Exact solutions to the Weighted Region Problem

Rodrigo Silveira

Universitat Politècnica de Catalunya

Joint work with:

Sarita de Berg Utrecht U.

Frank Staals
Utrecht U.

Guillermo Esteban
U. de Alcalá \& Carleton U.

Shortest paths amid one weighted square

Given: two points s, t, one square with weight $\alpha \geq 0$
Output: shortest weighted path from s to t
S

$\stackrel{\bullet}{t}$
$($ weight outside $=1)$

Shortest paths amid one weighted square

Given: two points s, t, one square with weight $\alpha \geq 0$
Output: shortest weighted path from s to t

(weight outside $=1$)

Shortest paths amid one weighted square

Given: two points s, t, one square with weight $\alpha \geq 0$
Output: shortest weighted path from s to t

$($ weight outside $=1)$

Shortest paths amid one weighted square

Given: two points s, t, one square with weight $\alpha \geq 0$
Output: shortest weighted path from s to t

(weight outside $=1$)

Shortest paths amid one weighted square

Given: two points s, t, one square with weight $\alpha \geq 0$
Output: shortest weighted path from s to t

(weight outside $=1$)

Shortest paths amid one weighted square

Given: two points s, t, one square with weight $\alpha \geq 0$
Output: shortest weighted path from s to t

(weight outside $=1$)
Particular case of the Weighted Region Problem

Weighted Region Problem (WRP)

Weighted Region Problem (WRP)

Given: points s, t and a planar subdivision where each region i has weight $\alpha_{i} \geq 0$ Output: shortest weighted path from s to t

Weighted Region Problem (WRP)

Given: points s, t and a planar subdivision where each region i has weight $\alpha_{i} \geq 0$ Output: shortest weighted path from s to t

J. S. B. Mitchell, C. H. Papadimitriou. The weighted region problem: finding shortest paths through a weighted planar subdivision. Journal of the ACM, Vol. 38, pp 18-73, 1991

WRP: What can we do?

WRP: What can we do?

General problem

(arbitrary non-negative weights, arbitrary regions)

WRP: What can we do?

General problem Only approximation algorithms known

(arbitrary non-negative weights, arbitrary regions)

WRP: What can we do?

General problem Only approximation algorithms known (arbitrary non-negative weights, arbitrary regions)

Time complexity	Year
$O\left(n^{8} \log \frac{n N W}{w \varepsilon}\right)$	1991
$O\left(N^{4} \log \left(\frac{N W}{w \varepsilon}\right) \frac{n}{\varepsilon^{2}} \log \frac{n N}{\varepsilon}\right)$	1998
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\left(\frac{1}{\sqrt{\varepsilon}}+\log n\right)\right)$	2000
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\varepsilon} \log \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\right)$	2006
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\sqrt{\varepsilon}} \log \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\right)$	2005

ε : desired approximation factor n : number of region vertices N : max integer coordinate of any region vertex W : max finite integer weight w : min finite positive weight

WRP: What can we do?

General problem Only approximation algorithms known

(arbitrary non-negative weights, arbitrary regions)

Time complexity	Year
$O\left(n^{8} \log \frac{n N W}{w \varepsilon}\right)$	1991
$O\left(N^{4} \log \left(\frac{N W}{w \varepsilon}\right) \frac{n}{\varepsilon} \log \frac{n N}{\varepsilon}\right)$	1998
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\left(\frac{1}{\sqrt{\varepsilon}}+\log n\right)\right)$	2000
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\varepsilon} \log \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\right)$	2006
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\sqrt{\varepsilon}} \log \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\right)$	2005

De Carufel et al. (CGTA 2014) showed:
Computing an exact shortest path in the WRP is unsolvable in the Algebraic Computation Model over the Rational Numbers $(A C M \mathbb{Q})$
ε : desired approximation factor n : number of region vertices
N : max integer coordinate of any region vertex W : max finite integer weight w : min finite positive weight

WRP: What can we do?

General problem Only approximation algorithms known

(arbitrary non-negative weights, arbitrary regions)

Time complexity	Year
$O\left(n^{8} \log \frac{n N W}{w \varepsilon}\right)$	1991
$O\left(N^{4} \log \left(\frac{N W}{w \varepsilon}\right) \frac{n}{\varepsilon^{2}} \log \frac{n N}{\varepsilon}\right)$	1998
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\left(\frac{1}{\sqrt{\varepsilon}}+\log n\right)\right)$	2000
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\varepsilon} \log \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\right)$	2006
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\sqrt{\varepsilon}} \log \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\right)$	2005

ε : desired approximation factor n : number of region vertices
N : max integer coordinate of any region vertex W : max finite integer weight w : min finite positive weight

More recently:
De Carufel et al. (CGTA 2014) showed:
Computing an exact shortest path in the WRP is unsolvable in the Algebraic Computation Model over the Rational Numbers $(A C M \mathbb{Q})$

In the $A C M \mathbb{Q}$ one can exactly compute any number obtained from rational numbers by applying operations,,$+- \times, \div$ and $\sqrt[k]{ }$, for any integer $k \geq 2$.

WRP: What can we do?

General problem Only approximation algorithms known

(arbitrary non-negative weights, arbitrary regions)

Time complexity	Year
$O\left(n^{8} \log \frac{n N W}{w \varepsilon}\right)$	1991
$O\left(N^{4} \log \left(\frac{N W}{w \varepsilon}\right) \frac{n}{\varepsilon} \log \frac{n N}{\varepsilon}\right)$	1998
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\left(\frac{1}{\sqrt{\varepsilon}}+\log n\right)\right)$	2000
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\varepsilon} \log \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\right)$	2006
$O\left(N^{2} \log \left(\frac{N W}{w}\right) \frac{n}{\sqrt{\varepsilon}} \log \frac{n}{\varepsilon} \log \frac{1}{\varepsilon}\right)$	2005

ε : desired approximation factor n : number of region vertices
N : max integer coordinate of any region vertex W : max finite integer weight w : min finite positive weight

More recently:
De Carufel et al. (CGTA 2014) showed:
Computing an exact shortest path in the WRP is unsolvable in the Algebraic Computation Model over the Rational Numbers $(A C M \mathbb{Q})$

Proof uses only $\mathbf{3}$ weights!

In the $A C M \mathbb{Q}$ one can exactly compute any number obtained from rational numbers by applying operations,,$+- \times, \div$ and $\sqrt[k]{ }$, for any integer $k \geq 2$.

WRP: What can we do?

WRP: What can we do?

Simpler variants with exact algorithms

(restricted weights and/or limited polygonal regions)

WRP: What can we do?

Simpler variants with exact algorithms

(restricted weights and/or limited polygonal regions)

- weights $\{1, \infty\}$
\rightarrow exact algorithms for polygonal (and even curved) obstacles

WRP: What can we do?

Simpler variants with exact algorithms

(restricted weights and/or limited polygonal regions)

- weights $\{1, \infty\}$
\rightarrow exact algorithms for polygonal (and even curved) obstacles
- weights $\{0,1, \infty\}$
\rightarrow exact algorithms for polygonal obstacles

WRP: What can we do?

Simpler variants with exact algorithms

 (restricted weights and/or limited polygonal regions)- weights $\{1, \infty\}$

\rightarrow exact algorithms for polygonal (and even curved) obstacles
- weights $\{0,1, \infty\}$
\rightarrow exact algorithms for polygonal obstacles
- weights $\{1, \alpha\}$
\rightarrow exact algorithms for obstacles that are parallel strips

Our results

Our results

One square/rectangle with weight α

Our results

One square/rectangle with weight α

- weights $\{1, \alpha\}$

WRP two arbitrary weights and one rectangular region, s, t outside region

Our results

One square/rectangle with weight α

- weights $\{1, \alpha\}$

WRP two arbitrary weights and one rectangular region, s, t outside region

Unsolvable in the Algebraic Computation Model over the Rational Numbers $(A C M \mathbb{Q})$

Our results

One square/rectangle with weight α

- weights $\{1, \alpha\}$ WRP two arbitrary weights and one rectangular region, s, t outside region

Unsolvable in the Algebraic Computation Model over the Rational Numbers $(A C M \mathbb{Q})$

- weights $\{1, \alpha\}$

WRP two arbitrary weights and one rectangular region, s on region boundary

Our results

One square/rectangle with weight α

- weights $\{1, \alpha\}$ WRP two arbitrary weights and one rectangular region, s, t outside region

Unsolvable in the Algebraic Computation Model over the Rational Numbers $(A C M \mathbb{Q})$

We can characterize and compute all possible types of shortest paths
s on boundary: all shortest path types
s on boundary: all shortest path types

$\stackrel{\sim}{n}$
$\overline{\mathrm{~N}}$
$\frac{\mathrm{~N}}{\mathrm{D}}$
s on boundary: all shortest path types

Example: one type of shortest path

Example: one type of shortest path

Example: one type of shortest path

- We need to compute the bending point (i.e., y)

Example: one type of shortest path

- We need to compute the bending point (i.e., y)

Example: one type of shortest path

- We need to compute the bending point (i.e., y)
- Shortest paths obey Snell's law of refraction:

$$
\alpha \cdot \sin \theta_{1}=1 \cdot \sin \theta_{2}
$$

Example: one type of shortest path

- We need to compute the bending point (i.e., y)
- Shortest paths obey Snell's law of refraction:

$$
\begin{gathered}
\alpha \cdot \sin \theta_{1}=1 \cdot \sin \theta_{2} \quad \Rightarrow \alpha \frac{|y|}{\sqrt{s_{x}^{2}+y^{2}}}=\frac{\left|t_{y}-y\right|}{\sqrt{t_{x}^{2}+\left(t_{y}-y\right)^{2}}} \\
\Rightarrow\left(\alpha^{2}-1\right) y^{4}-2 t_{y}\left(\alpha^{2}-1\right) y^{3}+\left[\alpha^{2} t_{x}^{2}+\left(\alpha^{2}-1\right) t_{y}^{2}-s_{x}^{2}\right] y^{2}+2 s_{x}^{2} t_{y} y-s_{x}^{2} t_{y}^{2}=0
\end{gathered}
$$

Example: one type of shortest path

- We need to compute the bending point (ie., y)
- Shortest paths obey Snell's law of refraction:

$$
\begin{array}{cc}
\alpha \cdot \sin \theta_{1}=1 \cdot \sin \theta_{2} & \Rightarrow \alpha \frac{|y|}{\sqrt{s_{x}^{2}+y^{2}}}=\frac{\left|t_{y}-y\right|}{\sqrt{t_{x}^{2}+\left(t_{y}-y\right)^{2}}} \\
\Rightarrow\left(\alpha^{2}-1\right) y^{4}-2 t_{y}\left(\alpha^{2}-1\right) y^{3}+\left[\alpha^{2} t_{x}^{2}+\left(\alpha^{2}-1\right) t_{y}^{2}-s_{x}^{2}\right] y^{2}+2 s_{x}^{2} t_{y} y-s_{x}^{2} t_{y}^{2}=0 \tag{1}
\end{array}
$$

$\left(s_{x}, 0\right)$

- Thus the length of the path is
$\alpha \sqrt{s_{x}^{2}+y^{2}}+\sqrt{t_{x}^{2}+\left(t_{y}-y\right)^{2}}$
where y is the unique solution to (1) in interval $\left(t_{y}, 0\right)$

More complicated: s outside of region

More complicated: s outside of region

- Similar types of shortest paths, but a few are special

More complicated: s outside of region

- Similar types of shortest paths, but a few are special

More complicated: s outside of region

- Similar types of shortest paths, but a few are special
- Complication: this shortest path bends twice...
...in a way that leads to more complicated equations

More complicated: s outside of region

- Similar types of shortest paths, but a few are special
- Complication: this shortest path bends twice...
...in a way that leads to more complicated equations

More complicated: s outside of region

- Similar types of shortest paths, but a few are special
- Complication: this shortest path bends twice...
...in a way that leads to more complicated equations

- Applying Snell's law at the two bending points... ...and a lot of algebraic manipulations...

More complicated: s outside of region

- Similar types of shortest paths, but a few are special
- Complication: this shortest path bends twice...
...in a way that leads to more complicated equations

- Applying Snell's law at the two bending points... ...and a lot of algebraic manipulations... ...leads to this equation (where $x=\sin \theta_{1}$):

More complicated: s outside of region

- Similar types of shortest paths, but a few are special
- Complication: this shortest path bends twice...
...in a way that leads to more complicated equations

- Applying Snell's law at the two bending points... ...and a lot of algebraic manipulations... ...leads to this equation (where $x=\sin \theta_{1}$):

$$
\sqrt{\alpha^{2}-x^{2}}\left(\frac{3}{x}-\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-\alpha^{2}+x^{2}}}\right)=3
$$

- The equation is equivalent to a degree-11 polynomial

$$
t=(200,200)
$$

More complicated: s outside of region

- So, to compute the shortest path for this instance, we need the roots of a complicated polynomial

More complicated: s outside of region

- So, to compute the shortest path for this instance, we need the roots of a complicated polynomial

$$
\begin{aligned}
p(x)= & -5602195930320001+93511401766200000 x-713160370741499900 x^{2} \\
& +3259398736514250000 x^{3}-9869397269940000000 x^{4}+20717559301050000000 x^{5} \\
& -30701172521250000000 x^{6}+32082903984375000000 x^{7}-23159988281250000000 x^{8} \\
& +10999072265625000000 x^{9}-3093750000000000000 x^{10}+390625000000000000 x^{11}
\end{aligned}
$$

More complicated: s outside of region

- So, to compute the shortest path for this instance, we need the roots of a complicated polynomial

$$
\begin{aligned}
p(x)= & -5602195930320001+93511401766200000 x-713160370741499900 x^{2} \\
& +3259398736514250000 x^{3}-9869397269940000000 x^{4}+20717559301050000000 x^{5} \\
& -30701172521250000000 x^{6}+32082903984375000000 x^{7}-23159988281250000000 x^{8} \\
& +10999072265625000000 x^{9}-3093750000000000000 x^{10}+390625000000000000 x^{11}
\end{aligned}
$$

We show that $p(x)=0$ cannot be solved in the Algebraic Computation Model over the Rational Numbers (ACM \mathbb{Q})

$$
\alpha=1.2
$$

More complicated: s outside of region

- So, to compute the shortest path for this instance, we need the roots of a complicated polynomial

$$
\begin{aligned}
p(x)= & -5602195930320001+93511401766200000 x-713160370741499900 x^{2} \\
& +3259398736514250000 x^{3}-9869397269940000000 x^{4}+20717559301050000000 x^{5} \\
& -30701172521250000000 x^{6}+32082903984375000000 x^{7}-23159988281250000000 x^{8} \\
& +10999072265625000000 x^{9}-3093750000000000000 x^{10}+390625000000000000 x^{11}
\end{aligned}
$$

We show that $p(x)=0$ cannot be solved in the Algebraic Computation Model over the Rational Numbers ($A C M \mathbb{Q}$)

Therefore, the same happens to the WRP with one region (a quadrant), and two arbitrary weights

Conclusions

- Even for one single rectangular region, with two weights, the WRP is unsolvable

Conclusions

- Even for one single rectangular region, with two weights, the WRP is unsolvable
- Solvable if s is on the boundary ...we worked out every single equation

Conclusions

- Even for one single rectangular region, with two weights, the WRP is unsolvable
- Solvable if s is on the boundary ...we worked out every single equation

- For s on the boundary, we can almost compute the Shortest Path Map ...but not quite

Conclusions

- Even for one single rectangular region, with two weights, the WRP is unsolvable
- Solvable if s is on the boundary ...we worked out every single equation

- For s on the boundary, we can almost compute the Shortest Path Map ...but not quite

