Revisiting the Fréchet distance between piecewise smooth curves

Jacobus Conradi, Anne Driemel, Benedikt Kolbe
EuroCG 2024, Ioannina, Greece

bkolbe@uni-bonn.de
March 13, 2024

The Fréchet distance

The Fréchet distance

Definition (Fréchet distance)
The Fréchet distance $\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)$ for curves γ_{1}, γ_{2} in \mathbb{R}^{d} is

$\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)=\inf _{f, g:[0,1] \rightarrow[0,1]} \max _{t \in[0,1]}\left\|\gamma_{1}(f(t))-\gamma_{2}(g(t))\right\|$,
where f and g are continuous, non-decreasing and surjective.

How does one usually compute the Fréchet distance?

How does one usually compute the Fréchet distance?

Definition (Decision problem)
Given $\delta>0$, decide if

$$
\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right) \leq \delta .
$$

- corner stone of algorithms computing the Fréchet distance
- Standard techniques (parametric search) lead to algorithm to compute $d_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)$
(incurring an additional log runtime factor)

How does one usually compute the Fréchet distance?

Definition (Decision problem)

Given $\delta>0$, decide if

$$
\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right) \leq \delta
$$

- corner stone of algorithms computing the Fréchet distance
- Standard techniques (parametric search) lead to algorithm to compute $\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)$ (incurring an additional log runtime factor)

State-of-the-art for polygonal curves

\rightarrow For polygonal curves γ_{1}, γ_{2} consisting of m and n pieces:

State-of-the-art for polygonal curves

- For polygonal curves γ_{1}, γ_{2} consisting of m and n pieces:
- An $O(m n)$ algorithm for the decision problem (more or less) (Alt and Godau 1995)
- A resulting $O(m n \log (m n))$ algorithm to compute $\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)$.
- No strongly subquadratic algorithm unless SETH fails (Bringmann 2014)

Free space diagram

Co

Free space diagram

Definition (Free space diagram)

Given $\delta>0$ and γ_{1}, γ_{2}, the FSD_{δ} is a decomposition of $[0,1]^{2}$:

```
Decomposition of [0, 1] 2 into cells, one for each pair of pieces of }\mp@subsup{\gamma}{1}{}\mathrm{ and }\mp@subsup{\gamma}{2}{
(t, t2) \in[0,1] 2 is associated to a pair of points ( }\mp@subsup{\gamma}{1}{}(\mp@subsup{t}{1}{}),\mp@subsup{\gamma}{2}{}(\mp@subsup{t}{2}{})
( tr, t2) is in the free snace }\mp@subsup{\mathcal{D}}{\delta}{}\mathrm{ if }\mp@subsup{\gamma}{1}{}(\mp@subsup{t}{1}{})\mathrm{ and }\mp@subsup{\gamma}{2}{}(\mp@subsup{t}{2}{})\mathrm{ are at most }\delta\mathrm{ apart.
```


Free space diagram

Definition (Free space diagram)

Given $\delta>0$ and γ_{1}, γ_{2}, the FSD_{δ} is a decomposition of $[0,1]^{2}$:

1. Decomposition of $[0,1]^{2}$ into cells, one for each pair of pieces of γ_{1} and γ_{2}
2. $\left(t_{1}, t_{2}\right) \in[0,1]^{2}$ is associated to a pair of points $\left(\gamma_{1}\left(t_{1}\right), \gamma_{2}\left(t_{2}\right)\right)$;
$\left(t_{1}, t_{2}\right)$ is in the free space \mathcal{D}_{δ} if $\gamma_{1}\left(t_{1}\right)$ and $\gamma_{2}\left(t_{2}\right)$ are at most δ apart.

- free space $\mathcal{D}_{\delta}=\left\{\left(t_{1}, t_{2}\right) \in[0,1]^{2} \mid\left\|\gamma_{1}\left(t_{1}\right)-\gamma_{2}\left(t_{2}\right)\right\| \leq \delta\right\}$
- forbidden region $[0,1]^{2} \backslash \mathcal{D}_{\delta}$

Monotone paths in FSD_{δ}

Lemma
There is a path, monotone in both coordinates, from $(0,0)$ to $(1,1)$ inside \mathcal{D}_{δ} iff

$$
\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right) \leq \delta
$$

Observation

For polygonal curves, \mathcal{D}_{δ} is convex in each cell, so checking for monotone paths is straightforward.

What curves are we interested in?

What curves are we interested in?

Definition (Piecewise smooth curve of complexity n)

A piecewise smooth curve $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ consisting of m pieces that are each C^{2}

Definition (Algebraically bounded curves)

Set \mathcal{S} of piecewise algebraic curves with maximal degree of each piece bounded by a constant

State-of-the-art for piecewise smooth curves

- Known: Planar algebraically bounded curves are just like polygonal curves:
- An $O(n m)$ algorithm for the decision problem (Rote 2007).
- An $O(m n \log (m n))$ algorithm to compute $\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)$.
\Rightarrow Depends on decomposing FSD_{δ} using planar curvature and turning angle of curves
- Unclear how to generalize this approach to higher dimensions

State-of-the-art for piecewise smooth curves

- Known: Planar algebraically bounded curves are just like polygonal curves:
- An $O(n m)$ algorithm for the decision problem (Rote 2007).
- An $O(m n \log (m n))$ algorithm to compute $\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)$.
- Depends on decomposing FSD_{δ} using planar curvature and turning angle of curves
- Unclear how to generalize this approach to higher dimensions

Contour plot of the free space diagram

How could we make each cell easier to analyze? Refine FSD_{δ}

How could we make each cell easier to analyze? Refine FSD_{δ}

How could we make each cell easier to analyze? Refine FSD_{δ}

What does this do?

Observation

Each piece of boundary between points (cell walls) is monotone.

Reconstructing FSD_{δ}

Lemma

The marked points and the shown arrows allow the reconstruction of FSD_{δ}.

Solving the decision problem

- Starting from the bottom-left, trace the intervals on cell walls that are reachable by a monotone path (BFS on cells)

Solving the decision problem

- Starting from the bottom-left, trace the intervals on cell walls that are reachable by a monotone path (BFS on cells)
- coordinates of intervals present in coordinates of marked points on cell walls

Solving the decision problem

Proposition

The refinement of FSD_{δ} of algebraically bounded curves consisting of m resp. n pieces consists of $O(m n)$ subcells, i.e., each cell splits into $O(1)$ subcells.

Theorem
For such curves, decision problem can be solved in $O(m n)$ time.

What can go wrong in the above approach? How to avoid critical values?

What can go wrong in the above approach? How to avoid critical values?

What can go wrong in the above approach? How to avoid critical values?

Critical values

Critical values

Theorem

For algebraically bounded curves, the number of values of δ where the decision problem is subject to change is finite.

- In particular, there are only finitely many values of δ where the boundary of the free space is not smooth.
- The theorem holds for all ℓ_{p} norms with $p \neq 1, \infty$ and with some restrictions for all p (in the definition of $\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)$)

Take-home message

- Instead of analyzing the curves γ_{1}, γ_{2} directly, look at FSD_{δ} for nice values of δ.
- The maxima and minima in x and y direction yield a decomposition.
- The decision problem can be solved in the same time as for polygonal curves.
\Rightarrow lead's to a computation of $\mathcal{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)$ and generalizes existing framework for polygonal case.

Take-home message

- Instead of analyzing the curves γ_{1}, γ_{2} directly, look at FSD_{δ} for nice values of δ.
- The maxima and minima in x and y direction yield a decomposition.
- The decision problem can be solved in the same time as for polygonal curves.
- leads to a computation of $\mathrm{d}_{\mathcal{F}}\left(\gamma_{1}, \gamma_{2}\right)$ and generalizes existing framework for polygonal case.

Thank you for your attention!

Questions?

