\left\{x_{3}, x_{4}\right\},\left\{x_{5}, x_{6}\right\},\left\{x_{7}, x_{8}\right\}\right\}$

Maximal k-planar Graphs

Definition (Maximal k-planar Graphs)

A k-planar graph is maximal if addition of any edge results in a graph that is not k-planar.

Figure: $K_{9} \backslash\left\{\left\{x_{3}, x_{4}\right\},\left\{x_{5}, x_{6}\right\},\left\{x_{7}, x_{8}\right\}\right\}$

Maximal k-planar Graphs

Definition (Maximal k-planar Graphs)

A k-planar graph is maximal if addition of any edge results in a graph that is not k-planar.

Figure: $K_{9} \backslash\left\{\left\{x_{3}, x_{4}\right\},\left\{x_{5}, x_{6}\right\},\left\{x_{7}, x_{8}\right\}\right\}$

Simple 3-plane Drawings

Definition (Simple Drawings)

A drawing is simple if every pair of edges shares at most one common point, including end points, and any edge does not cross itself.

Figure: Forbidden structures in simple drawings.

Simple 3-plane Drawings

Theorem (Pach, Radoičić, Tardos, and Tóth, 2006)
Every 3-planar graph admits a simple 3-plane drawing.

Simple 3-plane Drawings

Theorem (Pach, Radoičić, Tardos, and Tóth, 2006)

Every 3-planar graph admits a simple 3-plane drawing.

Lemma

If a 3-planar graph G is not maximal 3-planar, then there exists a simple 3-plane drawing of G that is not maximal 3-plane.

Simple 3-plane Drawings

Theorem (Pach, Radoičić, Tardos, and Tóth, 2006)

Every 3-planar graph admits a simple 3-plane drawing.

Lemma

If a 3-planar graph G is not maximal 3-planar, then there exists a simple 3-plane drawing of G that is not maximal 3-plane.

- If every simple 3-plane drawing of G is maximal, then G is a maximal 3-planar graph.

Simple 3-plane Drawings

Theorem (Pach, Radoičić, Tardos, and Tóth, 2006)

Every 3-planar graph admits a simple 3-plane drawing.

Lemma

If a 3-planar graph G is not maximal 3-planar, then there exists a simple 3-plane drawing of G that is not maximal 3-plane.

- If every simple 3-plane drawing of G is maximal, then G is a maximal 3-planar graph.

Proof.

There exists an edge es.t. $G^{\prime}=G \cup e$ is still 3-planar, and admits a simple 3 -plane drawing. Remove e from the drawing, we get a simple 3-plane drawing for G.

K_{9} Based Graphs

Graphs	Simple 3-plane Drawing
K_{9}	\times
K_{9} / K_{2}	\times
$K_{9} /\left(K_{2}+K_{2}\right)$	\times
$K_{9} /\left(P_{3}\right)$	\times
$K_{9} /\left(K_{2}+K_{2}+K_{2}\right)$	\checkmark
$K_{9} /\left(P_{3}+K_{2}\right)$	\checkmark
$K_{9} /\left(P_{4}\right)$	\checkmark
$K_{9} /\left(K_{3}\right)$	\checkmark
$K_{9} /(3$-Star $)$	\checkmark

K_{9} Based Graphs

Graphs	Simple 3-plane Drawing
K_{9}	\times
K_{9} / K_{2}	\times
$K_{9} /\left(K_{2}+K_{2}\right)$	\times
$K_{9} /\left(P_{3}\right)$	\times
$K_{9} /\left(K_{2}+K_{2}+K_{2}\right)$	\checkmark
$K_{9} /\left(P_{3}+K_{2}\right)$	\checkmark
$K_{9} /\left(P_{4}\right)$	\checkmark
$K_{9} /\left(K_{3}\right)$	\checkmark
$K_{9} /(3$-Star $)$	\checkmark

Theorem

A graph on nine vertices is 3-planar if and only if it has at most 33 edges, and it is maximal 3-planar if and only if it has exactly 33 edges.

Unique Simple 3-plane Drawing

- $G_{1} \cong K_{10} \backslash\left\{\left\{x_{0}, x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{4}, x_{5}\right\},\left\{x_{6}, x_{7}\right\},\left\{x_{8}, x_{9}\right\}\right\}$

Unique Simple 3-plane Drawing

- $G_{1} \cong K_{10} \backslash\left\{\left\{x_{0}, x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{4}, x_{5}\right\},\left\{x_{6}, x_{7}\right\},\left\{x_{8}, x_{9}\right\}\right\}$

2-connectivity for Maximal Near-planar Graphs

Theorem (Michael Hoffmann, Meghana M. Reddy 2023)
For $k \leq 2$, every maximal k-planar graph on $n \geq 3$ vertices is 2 -connected.

2-connectivity for Maximal Near-planar Graphs

Theorem (Michael Hoffmann, Meghana M. Reddy 2023)
For $k \leq 2$, every maximal k-planar graph on $n \geq 3$ vertices is 2 -connected.

Theorem

There exist infinitely many maximal 3-planar graphs that are not 2-connected.

Cut Vertex in Maximal 3-planar Graphs

- $G_{2} \cong G_{1} \cup\left\{\left\{x_{10}, x_{0}\right\},\left\{x_{10}, x_{2}\right\},\left\{x_{10}, x_{4}\right\},\left\{x_{10}, x_{6}\right\},\left\{x_{10}, x_{8}\right\}\right\}$ (5-star).

Cut Vertex in Maximal 3-planar Graphs

- $G_{2} \cong G_{1} \cup\left\{\left\{x_{10}, x_{0}\right\},\left\{x_{10}, x_{2}\right\},\left\{x_{10}, x_{4}\right\},\left\{x_{10}, x_{6}\right\},\left\{x_{10}, x_{8}\right\}\right\}$ (5-star).
- G_{2} is also maximal 3-planar.

Cut Vertex in Maximal 3-planar Graphs

- $G_{3} \cong$ Two copies of G_{2} glued together at five-degree vertex.

Cut Vertex in Maximal 3-planar Graphs

- $G_{3} \cong$ Two copies of G_{2} glued together at five-degree vertex.
- G_{3} is also maximal 3-planar.

Sparse Maximal k-planar Graphs

- For connected graphs on n vertices.

Sparse Maximal k-planar Graphs

- For connected graphs on n vertices.
- Every maximal planar graph has $3 n-6$ edges.

Sparse Maximal k-planar Graphs

- For connected graphs on n vertices.
- Every maximal planar graph has $3 n-6$ edges.

Graph Families	Minimal Edge Density		Optimal
	Lower Bound	Upper Bound	
Maximal 1-planar Graphs	$2.22 n$	$2.647 n$	$4 n-8$
Maximal 2-planar Graphs	$2 n$	$2 n+O(1)$	$5 n-10$

Sparse Maximal k-planar Graphs

- For connected graphs on n vertices.
- Every maximal planar graph has $3 n-6$ edges.

Graph Families	Minimal Edge Density		Optimal
	Lower Bound	Upper Bound	
Maximal 1-planar Graphs	$2.22 n$	$2.647 n$	$4 n-8$
Maximal 2-planar Graphs	$2 n$	$2 n+O(1)$	$5 n-10$
Maximal 3-planar Graphs	$?$	$2.375 n+O(1)$	$5.5 n-11$

Sparse Maximal 3-planar Graphs

Sparse Maximal 3-planar Graphs

- Attach a two-degree vertex to each planar edge.

Sparse Maximal 3-planar Graphs

- Attach a two-degree vertex to each planar edge.
- Attach a triangle to each x_{i}.

Sparse Maximal 3-planar Graphs

Open Problems

- Sparser maximal 3-planar graphs?
- It is conjectured that there exist maximal 3-planar graphs on n vertices with $2 n+O(1)$ edges.
- More tools are needed for maximality proof.
- Lower bound of the edge density of maximal 3-planar graphs?
- Looking into the local property of drawings.
- Existence and density of low-degree vertices.
- Often faced with exhaustive case analysis.

Enumerating Drawings

- Adding edges one by one.

Enumerating Drawings

- Adding edges one by one.

- Attemp to add edge $\left\{x_{2}, x_{4}\right\}$.

Enumerating Drawings

- Adding edges one by one.

- Attemp to add edge $\left\{x_{3}, x_{4}\right\}$.

