Computing Enclosing Depth

Bernd Gärtner, Fatime Rasiti, <u>Patrick Schnider</u> EuroCG 2024

Department of Computer Science

Patrick Schnider EuroCG, Mar. 13, 2024

Introduction

Introduction

Introduction

Which colored point would you rather call a "median"?

Tukey depth: Minimum number of data points in any closed halfspace containing query point *q*

Tukey depth: Minimum number of data points in any closed halfspace containing query point *q*

Tukey depth:

Minimum number of data points in any closed halfspace containing query point q

Tukey depth:

Minimum number of data points in any closed halfspace containing query point q

Tukey depth:

Minimum number of data points in any closed half-space containing query point q

Centerpoint theorem: $\forall S \exists q : \mathsf{TD}(S,q) \geq \frac{|S|}{d+1}$

Tukey depth:

Minimum number of data points in any closed half-space containing query point q

Centerpoint theorem: $\forall S \exists q : \mathsf{TD}(S,q) \ge \frac{|S|}{d+1}$

Enclosing Depth

Theorem [S', '23]: For a large family of depth measures, we have $\mathsf{TD}(S,q) \ge \rho(S,q) \ge \mathsf{ED}(S,q) \ge c \cdot \mathsf{TD}(S,q).$

Preprocessing: 1. radial sort

2. compute $\ell(q_i)$'s, $r(q_i)$'s

time $O(n \log n)$

The algorithm in the plane

Preprocessing: 1. radial sort 2. compute $\ell(q_i)$'s, $r(q_i)$'s time $O(n \log n)$ Decide ED $\geq k$: for each q_i, \dots, q_{i+k} :

The algorithm in the plane

Preprocessing: 1. radial sort 2. compute $\ell(q_i)$'s, $r(q_i)$'s time $O(n \log n)$

Decide $ED \ge k$: for each q_i, \ldots, q_{i+k} :

binary search over k

We give algorithms for computing enclosing depth:

We give algorithms for computing enclosing depth:

• $O(n \log n)$ in the plane

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O(n^{d^2})$ in dimension d

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O(n^{d^2})$ in dimension d

Future directions:

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O(n^{d^2})$ in dimension d

Future directions:

• lower bound in the plane?

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O(n^{d^2})$ in dimension d

Future directions:

- lower bound in the plane?
- improved runtime in higher dimensions?

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O(n^{d^2})$ in dimension d

Future directions:

- lower bound in the plane?
- improved runtime in higher dimensions?
- Algorithms to compute deepest point?

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O(n^{d^2})$ in dimension d

Future directions:

- lower bound in the plane?
- improved runtime in higher dimensions?
- Algorithms to compute deepest point?

Thank you!

We give algorithms for computing enclosing depth:

- $O(n \log n)$ in the plane
- $O(n^{d^2})$ in dimension d

Future directions:

- lower bound in the plane?
- improved runtime in higher dimensions?
- Algorithms to compute deepest point?

Thank you!