Monochromatic triangles in the max-norm plane

Arsenii Sagdeev

Alfréd Rényi Institute of Mathematics, Budapest, Hungary
sagdeevarsenii@gmail.com
based on joint works with
A. Natalchenko

14 March 2024

Classical problem

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Classical problem

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Known bounds: $5 \leq \chi \leq 7$.

Classical problem: Euclidean plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Known bounds: $5 \leq \chi \leq 7$.

Variation: Max-norm plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the ℓ_{∞}-distance* 1 is monochromatic.

The ℓ_{∞}-distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is defined by $\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$.

Variation: Max-norm plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the ℓ_{∞}-distance* 1 is monochromatic.

Tight result: $\chi=4$.

The ℓ_{∞}-distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is defined by $\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$.

Classical problem: Euclidean plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Known bounds: $5 \leq \chi \leq 7$.

Classical problem: Euclidean plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Known bounds: $5 \leq \chi \leq 7$.

Variation: triangle on the Euclidean plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no Euclidean isometric copy of T is monochromatic.

Variation: triangle on the Euclidean plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no Euclidean isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 7$.

Example: $\chi(\triangle)=2$.

Variation: triangle on the Euclidean plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no Euclidean isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 7$.

Example: $\chi(\triangle)=2$.

Conjecture (Graham)

If $T \neq \triangle$, then $\chi(T)=3$.

Variation: triangle on the Euclidean plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no Euclidean isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 7$.

Example: $\chi(\triangle)=2$.

Conjecture (Graham)

If $T \neq \triangle$, then $\chi(T)=3$.

Variation: triangle on the max-norm plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no ℓ_{∞}-isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 4$.

Variation: triangle on the max-norm plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no ℓ_{∞}-isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 4$.

Theorem (Natalchenko, S.)

Let the side length $a \leq b \leq c$ of T be positive integers
such that $c<a+b$ and $\operatorname{gcd}(a, b, c)=1$. If

- $a+b+c$ is odd, or
- a and b are odd, $c \geq a+b-\operatorname{gcd}(a, b)$,
then $\chi(T)=2$. Otherwise, $\chi(T)=3$.

Proof illustrations

Proof illustrations

Open problem: degenerate triangle on the max-norm plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no ℓ_{∞}-isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 4$.

Conjecture (Natalchenko, S.)

If the side length $a \leq b<a+b$ of T be positive integers such that $a \not \equiv b$ $(\bmod 3)$, then $\chi(T)=4$.

Thank You!

Monochromatic triangles in the max-norm plane

Let χ (resp. $\chi(T))$ be the minimum number of colors needed to color all the points of \mathbb{R}^{2} such that no pair of points at distance 1 (resp. no copy of a triangle T) is monochromatic.

Euclidean norm

- $5 \leq \chi \leq 7$

- $\chi(\triangle)=2$
- Conjecture (Graham): $T \neq \triangle \Rightarrow \chi(T)=3$

Max-norm

- $\chi=4$

Side lengths $a \leq b \leq c$ are integers such that $c<a+b$. Theorem:

- If (1) $a+b+c$ is odd, or
(2) a and b are odd,

$$
c \geq a+b-\operatorname{gcd}(a, b)
$$

then $\chi(T)=2$

- Otherwise $\chi(T)=3$

