Monochromatic triangles in the max-norm plane

Arsenii Sagdeev

Alfréd Rényi Institute of Mathematics, Budapest, Hungary sagdeevarsenii@gmail.com

based on joint works with A. Natalchenko

14 March 2024

Classical problem

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Classical problem

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Classical problem: Euclidean plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Variation: Max-norm plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the ℓ_∞ -distance* 1 is monochromatic.

The ℓ_{∞} -distance between (x_1, y_1) and (x_2, y_2) is defined by max $(|x_1 - x_2|, |y_1 - y_2|)$.

Image: A matrix and a matrix

Variation: Max-norm plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the ℓ_∞ -distance* 1 is monochromatic.

Tight result: $\chi = 4$.

The ℓ_{∞} -distance between (x_1, y_1) and (x_2, y_2) is defined by max $(|x_1 - x_2|, |y_1 - y_2|)$.

Classical problem: Euclidean plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Classical problem: Euclidean plane

Let χ be the minimum number of colors needed to color the plane such that no pair of points at the Euclidean distance 1 is monochromatic.

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no Euclidean isometric copy of T is monochromatic.

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no Euclidean isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 7$.

Example: $\chi(\triangle) = 2$.

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no Euclidean isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 7$.

Example: $\chi(\triangle) = 2$.

Conjecture (Graham)

If $T \neq \triangle$, then $\chi(T) = 3$.

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no Euclidean isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 7$.

Example: $\chi(\triangle) = 2$.

Variation: triangle on the max-norm plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no ℓ_{∞} -isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 4$.

Variation: triangle on the max-norm plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no ℓ_{∞} -isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 4$.

Theorem (Natalchenko, S.)

Let the side length $a \le b \le c$ of T be positive integers such that c < a + b and gcd(a, b, c) = 1. If

- a + b + c is odd, or
- a and b are odd, $c \ge a + b \gcd(a, b)$,

then $\chi(T) = 2$. Otherwise, $\chi(T) = 3$.

Proof illustrations

Image: A mathematical states and the states and

Proof illustrations

- (日)

EuroCG2024

Open problem: degenerate triangle on the max-norm plane

Let $\chi(T)$ be the minimum number of colors needed to color the plane such that no ℓ_{∞} -isometric copy of T is monochromatic.

Observation: $2 \leq \chi(\triangle) \leq 4$.

Conjecture (Natalchenko, S.)

If the side length $a \le b < a + b$ of T be positive integers such that $a \not\equiv b \pmod{3}$, then $\chi(T) = 4$.

Thank You!

Image: A mathematical states and the states and

æ

Monochromatic triangles in the max-norm plane

Let χ (resp. $\chi(T)$) be the minimum number of colors needed to color all the points of \mathbb{R}^2 such that no pair of points at distance 1 (resp. no copy of a triangle T) is monochromatic.

Euclidean norm • $5 < \chi < 7$

- $\chi(\triangle) = 2$
- Conjecture (Graham):
 - $T \neq \bigtriangleup \Rightarrow \chi(T) = 3$

Max-norm • $\chi = 4$

Side lengths $a \le b \le c$ are integers such that c < a + b. Theorem:

If (1) a + b + c is odd, or

 (2) a and b are odd,
 c ≥ a + b - gcd(a, b),
 then χ(T) = 2

Otherwise χ(T) = 3