Computing Enclosing Depth

Bernd Gärtner, Fatime Rasiti, Patrick Schnider

EuroCG 2024

- H Hürich

Introduction

- H Hürich

Introduction

- H Hürich

Introduction

- H Hürich

Tukey and Tverberg

ElHzürich

Tukey and Tverberg

Tukey depth:
Minimum number of data points in any closed halfspace containing query point q

캐Hürich

Tukey and Tverberg

Tukey depth:
Minimum number of data points in any closed halfspace containing query point q

Tukey and Tverberg

Tukey depth:
Minimum number of data points in any closed halfspace containing query point q

Tukey and Tverberg

Tukey depth:
Minimum number of data points in any closed halfspace containing query point q

Tverberg depth:
Max. number of vertex disjoint simplices whose intersection contains q

Tukey and Tverberg

Tukey depth:
Minimum number of data points in any closed halfspace containing query point q

Centerpoint theorem:

$$
\forall S \exists q: \operatorname{TD}(S, q) \geq \frac{|S|}{d+1}
$$

Tverberg depth:
Max. number of vertex disjoint simplices whose intersection contains q

Tukey and Tverberg

Tukey depth:
Minimum number of data points in any closed halfspace containing query point q

Centerpoint theorem:

$$
\forall S \exists q: \operatorname{TD}(S, q) \geq \frac{|S|}{d+1}
$$

Tverberg depth:
Max. number of vertex disjoint simplices whose intersection contains q

Tverbergs theorem:
$\forall S \exists q: \operatorname{TvD}(S, q) \geq \frac{|S|}{d+1}$

EHzürich

Enclosing Depth

- H Hürich

Enclosing Depth k

- H Hürich

Enclosing Depth k

ЕНzürich

Enclosing Depth k

Enclosing depth:
$\mathrm{ED}(S, q)=\max k$ s.t. q is k-enclosed

Enclosing Depth k

Theorem [S', '23]:
For a large family of depth measures, we have $\operatorname{TD}(S, q) \geq \rho(S, q) \geq \mathrm{ED}(S, q) \geq c \cdot \operatorname{TD}(S, q)$.

EHzürich

The algorithm in the plane

- H Hürich

The algorithm in the plane

- H Hürich

The algorithm in the plane

- H Hürich

The algorithm in the plane

- H Hürich

The algorithm in the plane

- H Hürich

The algorithm in the plane

- H Hürich

The algorithm in the plane

- H Hürich

The algorithm in the plane

- H Hürich

The algorithm in the plane

Preprocessing:

- H Hürich

The algorithm in the plane

- H Hürich

The algorithm in the plane

Preprocessing:

1. radial sort
2. compute $\ell\left(q_{i}\right)$'s, $r\left(q_{i}\right)$'s

ЕНzürich

The algorithm in the plane

Preprocessing:

1. radial sort
2. compute $\ell\left(q_{i}\right)$'s, $r\left(q_{i}\right)$'s time $O(n \log n)$

ヨHzürich

The algorithm in the plane

Preprocessing:

1. radial sort
2. compute $\ell\left(q_{i}\right)$'s, $r\left(q_{i}\right)$'s time $O(n \log n)$

Decide ED $\geq k$:

ElHzürich

The algorithm in the plane

Preprocessing:

1. radial sort
2. compute $\ell\left(q_{i}\right)$'s, $r\left(q_{i}\right)$'s time $O(n \log n)$

Decide ED $\geq k$:

for each q_{i}, \ldots, q_{i+k} :

캐Hürich

The algorithm in the plane

Preprocessing:

1. radial sort
2. compute $\ell\left(q_{i}\right)$'s, $r\left(q_{i}\right)$'s time $O(n \log n)$

Decide ED $\geq k$:

for each q_{i}, \ldots, q_{i+k} :

ElHzürich

The algorithm in the plane

ElHzürich

The algorithm in the plane

Preprocessing:

1. radial sort
2. compute $\ell\left(q_{i}\right)$'s, $r\left(q_{i}\right)$'s time $O(n \log n)$

Decide ED $\geq k$:
for each q_{i}, \ldots, q_{i+k} :

$$
a_{i}=\ell\left(q_{i}\right), b_{i}=r\left(q_{i+k}\right)
$$

check if $\left\{q_{i}, q_{i+k}\right\}$,
$\left\{a_{i}, a_{i-k}\right\},\left\{b_{i}, b_{i}+k\right\}$ enclose origin

ElHzürich

The algorithm in the plane

Preprocessing:

1. radial sort
2. compute $\ell\left(q_{i}\right)$'s, $r\left(q_{i}\right)$'s time $O(n \log n)$

Decide ED $\geq k$:
for each q_{i}, \ldots, q_{i+k} :

$$
a_{i}=\ell\left(q_{i}\right), b_{i}=r\left(q_{i+k}\right)
$$

check if $\left\{q_{i}, q_{i+k}\right\}$,
$\left\{a_{i}, a_{i-k}\right\},\left\{b_{i}, b_{i}+k\right\}$ enclose origin time $O(n)$

ElHzürich

The algorithm in the plane

Preprocessing:

1. radial sort
2. compute $\ell\left(q_{i}\right)$'s, $r\left(q_{i}\right)$'s time $O(n \log n)$

Decide ED $\geq k$:
for each q_{i}, \ldots, q_{i+k} :

$$
a_{i}=\ell\left(q_{i}\right), b_{i}=r\left(q_{i+k}\right)
$$

check if $\left\{q_{i}, q_{i+k}\right\}$,
$\left\{a_{i}, a_{i-k}\right\},\left\{b_{i}, b_{i}+k\right\}$ enclose origin
time $O(n)$
binary search over k

The algorithm in the plane

Total runtime: $O(n \log n)$

Preprocessing:

1. radial sort
2. compute $\ell\left(q_{i}\right)$'s, $r\left(q_{i}\right)$'s time $O(n \log n)$

Decide ED $\geq k$:
for each q_{i}, \ldots, q_{i+k} :

$$
a_{i}=\ell\left(q_{i}\right), b_{i}=r\left(q_{i+k}\right)
$$

check if $\left\{q_{i}, q_{i+k}\right\}$,
$\left\{a_{i}, a_{i-k}\right\},\left\{b_{i}, b_{i}+k\right\}$ enclose origin
time $O(n)$
binary search over k

ㅋHzürich

Conclusion

ElHzürich

Conclusion

We give algorithms for computing enclosing depth:

ElHzürich

Conclusion

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane

캐Hürich

Conclusion

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O\left(n^{d^{2}}\right)$ in dimension d

캐Hürich

Conclusion

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O\left(n^{d^{2}}\right)$ in dimension d

Future directions:

캐Hürich

Conclusion

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O\left(n^{d^{2}}\right)$ in dimension d

Future directions:

- lower bound in the plane?

Conclusion

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O\left(n^{d^{2}}\right)$ in dimension d

Future directions:

- lower bound in the plane?
- improved runtime in higher dimensions?

Conclusion

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O\left(n^{d^{2}}\right)$ in dimension d

Future directions:

- lower bound in the plane?
- improved runtime in higher dimensions?
- Algorithms to compute deepest point?

Conclusion

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O\left(n^{d^{2}}\right)$ in dimension d

Future directions:

- lower bound in the plane?
- improved runtime in higher dimensions?
- Algorithms to compute deepest point?

Thank you!

Conclusion

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O\left(n^{d^{2}}\right)$ in dimension d

Future directions:

- lower bound in the plane?
- improved runtime in higher dimensions?
- Algorithms to compute deepest point?

Thank you!

