STAR-FOREST DECOMPOSITIONS OF CERTAIN COMPLETE GEOMETRIC GRAPHS

Todor Antić, Jelena Glišić, Milan Milivojčević

DEPARTMENT OF APPLIED MATHEMATICS
KAM Faculty of Mathematics and Physics Charles University

Ioannina 2024

BACKGROUND

DEFINITION:

A star is a graph on k vertices with one vertex of degree $k-1$ (center) and $n-1$ vertices of degree 1. A star-forest is a forest in which every component is a star.

BACKGROUND

DEFINITION:

We say that a star-forest is plane if it is drawn in the plane without crossings.

BACKGROUND

Decomposing G into minimal number of " P " subgraphs
$P=$ Planar
$P=$ Forest
$P=$ Star-forest
$P=$ Plane Star-forest,
G is geometric graph
~ Thickness
~ Arboricity
~ Star-arboricity
~ Geometric star-arboricity

PREVIOUS RESULTS

THEOREM [AKIYAMA AND KANO]:

Let $n \geq 1$. The complete graph with n vertices can be decomposed into at most $\left\lceil\frac{n}{2}\right\rceil+1$ star-forests and this bound is tight.

THEOREM [PACH, SAGHAFIAN AND SCHNIDER]:

Let $n \geq 1$. The complete convex geometric graph with n vertices cannot be decomposed into fewer than $n-1$ plane star-forests.

CONTRIBUTION

CONJECTURE [PACH, SAGHAFIAN AND SCHNIDER]:

Let $n \geq 1$. There is no complete geometric graph K_{n} with n vertices that can be decomposed into fewer than $\left[\frac{3 n}{4}\right\rceil$ plane star-forests.

CONTRIBUTION

CONJECTURE [PACH, SAGHAFIAN AND SCHNIDER]:

Let $n \geq 1$. There is no complete geometric graph K_{n} with n vertices that can be decomposed into fewer than $\left\lceil\frac{3 n}{4}\right\rceil$ plane star-forests.

ANSWER:

There exists a complete geometric graph on n vertices which can be decomposed into $\left\lceil\frac{2 n}{3}\right\rceil$ plane star-forests.

CONTRIBUTION

CONJECTURE [PACH, SAGHAFIAN AND SCHNIDER]:

Let $n \geq 1$. There is no complete geometric graph K_{n} with n vertices that can be decomposed into fewer than $\left\lceil\frac{3 n}{4}\right\rceil$ plane star-forests.

ANSWER:

There exists a complete geometric graph on n vertices which can be decomposed into $\frac{2 n y}{3}$ plane star-forests.
图

FIRST CONSTRUCTION
(0)

FIRST CONSTRUCTION
(0)

FIRST CONSTRUCTION

THEOREM:

Let c $\epsilon\left(\frac{1}{2}, 1\right)$ be a constant.
If there is a complete geometric graph on n_{0} points which can be partitioned into cn_{0} plane star-forests, in such a way that each vertex is a center of at least one tree, then for each integer $k \geq 1$, there exists a complete geometric graph on $k n_{0}$ points that can be partitioned into $c k n_{0}$ plane star-forests.

FIRST CONSTRUCTION

COROLLARY:

For every $k \in \mathbb{N}$ there is a complete geometric graph on $n=6 k$ vertices which can be decomposed into $\frac{2 n}{3}$ plane star-forests

DOUBLE STARS

DEFINITION:

A double star is a graph composed of two stars + an edge connecting their centers.

(9) DECOMPOSITION OF K K ${ }_{2 k}$ INTO DOUBLE STARS

BROKEN DOUBLE STARS DECOMPOSITION

DEFINITION:

A broken double stars decomposition of a complete graph on $2 k$ vertices is a decomposition into a matching of size k and k spanning star-forests whose components are two stars with k-1 edges each, with centers at endpoints of an edge of the matching.
(9)

BROKEN DOUBLE STARS DECOMPOSITION OF K ${ }_{2 K}$

THEOREM:

Every decomposition of $\mathrm{K}_{2 \mathrm{k}}$ into $\mathrm{k}+1$ star-forests is a broken double stars decomposition.

BROKEN DOUBLE STARS DECOMPOSITION OF K ${ }_{2 K}$

THEOREM:

Every decomposition of $\mathrm{K}_{2 \mathrm{k}}$ into $\mathrm{k}+1$ star-forests is a broken double stars decomposition. UPSHOT:

Instead of looking for pointsets we can look for arrangements of line segments.

LEMMA:

Let L be an arrangement of line segments in the plane. If L can be extended into a broken double stars decomposition of the complete geometric graph on its endpoints, then every pair of segments from L is in a stabbing position.

A NECESSARY CONDITION

LEMMA:

Let L be an arrangement of line segments in the plane. If L can be extended into a broken double stars decomposition of the complete geometric graph on its endpoints, then every pair of segments from L is in a stabbing position. OPTIMAL CONSTRUCTION

(9)

OPTIMAL CONSTRUCTION

(9)

OPTIMAL CONSTRUCTION

(9)

optimal construction

MORE FORMALLY:

- Convex (k+1)-gon P with vertices $a_{1}, \ldots, a_{k}, b_{1}$
- $\quad \forall i>1, a_{i}$ in top left quadrant of the plane
- $\overline{a_{1} b_{1}}=\overline{(-1,0)(1,0)}$
- $\quad \forall i>1$ place b_{i} in the intersection of top right quadrant of the plane with triangles $\left(a_{l}, b_{l}, a_{j}\right)$ where $l<j \leq i$.

STAR-FOREST WITH CENTERS a_{i}, b_{i} CONTAINS EDGES:

$$
\begin{aligned}
& \left\{\left\{a_{i}, a_{j}\right\}: \boldsymbol{j}>\boldsymbol{i}\right\} \cup\left\{\left\{a_{i}, b_{k}\right\}: k<i\right\} \\
& \cup\left\{\left\{\boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{b}_{\boldsymbol{j}}\right\}: \boldsymbol{j}>\boldsymbol{i}\right\} \cup\left\{\left\{\boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{k}}\right\}: k<\boldsymbol{i}\right\}
\end{aligned}
$$

OPEN QUESTIONS

CONJECTURE [PACH, SAGHAFIAN AND SCHNIDER]:

The number of plane k-star-forests needed to decompose a complete geometric graph is at least $\frac{(k+1) n}{2 k}$.

THANK YOU!

Todor Antić
todor@kam.mff.cuni.cz

Jelena Glišić

jglisic@matfyz.cz

Milan Milivojčević milivojcevic@proton.me

EuroCG 2024
13-15 March
Ioannina, Greece
DEPARTMENT OF APPLIED
Faculty of Mathematics and Physics
Charles University

