Polylogarithmic Time Algorithms for Shortest Path Forests in Programmable Matter

Andreas Padalkin, Christian Scheideler

Initialized at the Dagstuhl Seminar 23091 "Algorithmic Foundations of Programmable Matter"

Thanks to

Shantanu Das, Yuval Emek, Maria Kokkou, Irina Kostitsyna, Tom Peters, Andrea Richa

Supported by the DFG Project SCHE 1592/10-1

Geometric Amoebot Model

Shortest Paths in the Amoebot Model

Kostitsyna, Peters, Speckmann: Fast Reconfiguration for Programmable Matter. DISC 2023

Shortest Path Forest Problem

 (k, ℓ) -shortest path forest problem

- Given: *k* sources, *ℓ* destinations
- Goal: compute a shortest path from each destination to the closest source

Shortest Path Forest Problem

 (k, ℓ) -shortest path forest problem

- Given: *k* sources, *ℓ* destinations
- Goal: compute a shortest path from each destination to the closest source

Assumptions

- No holes
- Leader
- Common chirality/compass orientation

Shortest Path Forest Problem

 (k, ℓ) -shortest path forest problem

- Given: *k* sources, *ℓ* destinations
- Goal: compute a shortest path from each destination to the closest source

Assumptions

- No holes
- Leader
- Common chirality/compass orientation

Sources	Destinations	Runtime
1	l	$O(\log \ell)$
k	l	$O(\log n \log^2 k)$

Portal Graphs

$$\mathsf{dist}(u,v) = \mathsf{dist}_x(u,v) + \mathsf{dist}_y(u,v)$$

Coy, Czumaj, Scheideler, Schneider, Werthmann: Routing schemes for hybrid communication networks. Theor. Comput. Sci. 2024

$$2 \cdot \operatorname{dist}(u, v) = \operatorname{dist}_{x}(u, v) + \operatorname{dist}_{y}(u, v) + \operatorname{dist}_{z}(u, v)$$

Euler Tour Technique and PASC Algorithm

Euler Tour Technique and PASC Algorithm

Euler Tour Technique and PASC Algorithm

Single Pair Shortest Path (SPSP)

Shortest Path Forest with a Multiple Sources

Thank you for your attention

Andreas Padalkin, Christian Scheideler

E-Mail: andreas.padalkin@upb.de

Supported by the DFG Project SCHE 1592/10-1

