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Fréchet Queries Problem

Problem (Fréchet Queries)

Given: set S of n time series all of complexity at most ts ,

complexity of query time series tq,

distance parameter ρ ∈ R≥0

Query task: for time series q of complexity tq
Return ∀s ∈ S with dF (s, q) ≤ ρ

0

S

ts=6

tq=5

ρ
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Definition: continuous Fréchet distance

Intuitive Definition:
Continuous Fréchet distance is length of the shortest leash such
that person and dog traverse the paths

From start to finish

Can very speed

Can’t go backward

q2
q3

q4
q5

s1
s2

s3
s4

s5
s6

q1
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Rectangle Stabbing

Problem (Rectangle Stabbing)

Given:

set S of n axis-aligned d-dimensional rectangles in Rd

Query task: for point q ∈ Rd

Return ∀R ∈ S with q ∈ R
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Example: Range of a Time Series s

q3

q2
q 3
=
q 2
−2
ρ

q3=s1−ρ

q 3
=
s 2

+
ρ

q2=s2 + ρ

q 2
=
s 1
−
ρ

q2
q3

q1
q4

s1 s2
0

dF (q, s) ≤ ρ if and only if

q1 ∈ [s1 − ρ, s1 + ρ] and q4 ∈ [s2 − ρ, s2 + ρ]

(q2, q3) in grey area
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Results for the Fréchet Queries Problem

d Storage Query Time

[Afshani, Driemel 18] 2 O
(
n(log log n)O(ts

2)
)

O
(√

n logO(ts
2) n + k

)
[Cheng, Huang 23] d O (tqtsn)

O(d4tq
2 log(dtq)) O

(
(dtq)

O(1) log(tqtsn) + k
)

Our Results
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n logtq−2 n
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logtq−1 n + k
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Lower bounds:1 Storage Query Time

d=1 nh ⇒ Ω
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log n
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log n
log h
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+ k

)
d=1 Ω

(
n
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log n
log log n

)⌊tmin/2⌋−1
)
⇐ O(logc n + k)

1 in pointer machine model

Lotte Blank and Anne Driemel Range Reporting for Time Series via Rectangle Stabbing 7 / 15
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Free Space Diagram Fρ(q, s)

q1

q2

q3
q4

q5
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q3

q4
q5

s1
s2

s3
s4

s5
s6

q1

Fρ(q, s) = {(x , y) ∈ [1, ts ]× [1, tq]| |q(x)− s(y)| ≤ ρ}
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Free Space Diagram Fρ(q, s)
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dF (q, s) ≤ ρ ⇔ ∃ a path monotone in both coordinates from
(1, 1) to (ts , tq) in the free space.

Such a path is called feasible path.
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The Data Structure

For every (valid) sequence of cells: Store 4 rectangle stabbing data
structures

q2q3
q4q5

s1 s2
s3 s4

s5 s6

q1

In every such data structure: Store at most one tq-dim. rectangle
per time series in S .
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Defining the Intervals

Lemma

Given: sequence of cells C , time series s, distance ρ, edge
directions of q
Then: Exists intervals I1, . . . , Itq such that
(q1, . . . , qtq) ∈ I1 × . . .× Itq ⇔ ∃ feasible path traversing C except
for monotonicity x-coordinate
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q3

s4 s5

For example,
q3 ∈ [s5 − ρ, s4 + ρ].

s4s5 s4+ρs5-ρ

q3
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Key Concept: Backward and Forward Numbers

q2
q3

q4
q5

q1

q2 + ρq5 − ρ

Here, b2(q) = 5.

Backward number bi (q): highest index
k ∈ {i , . . . , tq} s.t.

dF(⟨qi , . . . , qk⟩,←−) ≤ ρ

Backward number bi (C ): highest index
k ∈ {i , . . . , tq} s.t.

(i − 1, j), . . . , (k , j) ∈ C

sjsj+1 oriented backward

q2

q4

Here, b2(C ) = 4.

Similarly, define forward numbers fi (q) and fi (C ).

Lemma (Equivalent statements)

∃ feasible path in Fρ(q, s) traversing exactly cells in C

bi (q) ≥ bi (C ), fi (q) ≥ fi (C ) and qi ∈ Ii for all i
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The Query Algorithm

The Query Algorithm.

Compute f1(q), . . . , ftq(q), b1(q), . . . , btq(q)
for all valid sequences of cells C do

if fi (C ) ≤ fi (q) and bi (C ) ≤ bi (q) for all i then
Query search in associated rectangle stabbing data
structure with (q1, q2, . . . , qtq)
Output all time series associated with rectangle containing
this point
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Result

Theorem

For constant ts and tq, there exists a data structure solving the
Fréchet Queries problem

of size in O(n logtq−2 n) and

query time in O(logtq−1 n + k).

Proof.

Correctness by discussion before

Rectangle stabbing data structure by Chazelle (1986) with
size in O(n logd−2 n) and query time in O(logd−1 n + k)

Thank you for your attention!
Questions?
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