Revisiting the Fréchet distance between piecewise smooth curves

Jacobus Conradi, Anne Driemel, Benedikt Kolbe

EuroCG 2024, Ioannina, Greece

bkolbe@uni-bonn.de

March 13, 2024

Benedikt Kolbe

Hausdorff Center for Mathematics, University of Bonn

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

Introduction •	Preliminaries 0000000	Combinatorial decomposition of FSD_δ 00000	Critical points 0000
The Fréchet distance			

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Hausdorff Center for Mathematics, University of Bonn

Revisiting the Fréchet distance between piecewise smooth curves

Benedikt Kolbe

Introduction •	Preliminaries 0000000	Combinatorial decomposition of FSD_δ 00000	Critical points 0000
The Fréchet distance			

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

Hausdorff Center for Mathematics, University of Bonn

2 of 17

Introduction •	Preliminaries 0000000	Combinatorial decomposition of FSD_δ 00000	Critical points 0000
The Fréchet distance			

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Hausdorff Center for Mathematics, University of Bonn

Revisiting the Fréchet distance between piecewise smooth curves

Benedikt Kolbe

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ ■

Hausdorff Center for Mathematics, University of Bonn

Revisiting the Fréchet distance between piecewise smooth curves

Benedikt Kolbe

Introduction •	Preliminaries 0000000	Combinatorial decomposition of FSD_δ 00000	Critical points
The Fréchet distance			

Benedikt Kolbe

Hausdorff Center for Mathematics, University of Bonn

イロン イロン イヨン イヨン

Revisiting the Fréchet distance between piecewise smooth curves

æ

Benedikt Kolbe

The Fréchet distance

Preliminaries

Combinatorial decomposition of ${\rm FSD}_{\delta}$ 00000

The Fréchet distance

・ キョット 金田 マ キャット ヨー うらん

Hausdorff Center for Mathematics, University of Bonn

```
Definition (Fréchet distance)
```

The **Fréchet distance** $d_{\mathcal{F}}(\gamma_1, \gamma_2)$ for curves γ_1, γ_2 in \mathbb{R}^d is

$$d_{\mathcal{F}}(\gamma_1, \gamma_2) = \inf_{f,g:[0,1]\to[0,1]} \max_{t\in[0,1]} \|\gamma_1(f(t)) - \gamma_2(g(t))\|,$$

where f and g are continuous, non-decreasing and surjective.

Revisiting the Fréchet distance between piecewise smooth curves

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

Benedikt Kolbe

Preliminaries

Computing the Fréchet distance - in a nutshell

Combinatorial decomposition of FSD_δ 00000

Critical points 0000

How does one usually compute the Fréchet distance?

▲□▶▲□▶▲≣▶▲≣▶ ■ のへで

Hausdorff Center for Mathematics, University of Bonn

How does one usually compute the Fréchet distance?

Preliminaries

Definition (Decision problem)

Given $\delta > 0$, decide if

 $\mathbf{d}_{\mathcal{F}}(\gamma_1,\gamma_2) \leq \delta.$

corner stone of algorithms computing the Fréchet distance

 Standard techniques (parametric search) lead to algorithm to compute d_F(γ₁, γ₂) (incurring an additional log runtime factor)

イロト イヨト イヨト

Hausdorff Center for Mathematics. University of Bonn

How does one usually compute the Fréchet distance?

```
Definition (Decision problem)
```

Given $\delta > 0$, decide if

 $\mathbf{d}_{\mathcal{F}}(\gamma_1,\gamma_2) \leq \delta.$

corner stone of algorithms computing the Fréchet distance

 Standard techniques (parametric search) lead to algorithm to compute d_F(γ₁, γ₂) (incurring an additional log runtime factor)

ъ

イロト 不同 トイヨト イヨト

Hausdorff Center for Mathematics. University of Bonn

State-of-the-art for polygonal curves

Preliminaries

- For polygonal curves γ_1, γ_2 consisting of *m* and *n* pieces:
 - An O(mn) algorithm for the decision problem (more or less) (Alt and Godau 1995)
 - A resulting $O(mn \log(mn))$ algorithm to compute $d_{\mathcal{F}}(\gamma_1, \gamma_2)$.
 - No strongly subquadratic algorithm unless SETH fails (Bringmann 2014)

Hausdorff Center for Mathematics, University of Bonn

Benedikt Kolhe

State-of-the-art for polygonal curves

- For polygonal curves γ_1, γ_2 consisting of *m* and *n* pieces:
 - An O(mn) algorithm for the decision problem (more or less) (Alt and Godau 1995)
 - A resulting $O(mn \log(mn))$ algorithm to compute $d_{\mathcal{F}}(\gamma_1, \gamma_2)$.
 - No strongly subquadratic algorithm unless SETH fails (Bringmann 2014)

NATE AT A TOUR

Introduction O	Preliminaries 00●0000	Combinatorial decomposition of FSD_δ 00000	Critical points 0000
Computing the Fréchet distance - in a nutshell			

Free space diagram

Hausdorff Center for Mathematics, University of Bonn

Revisiting the Fréchet distance between piecewise smooth curves

Benedikt Kolbe

Free space diagram

Definition (Free space diagram)

Given $\delta > 0$ and γ_1, γ_2 , the FSD_{δ} is a decomposition of $[0, 1]^2$:

- 1. Decomposition of $[0,1]^2$ into cells, one for each pair of pieces of γ_1 and γ_2
- 2. $(t_1, t_2) \in [0, 1]^2$ is associated to a pair of points $(\gamma_1(t_1), \gamma_2(t_2));$
 - (t_1,t_2) is in the **free space** \mathcal{D}_{δ} if $\gamma_1(t_1)$ and $\gamma_2(t_2)$ are at most δ apart.
 - ▶ free space $\mathcal{D}_{\delta} = \{(t_1, t_2) \in [0, 1]^2 | \|\gamma_1(t_1) \gamma_2(t_2)\| \leq \delta\}$
 - forbidden region $[0,1]^2 \setminus \mathcal{D}_{\delta}$

Free space diagram

Definition (Free space diagram)

Given $\delta > 0$ and γ_1, γ_2 , the FSD_{δ} is a decomposition of $[0, 1]^2$:

- 1. Decomposition of $[0,1]^2$ into cells, one for each pair of pieces of γ_1 and γ_2
- 2. $(t_1, t_2) \in [0, 1]^2$ is associated to a pair of points $(\gamma_1(t_1), \gamma_2(t_2));$
 - (t_1, t_2) is in the free space \mathcal{D}_{δ} if $\gamma_1(t_1)$ and $\gamma_2(t_2)$ are at most δ apart.
 - ▶ free space $\mathcal{D}_{\delta} = \{(t_1, t_2) \in [0, 1]^2 | \|\gamma_1(t_1) \gamma_2(t_2)\| \le \delta\}$
 - forbidden region $[0,1]^2 \setminus \mathcal{D}_{\delta}$

Monotone paths in FSD_δ

Lemma

There is a path, monotone in both coordinates, from (0,0) to (1,1) inside \mathcal{D}_{δ} iff

 $\mathbf{d}_{\mathcal{F}}(\gamma_1,\gamma_2) \leq \delta.$

Observation For polygonal curves, \mathcal{D}_{δ} is **convex** in each cell, so checking for monotone paths is straightforward.

Benedikt Kolbe

Hausdorff Center for Mathematics, University of Bonn

Introduction O	Preliminaries ○○○○●○○	Combinatorial decomposition of FSD_δ 00000	Critical points 0000
What are we dealing with?			

What curves are we interested in?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Hausdorff Center for Mathematics, University of Bonn

Revisiting the Fréchet distance between piecewise smooth curves

Benedikt Kolbe

What curves are we interested in?

Definition (**Piecewise smooth curve of complexity** *n*)

A piecewise smooth curve $\gamma: [0,1] o \mathbb{R}^d$ consisting of m pieces that are each C^2

Definition (Algebraically bounded curves)

Set $\mathcal S$ of piecewise algebraic curves with maximal degree of each piece bounded by a constant

State-of-the-art for piecewise smooth curves

► Known: **Planar** algebraically bounded curves are just like polygonal curves:

- An O(nm) algorithm for the decision problem (Rote 2007).
- An $O(mn \log(mn))$ algorithm to compute $d_{\mathcal{F}}(\gamma_1, \gamma_2)$.
- **b** Depends on decomposing FSD_{δ} using planar curvature and turning angle of curves
- Unclear how to generalize this approach to higher dimensions

ъ

8 of 17

ヘロト 人間 ト イヨト イヨト

State-of-the-art for piecewise smooth curves

Known: Planar algebraically bounded curves are just like polygonal curves:

- An O(nm) algorithm for the decision problem (Rote 2007).
- An $O(mn \log(mn))$ algorithm to compute $d_{\mathcal{F}}(\gamma_1, \gamma_2)$.
- Depends on decomposing FSD_{δ} using planar curvature and turning angle of curves
- Unclear how to generalize this approach to higher dimensions

I nar

Preliminaries

Combinatorial decomposition of ${\rm FSD}_{\delta}$ 00000

Contour plot of the free space diagram

- ▲ロ > ▲ 国 > ▲ 国 > シタの

Hausdorff Center for Mathematics, University of Bonn

Benedikt Kolbe

Benedikt Kolbe

Combinatorial decomposition of FSD_δ $\bullet \mathrm{OOOOO}$

How could we make each cell easier to analyze? Refine FSD_{δ}

Combinatorial decomposition of FSD_δ $\bullet \mathrm{OOOOO}$

How could we make each cell easier to analyze? Refine FSD_{δ}

Benedikt Kolbe

Hausdorff Center for Mathematics, University of Bonn

Combinatorial decomposition of FSD_δ $\bullet \circ \circ \circ \circ$

How could we make each cell easier to analyze? Refine FSD_{δ}

Benedikt Kolbe

Hausdorff Center for Mathematics, University of Bonn

Revisiting the Fréchet distance between piecewise smooth curves

Ξ.

What does this do?

Observation

Benedikt Kolbe

Each piece of boundary between points (cell walls) is monotone.

Hausdorff Center for Mathematics, University of Bonn

Reconstructing FSD_{δ}

Lemma

The marked points and the shown arrows

allow the reconstruction of FSD_{δ} .

Benedikt Kolbe

Revisiting the Fréchet distance between piecewise smooth curves

Hausdorff Center for Mathematics, University of Bonn

э

Solving the decision problem

 Starting from the bottom-left, trace the intervals on cell walls that are reachable by a monotone path (BFS on cells)

coordinates of intervals present in coordinates of marked points on cell walls

Benedikt Kolbe Revisiting the Fréchet distance between piecewise smooth curves

Solving the decision problem

 Starting from the bottom-left, trace the intervals on cell walls that are reachable by a monotone path (BFS on cells)

coordinates of intervals present in coordinates of marked points on cell walls

Solving the decision problem

Proposition

The refinement of FSD_{δ} of algebraically bounded curves consisting of m resp. n pieces consists of O(mn) subcells, i.e., each cell splits into O(1) subcells.

Theorem

For such curves, decision problem can be solved in O(mn) time.

3

What can go wrong in the above approach? How to avoid critical values?

Revisiting the Fréchet distance between piecewise smooth curves

Benedikt Kolbe

Benedikt Kolbe

What can go wrong in the above approach? How to avoid critical values?

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ④ ヘ ()

Hausdorff Center for Mathematics, University of Bonn

What can go wrong in the above approach? How to avoid critical values?

- * ロ * * @ * * 注 * 注 * つへぐ

Benedikt Kolbe

Hausdorff Center for Mathematics, University of Bonn

Benedikt Kolbe

Critical values

Hausdorff Center for Mathematics, University of Bonn

Critical values

Theorem

For algebraically bounded curves, the number of values of δ where the decision problem is subject to change is finite.

- In particular, there are only finitely many values of δ where the boundary of the free space is not smooth.
- The theorem holds for all ℓ_p norms with p ≠ 1,∞ and with some restrictions for all p (in the definition of d_F(γ₁, γ₂))

イロト イヨト イヨト

э.

Take-home message

- lnstead of analyzing the curves γ_1, γ_2 directly, look at FSD_{δ} for nice values of δ .
- \triangleright The maxima and minima in x and y direction yield a decomposition.
- The decision problem can be solved in the same time as for polygonal curves.

э.

Take-home message

- lnstead of analyzing the curves γ_1, γ_2 directly, look at FSD_{δ} for nice values of δ .
- ▶ The maxima and minima in x and y direction yield a decomposition.
- ▶ The decision problem can be solved in the same time as for polygonal curves.
- leads to a computation of d_F(γ₁, γ₂) and generalizes existing framework for polygonal case.

Benedikt Kolbe

Thank you for your attention!

Questions?

- ▲ ロ ▶ ▲ 固 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

Hausdorff Center for Mathematics, University of Bonn