Representing Hypergraphs by Point-Line Incidences

Utrecht

Jniversity

Alexander Dobler, Stephen Kobourov, William J. Lenhart, Tamara Mchedlidze, Martin Nöllenburg, Antonios Symvonis

March 13, 2024 · EuroCG 2024

Williams College

National Technical University of Athens

Hypergraph Visualizations

Hypergraph Visualizations

acılı

MetroSets

Hypergraph
$$H = (V, E)$$

 $V \dots$ elements/vertices
 $E \dots$ sets/hyperedges

MetroSets

Hypergraph
$$H = (V, E)$$

 $V \dots$ elements/vertices
 $E \dots$ sets/hyperedges

Many bends can happen Can we find representations without bends/with few bends?

3

 v_5 O

Hypergraphs Visualizations as Point-Line Incidences

Hypergraph H = (V, E) $V \dots$ elements/vertices $E \dots$ sets/hyperedges

Our setting:

Realize vertices with points in the plane

Hypergraph H = (V, E) $V \dots$ elements/vertices $E \dots$ sets/hyperedges

Our setting:

4

- Realize vertices with points in the plane
- Realize hyperedges as infinite lines (possibly with bends)

Hypergraph H = (V, E) $V \dots$ elements/vertices $E \dots$ sets/hyperedges

- Realize vertices with points in the plane
- Realize hyperedges as infinite lines (possibly with bends)
- Do not care about crossings

Hypergraph H = (V, E) $V \dots$ elements/vertices $E \dots$ sets/hyperedges

- Realize vertices with points in the plane
- Realize hyperedges as infinite lines (possibly with bends)
- Do not care about crossings
- No line overlap

Hypergraph H = (V, E) $V \dots$ elements/vertices $E \dots$ sets/hyperedges

- Realize vertices with points in the plane
- Realize hyperedges as infinite lines (possibly with bends)
- Do not care about crossings
- No line overlap
- No wrong incidences

Hypergraph H = (V, E) $V \dots$ elements/vertices $E \dots$ sets/hyperedges

Our setting:

- Realize vertices with points in the plane
- Realize hyperedges as infinite lines (possibly with bends)
- Do not care about crossings
- No line overlap
- No wrong incidences

Why infinite lines? - because we can use point-line incidence theory of Pappus, Möbius, Kantor, Steinitz, Grünbaum, ...

Hypergraph H = (V, E) $V \dots$ elements/vertices $E \dots sets/hyperedges$

Our setting:

- Realize vertices with points in the plane
- Realize hyperedges as infinite lines (possibly with bends)
- Do not care about crossings
- No line overlap
- No wrong incidences

Why infinite lines? - because we can use point-line incidence theory of Pappus, Möbius, Kantor, Steinitz, Grünbaum, ...

Questions:

- Which hypergraphs can be realized without bends?
- Upper/lower bounds on required bends?
- Complexity of deciding if zero bends possible?

acılı

[linear HG: $\forall e_1, e_2 \in E : |e_1 \cap e_2| \leq 1$]

Zero bends: only linear hypergraphs possible

acılı

[linear HG: $\forall e_1, e_2 \in E : |e_1 \cap e_2| \leq 1$]

Zero bends: only linear hypergraphs possible

Zero bends: max-degree-2 linear hypergraphs always possible

acılı

Inear HG: $\forall e_1, e_2 \in E : |e_1 \cap e_2| \leq 1$

Zero bends: only linear hypergraphs possible

Zero bends: max-degree-2 linear hypergraphs always possible

|E| lines in general position
place degree-2 vertices at unique intersection of incident lines/hyperedges

Theorem. [Steinitz 1894] Every connected 3-uniform 3-regular linear hypergraph can be realized with zero bends, except for one line with one bend.

[linear HG: $\forall e_1, e_2 \in E : |e_1 \cap e_2| \le 1$]

Theorem. [Steinitz 1894] Every connected 3-uniform 3-regular linear hypergraph can be realized with zero bends, except for one line with one bend.

linear HG: $\forall e_1, e_2 \in E : |e_1 \cap e_2| \leq 1$ 3-regular: $\forall v \in V : \text{degree}(v) = 3$ 3-uniform: $\forall e \in E : |e| = 3$

Theorem. [Steinitz 1894] Every connected 3-uniform 3-regular linear hypergraph can be realized with zero bends, except for one line with one bend.

Example: Fano-plane (Fano-configuration, Fano hypergraph)

linear HG: $\forall e_1, e_2 \in E : |e_1 \cap e_2| \le 1$ 3-regular: $\forall v \in V : \text{degree}(v) = 3$ 3-uniform: $\forall e \in E : |e| = 3$

An Old and Wrong Result by Steinitz

7

Theorem. [Steinitz 1894] Every connected 3-uniform 3-regular linear hypergraph can be realized with zero bends, except for one line with one bend.

linear HG: $\forall e_1, e_2 \in E : |e_1 \cap e_2| \le 1$ 3-regular: $\forall v \in V : \text{degree}(v) = 3$ 3-uniform: $\forall e \in E : |e| = 3$

An Old and Wrong Result by Steinitz

7

Theorem. [Steinitz 1894] Fvery connected 3-uniform 3-regular linear hypergraph can be realized with zero bends, except for one line with one bend.

Result is wrong! Pointed out by [Grünbaum 2009]

linear HG: $\forall e_1, e_2 \in E : |e_1 \cap e_2| \le 1$ 3-regular: $\forall v \in V : \mathsf{degree}(v) = 3$ 3-uniform: $\forall e \in E : |e| = 3$

Alexander Dobler, Stephen Kobourov, William J. Lenhart, Tamara Mchedlidze, Martin Nöllenburg, Antonios Symvonis · Representing Hypergraphs by Point-Line Incidences

acılı

Realization of hypergraph P:

acılı

Realization of hypergraph P:

Theorem. [Pappus] In any realization of P without bends, v_4, v_5, v_6 are collinear.

Realization of hypergraph P:

Theorem. [Pappus] In any realization of P without bends, v_4, v_5, v_6 are collinear.

Hypergraph $H = P \cup P' \cup$ hyperedges $e_P = \{v_4, v_5, v'_6\}$ and $e_{P'} = \{v'_4, v'_5, v_6\}$

8

Hypergraph $H = P \cup P' \cup$ hyperedges $e_P = \{v_4, v_5, v'_6\}$ and $e_{P'} = \{v'_4, v'_5, v_6\}$

In any realization of H at least two hyperedges have a bend

Hypergraph $H = P \cup P' \cup$ hyperedges $e_P = \{v_4, v_5, v'_6\}$ and $e_{P'} = \{v'_4, v'_5, v_6\}$

In any realization of H at least two hyperedges have a bend

Proof. P realized without bends $\Rightarrow e_P$ requires bend P' realized without bends $\Rightarrow e_{P'}$ requires bend

A General Construction

Hypergraph H_5

A General Construction

Theorem. For each $k \in \mathbb{N}$ there exists a linear 3-regular 3-uniform hypergraph H_k such that at least k hyperedges need to be realized with bends.

acilii

Theorem. Deciding whether a hypergraph is realizable with zero bends is $\exists \mathbb{R}$ -hard.

Theorem. Deciding whether a hypergraph is realizable with zero bends is $\exists \mathbb{R}$ -hard.

Proof idea. Reduction from MATROID REALIZABILITY [Kim, Mesmay, Miltzow, 2023]

Theorem. Deciding whether a hypergraph is realizable with zero bends is $\exists \mathbb{R}$ -hard.

Proof idea. Reduction from MATROID REALIZABILITY [Kim, Mesmay, Miltzow, 2023]

Theorem. Deciding whether a hypergraph is realizable with zero bends is $\exists \mathbb{R}$ -hard.

Proof idea. Reduction from MATROID REALIZABILITY [Kim, Mesmay, Miltzow, 2023]

Alexander Dobler, Stephen Kobourov, William J. Lenhart, Tamara Mchedlidze, Martin Nöllenburg, Antonios Symvonis · Representing Hypergraphs by Point-Line Incidences

Line segments instead of infinite lines

acılı

Many open questions for infinite lines: approximate bends, complexity of constant rank/degree hypergraphs ...

Many open questions for infinite lines: approximate bends, complexity of constant rank/degree hypergraphs ...

Questions