

Hardness and modifications of the weak graph distance

13.03.2024 Maike Buchin, **Wolf Kißler**

Representations of geometric networks:

RUB

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^2

RUB

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^2

We consider non-degenerate straight-line immersions

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^2

We consider non-degenerate straight-line immersions

Ruhr-Universität Bochum, Dezernat 5.I.4 & Dezernat 5.II.3

RUB

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^2

We consider non-degenerate straight-line immersions

RUB

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^2

We consider non-degenerate straight-line immersions

Given two representations of networks: how to compare them?

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^2

We consider non-degenerate straight-line immersions

Given two representations of networks: how to compare them?

- Many approaches: edit distances, Fréchet distance, traversal based distances, LPH based distances,...
- Here: Weak Graph Distance due to Akitaya et al.

 \rightarrow Akitaya et al.: Distance measures for embedded graphs, CGTA 95, 2021.

Table of Contents

1. Introduction

- 2. Hardness of deciding the weak graph distance
- 3. Crossing-rigid weak graph distances

Let $s_1, s_2: [0, 1] \to \mathbb{R}^d$ be curves. Their weak Fréchet distance is defined by $\delta_{wF}(s_1, s_2) = \inf_{\alpha, \beta: [0,1] \to [0,1]} \max_{t \in [0,1]} d(s_1(\alpha(t)), s_2(\beta(t)))$ continuous surjection

Let $s_1, s_2: [0, 1] \to \mathbb{R}^d$ be curves. Their weak Fréchet distance is defined by $\delta_{wF}(s_1, s_2) = \inf_{\alpha, \beta: [0, 1] \to [0, 1]} \max_{t \in [0, 1]} d(s_1(\alpha(t)), s_2(\beta(t)))$ continuous surjection

Intuition: Person and dog:

Let $s_1, s_2: [0, 1] \to \mathbb{R}^d$ be curves. Their weak Fréchet distance is defined by $\delta_{wF}(s_1, s_2) = \inf_{\alpha, \beta: [0, 1] \to [0, 1]} \max_{t \in [0, 1]} d(s_1(\alpha(t)), s_2(\beta(t)))$ continuous surjection

Intuition: Person and dog:

Let $s_1, s_2: [0, 1] \to \mathbb{R}^d$ be curves. Their weak Fréchet distance is defined by $\delta_{wF}(s_1, s_2) = \inf_{\alpha, \beta: [0, 1] \to [0, 1]} \max_{t \in [0, 1]} d(s_1(\alpha(t)), s_2(\beta(t)))$ continuous surjection

Intuition: Person and dog:

Let $s_1, s_2: [0, 1] \to \mathbb{R}^d$ be curves. Their weak Fréchet distance is defined by $\delta_{wF}(s_1, s_2) = \inf_{\alpha, \beta: [0, 1] \to [0, 1]} \max_{t \in [0, 1]} d(s_1(\alpha(t)), s_2(\beta(t)))$ continuous surjection

Intuition: Person and dog:

Let $s_1, s_2: [0, 1] \to \mathbb{R}^d$ be curves. Their weak Fréchet distance is defined by $\delta_{wF}(s_1, s_2) = \inf_{\alpha, \beta: [0, 1] \to [0, 1]} \max_{t \in [0, 1]} d(s_1(\alpha(t)), s_2(\beta(t)))$ continuous surjection

Intuition: Person and dog:

Let $s_1, s_2: [0, 1] \to \mathbb{R}^d$ be curves. Their weak Fréchet distance is defined by $\delta_{wF}(s_1, s_2) = \inf_{\alpha, \beta: [0, 1] \to [0, 1]} \max_{t \in [0, 1]} d(s_1(\alpha(t)), s_2(\beta(t)))$ continuous surjection

Intuition: Person and dog:

Let $s_1, s_2: [0, 1] \to \mathbb{R}^d$ be curves. Their weak Fréchet distance is defined by $\delta_{wF}(s_1, s_2) = \inf_{\alpha, \beta: [0, 1] \to [0, 1]} \max_{t \in [0, 1]} d(s_1(\alpha(t)), s_2(\beta(t)))$ continuous surjection

Intuition: Person and dog:

- each vertex v of G_1 to a point s(v) on an edge of G_2
- each edge $\{u,v\}$ of G_1 to a simple path from s(u) to s(v) in G_2

- each vertex v of G_1 to a point s(v) on an edge of G_2
- each edge $\{u,v\}$ of G_1 to a simple path from s(u) to s(v) in G_2

- each vertex v of G_1 to a point s(v) on an edge of G_2
- each edge $\{u,v\}$ of G_1 to a simple path from s(u) to s(v) in G_2

- each vertex v of G_1 to a point s(v) on an edge of G_2
- each edge $\{u,v\}$ of G_1 to a simple path from s(u) to s(v) in G_2

- each vertex v of G_1 to a point s(v) on an edge of G_2
- each edge $\{u,v\}$ of G_1 to a simple path from s(u) to s(v) in G_2

Let G_1, G_2 be immersed graphs. A graph mapping $s: G_1 \to G_2$ maps

- each vertex v of G_1 to a point s(v) on an edge of G_2
- each edge $\{u,v\}$ of G_1 to a simple path from s(u) to s(v) in G_2

The directed weak graph distance from G_1 to G_2 is defined as $\vec{\delta}_{wG} = \min_{s:G_1 \to G_2} \max_{e \in E(G_1)} \delta_{wF}(e, s(e))$ graph mapping interpreted as curves

Undirected version: $\delta_{wG}(G_1, G_2) = \max\{\vec{\delta}_{wG}(G_1, G_2), \vec{\delta}_{wG}(G_2, G_1)\}$

RUB

Vertex placement of $v \in V(G_1)$: connected component of $G_2 \cap B_{\varepsilon}(v)$

Vertex placement of $v \in V(G_1)$: connected component of $G_2 \cap B_{\varepsilon}(v)$

(Weak) edge placement of $e = \{u, v\} \in E(G_1)$: path P in G_2 connecting placements of u and v s.t. $\delta_{wF}(e, P) \leq \varepsilon$

Vertex placement of $v \in V(G_1)$: connected component of $G_2 \cap B_{\varepsilon}(v)$

(Weak) edge placement of $e = \{u, v\} \in E(G_1)$: path P in G_2 connecting placements of u and v s.t. $\delta_{wF}(e, P) \leq \varepsilon$

(Weak) edge placement of $e = \{u, v\} \in E(G_1)$: path P in G_2 connecting placements of u and v s.t. $\delta_{wF}(e, P) \leq \varepsilon$

Vertex placement of $v \in V(G_1)$: connected component of $G_2 \cap B_{\varepsilon}(v)$

(Weak) edge placement of $e = \{u, v\} \in E(G_1)$: path P in G_2 connecting placements of u and v s.t. $\delta_{wF}(e, P) \leq \varepsilon$

(Weak) placement of G_1 : graph mapping that maps each edge to a (weak) edge placement

Vertex placement of $v \in V(G_1)$: connected component of $G_2 \cap B_{\varepsilon}(v)$

(Weak) edge placement of $e = \{u, v\} \in E(G_1)$: path P in G_2 connecting placements of u and v s.t. $\delta_{wF}(e, P) \leq \varepsilon$

(Weak) placement of G_1 : graph mapping that maps each edge to a (weak) edge placement

Valid vertex placement: Is connected to a placement of each adjacent vertex through an edge placement

Vertex placement of $v \in V(G_1)$: connected component of $G_2 \cap B_{\varepsilon}(v)$

(Weak) edge placement of $e = \{u, v\} \in E(G_1)$: path P in G_2 connecting placements of u and v s.t. $\delta_{wF}(e, P) \leq \varepsilon$

(Weak) placement of G_1 : graph mapping that maps each edge to a (weak) edge placement

Valid vertex placement: Is connected to a placement of each adjacent vertex through an edge placement

General decision algorithm:

- 1. Compute vertex placements.
- 2. Compute reachability information.
- 3. Delete invalid placements.
- 4. Decide whether a placement of G_1 exists.

Vertex placement of $v \in V(G_1)$: connected component of $G_2 \cap B_{\varepsilon}(v)$

(Weak) edge placement of $e = \{u, v\} \in E(G_1)$: path P in G_2 connecting placements of u and v s.t. $\delta_{wF}(e, P) \leq \varepsilon$

(Weak) placement of G_1 : graph mapping that maps each edge to a (weak) edge placement

Valid vertex placement: Is connected to a placement of each adjacent vertex through an edge placement

General decision algorithm:

- 1. Compute vertex placements.
- 2. Compute reachability information.
- 3. Delete invalid placements.
- 4. Decide whether a placement of G_1 exists. NP-complete in general

quadratic time

Vertex placement of $v \in V(G_1)$: connected component of $G_2 \cap B_{\varepsilon}(v)$

(Weak) edge placement of $e = \{u, v\} \in E(G_1)$: path P in G_2 connecting placements of u and v s.t. $\delta_{wF}(e, P) \leq \varepsilon$

(Weak) placement of G_1 : graph mapping that maps each edge to a (weak) edge placement

Valid vertex placement: Is connected to a placement of each adjacent vertex through an edge placement

General decision algorithm:

- 1. Compute vertex placements.
- 2. Compute reachability information.
- 3. Delete invalid placements.
- 4. Decide whether a placement of G_1 exists.

Theorem: Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .

Theorem: Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

- **Theorem:** Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .
- Sketch of the proof by reduction from PLANAR 3COL:
- Let G = (V, E) be the (planar) input graph
- 1. Construct a crossing-free embedding of ${\cal G}$

Theorem: Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

2. Choose ε s.t. all ε -balls and tubes are separated

Theorem: Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

3. Construct G_c with • vertices $w_{u,i}$ for $u \in V$, $i \in [3]$ • edges $\{w_{u,i}, w_{v,j}\}$ for $\{u, v\} \in E$, $i \neq j$

Theorem: Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

4. Immerse G_c s.t. $w_{u,i}$ lies in $B_{\varepsilon}(u)$

Theorem: Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

Idea: Vertex placements \leftrightarrow colors

Theorem: Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

 $\tilde{1}$. Construct a crossing-free embedding of G and insert a vertex \widehat{uv} in the middle of each edge $\{u, v\} \rightarrow G_p$

Theorem: Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

 \rightarrow Each $\{u, v\}$ must be placed through some $\{w_{u,i}, w_{v,j}\}$

Theorem: Deciding whether $\vec{\delta}_{wG}(G_1, G_2) \leq \varepsilon$ is NP-complete even if G_1 is plane and G_2 is immersed in \mathbb{R}^2 .

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

 \rightarrow Each $\{u, v\}$ must be placed through some $\{w_{u,i}, w_{v,j}\}$

 \rightarrow Consistent graph mapping \leftrightarrow consistent 3-coloring

Corollary: The weak graph distance is NP-hard to approximate within any constant ratio $c \ge 1$ even if G_1 is plane, G_2 is immersed in \mathbb{R}^2 .

Corollary: The weak graph distance is NP-hard to approximate within any constant ratio $c \ge 1$ even if G_1 is plane, G_2 is immersed in \mathbb{R}^2 .

Proof idea: Immerse G_c within $\frac{\varepsilon}{c}$ -balls instead

Corollary: The weak graph distance is NP-hard to approximate within any constant ratio $c \ge 1$ even if G_1 is plane, G_2 is immersed in \mathbb{R}^2 .

Proof idea: Immerse G_c within $\frac{\varepsilon}{c}$ -balls instead

Positive case: upper bound becomes $\vec{\delta}_{wG}(G_p, G_c) \leq \frac{\varepsilon}{c}$

Corollary: The weak graph distance is NP-hard to approximate within any constant ratio $c \ge 1$ even if G_1 is plane, G_2 is immersed in \mathbb{R}^2 .

Proof idea:

Immerse G_c within $\frac{\varepsilon}{c}$ -balls instead

Positive case: upper bound becomes $\vec{\delta}_{wG}(G_p, G_c) \leq \frac{\varepsilon}{c}$ Negative case: Lower bound of ε remains intact

Hardness of the embedded case in \mathbb{R}^d , $d \geq 3$

Theorem: The weak graph distance is NP-hard to approximate within any constant ratio $c \ge 1$ if G_1 , G_2 are embedded in \mathbb{R}^d for any $d \ge 3$.

Hardness of the embedded case in \mathbb{R}^d , $d \geq 3$

Theorem: The weak graph distance is NP-hard to approximate within any constant ratio $c \ge 1$ if G_1 , G_2 are embedded in \mathbb{R}^d for any $d \ge 3$.

Proof idea:

(Up to details,) embed on the 3-dim moment curve instead

WGD has nice properties, but is NP-complete even in the 2-dimensional case

WGD has nice properties, but is NP-complete even in the 2-dimensional case \rightarrow currently unknown whether WGD is FPT when parameterized in #crossings

WGD has nice properties, but is NP-complete even in the 2-dimensional case \rightarrow currently unknown whether WGD is FPT when parameterized in #crossings Now: crossing-rigid weak graph distances

RUB

Intuition: map crossings onto crossings

Intuition: map crossings onto crossings

(Informal) Definition: A graph mapping that maps each edge with n crossings to a path containing

- up to n crossings is *loosely crossing-rigid*
- $\hfill \ensuremath{\bullet}$ at least one* and at most n crossings is crossing-rigid
- exactly n crossings is strictly crossing-rigid

Intuition: map crossings onto crossings

(Informal) Definition: A graph mapping that maps each edge with n crossings to a path containing

- up to n crossings is *loosely crossing-rigid*
- $\hfill \ensuremath{\bullet}$ at least one $\hfill \ensuremath{\bullet}$ and at most n crossings is crossing-rigid
- exactly n crossings is strictly crossing-rigid

The directed crossing-rigid weak graph distance is defined as

Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD $\leq \varepsilon$

Decision algorithm for the existence of crossing-rigid placements RUR

Intuition: assign crossings and check whether the fixed assignment allows WGD $\leq \varepsilon$

- 1. Compute crossings.
- 2. Compute vertex placements.
- 3. for each valid* assignment of crossings of G_2 to crossings of G_1 :
- 4. Compute reachability information (under assignment).
- 5. Delete invalid placements.
- 6. **if** there exists a placement for G_1 , **return** true.
- 7. return false.

Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD $\leq \varepsilon$

1	. Compute crossings.	
2	. Compute vertex placements.	polynomial time
3	. for each valid* assignment of crossings of G_2 to crossings of G_1 :	FPT-like bound
4	. Compute reachability information (under assignment).	polynomial time
5	. Delete invalid placements.	polynomiai time
6	. if there exists a placement for G_1 , return true.	Conj.: linear*
7	. return false.	polynomial time

Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD $\leq \varepsilon$

1.	Compute crossings.	
2.	Compute vertex placements.	polynomial time
3.	for each valid* assignment of crossings of G_2 to crossings of G_1 :	FPT-like bound
4.	Compute reachability information (under assignment).	polynomial time
5.	Delete invalid placements.	polynomiai time
6.	if there exists a placement for G_1 , return true.	Conj.: linear*
7.	return false.	polynomial time

Caveat: since placements are no longer compact, there might be no ε -placement but still $\delta_{crwG}^{(l)/(r)}(G_1, G_2) = \varepsilon$

Outlook

We have seen:

- $\vec{\delta}_{wG}(G_1, G_2)$ is NP-hard to approximate up to c even if G_1 is plane
- $\vec{\delta}_{wG}(G_1, G_2)$ is NP-hard to approximate for G_1, G_2 embedded in \mathbb{R}^d , $d \geq 3$
- The CRWGDs could be good alternatives for graphs immersed in \mathbb{R}^2

Outlook

RUB

We have seen:

- $\vec{\delta}_{wG}(G_1, G_2)$ is NP-hard to approximate up to c even if G_1 is plane
- $\vec{\delta}_{wG}(G_1, G_2)$ is NP-hard to approximate for G_1, G_2 embedded in \mathbb{R}^d , $d \geq 3$
- ${}^{\bullet}$ The CRWGDs could be good alternatives for graphs immersed in \mathbb{R}^2

Natural next steps:

- verify conjecture on the tractability of crossing-rigid weak graph distances
- (metric) properties of crossing-rigid distances
- research the parameterized complexity of the unmodified WGD and the complexity of our measures without regularity conditions
- experimental evaluations of the different distance measures

Outlook

We have seen:

- $\vec{\delta}_{wG}(G_1, G_2)$ is NP-hard to approximate up to c even if G_1 is plane
- $\vec{\delta}_{wG}(G_1, G_2)$ is NP-hard to approximate for G_1, G_2 embedded in \mathbb{R}^d , $d \geq 3$
- The CRWGDs could be good alternatives for graphs immersed in \mathbb{R}^2

Natural next steps:

- verify conjecture on the tractability of crossing-rigid weak graph distances
- (metric) properties of crossing-rigid distances
- research the parameterized complexity of the unmodified WGD and the complexity of our measures without regularity conditions
- experimental evaluations of the different distance measures

Thank you