Range Reporting for Time Series via Rectangle Stabbing

Lotte Blank and Anne Driemel

Institute of Computer Science University of Bonn Germany

March 14th, 2024

Range Reporting for Points

Range Reporting for Points

Range Reporting for Points

Fréchet Queries Problem

Problem (Fréchet Queries)

Given: • set S of n time series all of complexity at most t_s ,

• complexity of query time series t_q,

• distance parameter $ho \in \mathbb{R}_{\geq 0}$

Query task: for time series q of complexity t_q

• Return $\forall s \in S$ with $d_F(s,q) \leq \rho$

Intuitive Definition:

Continuous Fréchet distance is **length of the shortest leash** such that person and dog traverse the paths

- From start to finish
- Can very speed
- Can't go backward

Problem (Rectangle Stabbing)

Given:

• set S of n axis-aligned d-dimensional rectangles in \mathbb{R}^d

Query task: for point $q \in \mathbb{R}^d$

• Return $\forall R \in S$ with $q \in R$

Problem (Rectangle Stabbing)

Given:

• set S of n axis-aligned d-dimensional rectangles in \mathbb{R}^d

Query task: for point $q \in \mathbb{R}^d$

• Return $\forall R \in S$ with $q \in R$

Problem (Rectangle Stabbing)

Given:

• set S of n axis-aligned d-dimensional rectangles in \mathbb{R}^d

Query task: for point $q \in \mathbb{R}^d$

• Return $\forall R \in S$ with $q \in R$

Example: Range of a Time Series s

$$\begin{aligned} &d_F(q,s) \leq \rho \text{ if and only if} \\ &\bullet \ q_1 \in [s_1 - \rho, s_1 + \rho] \text{ and } q_4 \in [s_2 - \rho, s_2 + \rho] \\ &\bullet \ (q_2,q_3) \text{ in grey area} \end{aligned}$$

	d	Storage	Query Time
[Afshani, Driemel 18]	2	$\mathcal{O}\left(n(\log\log n)^{\mathcal{O}\left(t_s^2\right)}\right)$	$\mathcal{O}\left(\sqrt{n}\log^{\mathcal{O}\left(t_{s}^{2}\right)}n+k\right)$
[Cheng, Huang 23]	d	$\mathcal{O}\left(t_{q}t_{s}n\right)^{\mathcal{O}\left(d^{4}t_{q}^{2}\log(dt_{q})\right)}$	$\mathcal{O}\left((dt_q)^{\mathcal{O}(1)}\log(t_qt_sn)+k\right)$
Our Results	1	$\mathcal{O}\left(n\left(\frac{\log n}{\log\log n}\right)^{t_s-1}\right)$	$\mathcal{O}\left(\log n\left(\frac{\log n}{\log\log n}\right)^{t_s-3}+k\right)$
	1	$\mathcal{O}\left(n\log^{t_q-2}n\right)$	$\mathcal{O}\left(\log^{t_q-1}n+k\right)$

	d	Storage	Query Time
[Afshani, Driemel 18]	2	$\mathcal{O}\left(n(\log\log n)^{\mathcal{O}\left(t_s^2\right)}\right)$	$\mathcal{O}\left(\sqrt{n}\log^{\mathcal{O}\left(t_s^2\right)}n+k\right)$
[Cheng, Huang 23]	d	$\mathcal{O}\left(t_{q}t_{s}n\right)^{\mathcal{O}\left(d^{4}t_{q}^{2}\log(dt_{q})\right)}$	$\mathcal{O}\left((dt_q)^{\mathcal{O}(1)}\log(t_qt_sn)+k\right)$
Our Results	1	$\mathcal{O}\left(n\left(\frac{\log n}{\log\log n}\right)^{t_s-1}\right)$	$\mathcal{O}\left(\log n\left(\frac{\log n}{\log\log n}\right)^{t_s-3}+k\right)$
	1	$\mathcal{O}\left(n\log^{t_q-2}n\right)$	$\mathcal{O}\left(\log^{t_q-1}n+k\right)$

Lower bounds:1	Storage		Query Time
d=1	nh	\Rightarrow	$\Omega\left(\log n\left(\frac{\log n}{\log h}\right)^{\lfloor t_{\min}/2\rfloor-2}+k\right)$
d=1	$\Omega\left(n\left(\frac{\log n}{\log\log n}\right)^{\lfloor t_{\min}/2\rfloor-1}\right)$	¢	$\mathcal{O}(\log^c n + k)$

 1 in pointer machine model

	d	Storage	Query Time
[Afshani, Driemel 18]	2	$\mathcal{O}\left(n(\log\log n)^{\mathcal{O}\left(t_s^2\right)}\right)$	$\mathcal{O}\left(\sqrt{n}\log^{\mathcal{O}\left(t_s^2\right)}n+k\right)$
[Cheng, Huang 23]	d	$\mathcal{O}\left(t_{q}t_{s}n\right)^{\mathcal{O}\left(d^{4}t_{q}^{2}\log(dt_{q})\right)}$	$\mathcal{O}\left((dt_q)^{\mathcal{O}(1)}\log(t_qt_sn)+k\right)$
Our Results	1	$\mathcal{O}\left(n\left(\frac{\log n}{\log\log n}\right)^{t_s-1}\right)$	$\mathcal{O}\left(\log n\left(\frac{\log n}{\log\log n}\right)^{t_s-3}+k\right)$
	1	$\mathcal{O}\left(n\log^{t_q-2}n\right)$	$\mathcal{O}\left(\log^{t_q-1}n+k\right)$

Lower bounds:1	Storage		Query Time
d=1	nh	\Rightarrow	$\Omega\left(\log n\left(\frac{\log n}{\log h}\right)^{\lfloor t_{\min}/2\rfloor-2}+k\right)$
d=1	$\Omega\left(n\left(\frac{\log n}{\log\log n}\right)^{\lfloor t_{\min}/2\rfloor-1}\right)$	¢	$\mathcal{O}(\log^c n + k)$

 1 in pointer machine model

Free Space Diagram $F_{\rho}(q,s)$

 $F_{
ho}(q,s) = \{(x,y) \in [1,t_s] imes [1,t_q] | |q(x) - s(y)| \le
ho \}$

Free Space Diagram $F_{ ho}(q,s)$

- d_F(q, s) ≤ ρ ⇔ ∃ a path monotone in both coordinates from

 (1, 1) to (t_s, t_q) in the free space.
- Such a path is called **feasible path**.

Free Space Diagram $F_{ ho}(q,s)$

- d_F(q, s) ≤ ρ ⇔ ∃ a path monotone in both coordinates from (1,1) to (t_s, t_q) in the free space.
- Such a path is called **feasible path**.

Free Space Diagram $F_{ ho}(q,s)$

- d_F(q, s) ≤ ρ ⇔ ∃ a path monotone in both coordinates from (1,1) to (t_s, t_q) in the free space.
- Such a path is called **feasible path**.

For every (valid) sequence of cells: Store 4 rectangle stabbing data structures

For every (valid) sequence of cells: Store 4 rectangle stabbing data structures

In every such data structure: Store at most one t_q -dim. rectangle per time series in S.

Defining the Intervals

Lemma

Given: sequence of cells \mathscr{C} , time series s, distance ρ , edge directions of qThen: Exists intervals I_1, \ldots, I_{t_q} such that $(q_1, \ldots, q_{t_q}) \in I_1 \times \ldots \times I_{t_q} \Leftrightarrow \exists$ feasible path traversing \mathscr{C} except for monotonicity x-coordinate

Defining the Intervals

Lemma

Given: sequence of cells \mathscr{C} , time series s, distance ρ , edge directions of qThen: Exists intervals I_1, \ldots, I_{t_q} such that $(q_1, \ldots, q_{t_q}) \in I_1 \times \ldots \times I_{t_q} \Leftrightarrow \exists$ feasible path traversing \mathscr{C} except for monotonicity x-coordinate

Here, $b_2(q) = 5$.

Backward number $b_i(q)$: highest index $k \in \{i, \ldots, t_q\}$ s.t.

•
$$d_{\mathsf{F}}(\langle q_i, \ldots, q_k \rangle, \leftarrow) \leq \rho$$

Lotte Blank and Anne Driemel Range Reporting for Time Series via Rectangle Stabbing

Backward number $b_i(q)$: highest index $k \in \{i, \ldots, t_q\}$ s.t.

•
$$d_{\mathsf{F}}(\langle q_i, \ldots, q_k \rangle, \longleftarrow) \leq \rho$$

Backward number $b_i(\mathscr{C})$: highest index $k \in \{i, \ldots, t_q\}$ s.t.

•
$$(i-1,j),\ldots,(k,j)\in \mathscr{C}$$

• $\overline{s_j s_{j+1}}$ oriented backward

Here, $b_2(q) = 5$.

Backward number $b_i(q)$: highest index $k \in \{i, \ldots, t_q\}$ s.t.

•
$$d_{\mathsf{F}}(\langle q_i, \ldots, q_k \rangle, \longleftarrow) \leq \rho$$

Backward number $b_i(\mathscr{C})$: highest index $k \in \{i, \ldots, t_q\}$ s.t.

•
$$(i-1,j),\ldots,(k,j)\in \mathscr{C}$$

• $\overline{s_j s_{j+1}}$ oriented backward

Similarly, define forward numbers $f_i(q)$ and $f_i(\mathscr{C})$.

$$q_{5} - \rho \qquad q_{2} + \rho$$

$$q_{1} \qquad q_{3} \qquad q_{2}$$

$$q_{2} \qquad q_{2}$$

 $a_5 - \rho$

Here, $b_2(q) = 5$.

Backward number $b_i(q)$: highest index $k \in \{i, ..., t_a\}$ s.t.

•
$$d_{\mathsf{F}}(\langle q_i, \ldots, q_k \rangle, \longleftarrow) \leq \rho$$

Backward number $b_i(\mathscr{C})$: highest index $k \in \{i, \ldots, t_{\sigma}\}$ s.t.

•
$$(i-1,j),\ldots,(k,j)\in \mathscr{C}$$

• $\overline{s_i s_{i+1}}$ oriented backward

Similarly, define forward numbers $f_i(q)$ and $f_i(\mathscr{C})$.

Lemma (Equivalent statements)

• \exists feasible path in $F_{\rho}(q,s)$ traversing exactly cells in \mathscr{C}

•
$$b_i(q) \ge b_i(\mathscr{C})$$
, $f_i(q) \ge f_i(\mathscr{C})$ and $q_i \in I_i$ for all i

Compute $f_1(q), \ldots, f_{t_q}(q), b_1(q), \ldots, b_{t_q}(q)$

for all valid sequences of cells \mathscr{C} do if $f_i(\mathscr{C}) \leq f_i(q)$ and $b_i(\mathscr{C}) \leq b_i(q)$ for all i then Query search in associated rectangle stabbing data structure with $(q_1, q_2, \dots, q_{t_q})$ Output all time series associated with rectangle containing this point

Compute $f_1(q), \ldots, f_{t_q}(q), b_1(q), \ldots, b_{t_q}(q)$ for all valid sequences of cells \mathscr{C} do if $f_i(\mathscr{C}) \leq f_i(q)$ and $b_i(\mathscr{C}) \leq b_i(q)$ for all *i* then Query search in associated rectangle stabbing data structure with $(q_1, q_2, \ldots, q_{t_q})$ Output all time series associated with rectangle containing this point

Compute
$$f_1(q), \ldots, f_{t_q}(q), b_1(q), \ldots, b_{t_q}(q)$$

for all valid sequences of cells \mathscr{C} do
if $f_i(\mathscr{C}) \leq f_i(q)$ and $b_i(\mathscr{C}) \leq b_i(q)$ for all *i* then
Query search in associated rectangle stabbing data
structure with $(q_1, q_2, \ldots, q_{t_q})$
Output all time series associated with rectangle containing
this point

Compute $f_1(q), \ldots, f_{t_q}(q), b_1(q), \ldots, b_{t_q}(q)$ for all valid sequences of cells \mathscr{C} do if $f_i(\mathscr{C}) \leq f_i(q)$ and $b_i(\mathscr{C}) \leq b_i(q)$ for all *i* then Query search in associated rectangle stabbing data structure with $(q_1, q_2, \ldots, q_{t_q})$ Output all time series associated with rectangle containing this point

Result

Theorem

For constant t_s and t_q , there exists a data structure solving the Fréchet Queries problem

- of size in $\mathcal{O}(n \log^{t_q-2} n)$ and
- query time in $\mathcal{O}(\log^{t_q-1} n + k)$.

Proof.

- Correctness by discussion before
- Rectangle stabbing data structure by Chazelle (1986) with size in $\mathcal{O}(n \log^{d-2} n)$ and query time in $\mathcal{O}(\log^{d-1} n + k)$

Result

Theorem

For constant t_s and t_q , there exists a data structure solving the Fréchet Queries problem

- of size in $\mathcal{O}(n \log^{t_q-2} n)$ and
- query time in $\mathcal{O}(\log^{t_q-1} n + k)$.

Proof.

- Correctness by discussion before
- Rectangle stabbing data structure by Chazelle (1986) with size in $\mathcal{O}(n \log^{d-2} n)$ and query time in $\mathcal{O}(\log^{d-1} n + k)$

Thank you for your attention! Questions?

	d	Storage	Query Time
[Afshani, Driemel 18]	2	$\mathcal{O}\left(n(\log\log n)^{\mathcal{O}\left(t_s^2\right)}\right)$	$\mathcal{O}\left(\sqrt{n}\log^{\mathcal{O}\left(t_s^2\right)}n+k\right)$
[Cheng, Huang 23]	d	$\mathcal{O}\left(t_{q}t_{s}n\right)^{\mathcal{O}\left(d^{4}t_{q}^{2}\log(dt_{q})\right)}$	$\mathcal{O}\left((dt_q)^{\mathcal{O}(1)}\log(t_qt_sn)+k\right)$
Our Results	1	$\mathcal{O}\left(n\left(\frac{\log n}{\log\log n}\right)^{t_s-1}\right)$	$\mathcal{O}\left(\log n\left(\frac{\log n}{\log\log n}\right)^{t_s-3}+k\right)$
	1	$\mathcal{O}\left(n\log^{t_q-2}n\right)$	$\mathcal{O}\left(\log^{t_q-1}n+k\right)$

Lower bounds:1	Storage		Query Time
d=1	nh	\Rightarrow	$\Omega\left(\log n\left(\frac{\log n}{\log h}\right)^{\lfloor t_{\min}/2\rfloor-2}+k\right)$
d=1	$\Omega\left(n\left(\frac{\log n}{\log\log n}\right)^{\lfloor t_{\min}/2\rfloor-1}\right)$	¢	$\mathcal{O}(\log^c n + k)$

 1 in pointer machine model