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Weighted Region Problem (WRP)

Given: points s, t and a planar subdivision where each region i has weight αi ≥ 0

Output: shortest weighted path from s to t

J. S. B. Mitchell, C. H. Papadimitriou. The weighted region problem: finding shortest paths
through a weighted planar subdivision. Journal of the ACM, Vol. 38, pp 18–73, 1991
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Proof uses only 3 weights!
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• weights {1, α}
→ exact algorithms for obstacles that are parallel strips

0

α=1.5
For parallel strips, the angle of incidence at each
strip is the same, so they can be all put together,
and treated as only one strip. In this the equations
can be solved exactly.

Not mentioned: obstacles that are k-gons with
weight such that the k-gon behaves like an
obstacle (e.g., w > 2 for equilateral triangles)
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Unsolvable in the Algebraic
Computation Model over the
Rational Numbers (ACMQ)

We can characterize and compute
all possible types of shortest paths
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Actually we need to
distinguish whether
α < 1 or 1 < α <

√
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|y|√
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=
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⇒ (α2 − 1)y4 − 2ty(α
2 − 1)y3 + [α2t2x + (α2 − 1)t2y − s2x]y

2 + 2s2xtyy − s2xt
2
y = 0

• Thus the length of the path is

α
√

s2x + y2 +
√
t2x + (ty − y)2

(1)

where y is the unique solution to (1) in
interval (ty, 0)

(0, 0)

Mention some path types are
simpler, but there is one that is
considerably more complicated.
But still computable.
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θ̄3
θ3

α = 1.2

• Applying Snell’s law at the two bending points...

...and a lot of algebraic manipulations...

...leads to this equation (where x = sin θ1):√
α2 − x2

(
3

x
− 1√

1− x2
+

1√
1− α2 + x2

)
= 3

• The equation is equivalent to a degree-11
polynomial
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− 30701172521250000000x6 + 32082903984375000000x7 − 23159988281250000000x8
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We show that p(x) = 0 cannot be solved in the Algebraic
Computation Model over the Rational Numbers (ACMQ)

Therefore, the same happens to the WRP with one
region (a quadrant), and two arbitrary weights



Conclusions

• Even for one single rectangular region, with two weights,
the WRP is unsolvable

s

t



Conclusions

• Even for one single rectangular region, with two weights,
the WRP is unsolvable

s

t

• Solvable if s is on the boundary

...we worked out every single equation

s

t



Conclusions

• Even for one single rectangular region, with two weights,
the WRP is unsolvable

s

t

• Solvable if s is on the boundary

...we worked out every single equation

s

t

• For s on the boundary, we can almost compute the Shortest Path Map

...but not quite

there is a type of path
whose bisectors we can’t
compute

s

t

t

t



Conclusions

• Even for one single rectangular region, with two weights,
the WRP is unsolvable

s

t

• Solvable if s is on the boundary

...we worked out every single equation
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• For s on the boundary, we can almost compute the Shortest Path Map

...but not quite

It’s difficult to beat the monster!

there is a type of path
whose bisectors we can’t
compute
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