Hardness and modifications of the weak graph distance

13.03.2024

Maike Buchin, Wolf Kißler

Distance measures for immersed graphs
Representations of geometric networks:

[^0]
Distance measures for immersed graphs

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^{2}

[^1]
Distance measures for immersed graphs

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^{2}

We consider non-degenerate straight-line immersions

[^2]Distance measures for immersed graphs
Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^{2}

We consider non-degenerate straight-line immersions

Distance measures for immersed graphs

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^{2}

We consider non-degenerate straight-line immersions

[^3]
Distance measures for immersed graphs

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^{2}

We consider non-degenerate straight-line immersions

Given two representations of networks: how to compare them?

Distance measures for immersed graphs

Representations of geometric networks:

- Embedded graphs: Drawings without crossings
- Immersed graphs: Drawings that may contain crossings
- Plane graphs: Graphs embedded in \mathbb{R}^{2}

We consider non-degenerate straight-line immersions

Given two representations of networks: how to compare them?

- Many approaches: edit distances, Fréchet distance, traversal based distances, LPH based distances,...
- Here: Weak Graph Distance due to Akitaya et al.

\rightarrow Akitaya et al.: Distance measures for embedded graphs, CGTA 95, 2021.

Table of Contents

1. Introduction
2. Hardness of deciding the weak graph distance
3. Crossing-rigid weak graph distances

Recap: Weak Fréchet distance

Let $s_{1}, s_{2}:[0,1] \rightarrow \mathbb{R}^{d}$ be curves. Their weak Fréchet distance is defined by

$$
\delta_{w F}\left(s_{1}, s_{2}\right)=\inf _{\alpha, \beta:[0,1] \rightarrow[0,1]} \max _{t \in[0,1]} d\left(s_{1}(\alpha(t)), s_{2}(\beta(t))\right.
$$

continuous surjection

Recap: Weak Fréchet distance
Let $s_{1}, s_{2}:[0,1] \rightarrow \mathbb{R}^{d}$ be curves. Their weak Fréchet distance is defined by

$$
\delta_{w F}\left(s_{1}, s_{2}\right)=\inf _{\alpha, \beta:[0,1] \rightarrow[0,1]} \max _{t \in[0,1]} d\left(s_{1}(\alpha(t)), s_{2}(\beta(t))\right.
$$

continuous surjection
Intuition: Person and dog:
Weak Fréchet distance equals shortest leash length when both are allowed to backtrack along their trajectory

Recap: Weak Fréchet distance
Let $s_{1}, s_{2}:[0,1] \rightarrow \mathbb{R}^{d}$ be curves. Their weak Fréchet distance is defined by

$$
\delta_{w F}\left(s_{1}, s_{2}\right)=\inf _{\alpha, \beta:[0,1] \rightarrow[0,1]} \max _{t \in[0,1]} d\left(s_{1}(\alpha(t)), s_{2}(\beta(t))\right.
$$

continuous surjection
Intuition: Person and dog:
Weak Fréchet distance equals shortest leash length when both are allowed to backtrack along their trajectory

Recap: Weak Fréchet distance
Let $s_{1}, s_{2}:[0,1] \rightarrow \mathbb{R}^{d}$ be curves. Their weak Fréchet distance is defined by

$$
\delta_{w F}\left(s_{1}, s_{2}\right)=\inf _{\alpha, \beta:[0,1] \rightarrow[0,1]} \max _{t \in[0,1]} d\left(s_{1}(\alpha(t)), s_{2}(\beta(t))\right.
$$

continuous surjection
Intuition: Person and dog:
Weak Fréchet distance equals shortest leash length when both are allowed to backtrack along their trajectory

Recap: Weak Fréchet distance
Let $s_{1}, s_{2}:[0,1] \rightarrow \mathbb{R}^{d}$ be curves. Their weak Fréchet distance is defined by

$$
\delta_{w F}\left(s_{1}, s_{2}\right)=\inf _{\alpha, \beta:[0,1] \rightarrow[0,1]} \max _{t \in[0,1]} d\left(s_{1}(\alpha(t)), s_{2}(\beta(t))\right.
$$

continuous surjection
Intuition: Person and dog:
Weak Fréchet distance equals shortest leash length when both are allowed to backtrack along their trajectory

Recap: Weak Fréchet distance
Let $s_{1}, s_{2}:[0,1] \rightarrow \mathbb{R}^{d}$ be curves. Their weak Fréchet distance is defined by

$$
\delta_{w F}\left(s_{1}, s_{2}\right)=\inf _{\alpha, \beta:[0,1] \rightarrow[0,1]} \max _{t \in[0,1]} d\left(s_{1}(\alpha(t)), s_{2}(\beta(t))\right.
$$

continuous surjection
Intuition: Person and dog:
Weak Fréchet distance equals shortest leash length when both are allowed to backtrack along their trajectory

Recap: Weak Fréchet distance
Let $s_{1}, s_{2}:[0,1] \rightarrow \mathbb{R}^{d}$ be curves. Their weak Fréchet distance is defined by

$$
\delta_{w F}\left(s_{1}, s_{2}\right)=\inf _{\alpha, \beta:[0,1] \rightarrow[0,1]} \max _{t \in[0,1]} d\left(s_{1}(\alpha(t)), s_{2}(\beta(t))\right.
$$

continuous surjection
Intuition: Person and dog:
Weak Fréchet distance equals shortest leash length when both are allowed to backtrack along their trajectory

Recap: Weak Fréchet distance
Let $s_{1}, s_{2}:[0,1] \rightarrow \mathbb{R}^{d}$ be curves. Their weak Fréchet distance is defined by

$$
\delta_{w F}\left(s_{1}, s_{2}\right)=\inf _{\alpha, \beta:[0,1] \rightarrow[0,1]} \max _{t \in[0,1]} d\left(s_{1}(\alpha(t)), s_{2}(\beta(t))\right.
$$

continuous surjection
Intuition: Person and dog:
Weak Fréchet distance equals shortest leash length when both are allowed to backtrack along their trajectory

Weak graph distance

Let G_{1}, G_{2} be immersed graphs. A graph mapping $s: G_{1} \rightarrow G_{2}$ maps

- each vertex v of G_{1} to a point $s(v)$ on an edge of G_{2}
- each edge $\{u, v\}$ of G_{1} to a simple path from $s(u)$ to $s(v)$ in G_{2}

Weak graph distance

Let G_{1}, G_{2} be immersed graphs. A graph mapping $s: G_{1} \rightarrow G_{2}$ maps

- each vertex v of G_{1} to a point $s(v)$ on an edge of G_{2}
- each edge $\{u, v\}$ of G_{1} to a simple path from $s(u)$ to $s(v)$ in G_{2}

Weak graph distance

Let G_{1}, G_{2} be immersed graphs. A graph mapping $s: G_{1} \rightarrow G_{2}$ maps

- each vertex v of G_{1} to a point $s(v)$ on an edge of G_{2}
- each edge $\{u, v\}$ of G_{1} to a simple path from $s(u)$ to $s(v)$ in G_{2}

Weak graph distance

Let G_{1}, G_{2} be immersed graphs. A graph mapping $s: G_{1} \rightarrow G_{2}$ maps

- each vertex v of G_{1} to a point $s(v)$ on an edge of G_{2}
- each edge $\{u, v\}$ of G_{1} to a simple path from $s(u)$ to $s(v)$ in G_{2}

Weak graph distance

Let G_{1}, G_{2} be immersed graphs. A graph mapping $s: G_{1} \rightarrow G_{2}$ maps

- each vertex v of G_{1} to a point $s(v)$ on an edge of G_{2}
- each edge $\{u, v\}$ of G_{1} to a simple path from $s(u)$ to $s(v)$ in G_{2}

Weak graph distance

Let G_{1}, G_{2} be immersed graphs. A graph mapping $s: G_{1} \rightarrow G_{2}$ maps

- each vertex v of G_{1} to a point $s(v)$ on an edge of G_{2}
- each edge $\{u, v\}$ of G_{1} to a simple path from $s(u)$ to $s(v)$ in G_{2}

The directed weak graph distance from G_{1} to G_{2} is defined as

$$
\begin{gathered}
\vec{\delta}_{w G}=\min _{s: G_{1} \rightarrow G_{2}} \max _{e \in E\left(G_{1}\right)} \delta_{w F}(e, s(e)) \\
\text { graph mapping } \\
\text { interpreted as curves }
\end{gathered}
$$

Undirected version: $\delta_{w G}\left(G_{1}, G_{2}\right)=\max \left\{\vec{\delta}_{w G}\left(G_{1}, G_{2}\right), \vec{\delta}_{w G}\left(G_{2}, G_{1}\right)\right\}$

General decision algorithm due to Akitaya et al.
Vertex placement of $v \in V\left(G_{1}\right)$: connected component of $G_{2} \cap B_{\varepsilon}(v)$

General decision algorithm due to Akitaya et al.
Vertex placement of $v \in V\left(G_{1}\right)$: connected component of $G_{2} \cap B_{\varepsilon}(v)$
(Weak) edge placement of $e=\{u, v\} \in E\left(G_{1}\right)$: path P in G_{2} connecting placements of u and v s.t. $\delta_{w F}(e, P) \leq \varepsilon$

General decision algorithm due to Akitaya et al.
Vertex placement of $v \in V\left(G_{1}\right)$: connected component of $G_{2} \cap B_{\varepsilon}(v)$
(Weak) edge placement of $e=\{u, v\} \in E\left(G_{1}\right)$: path P in G_{2} connecting placements of u and v s.t. $\delta_{w F}(e, P) \leq \varepsilon$

General decision algorithm due to Akitaya et al.
Vertex placement of $v \in V\left(G_{1}\right)$: connected component of $G_{2} \cap B_{\varepsilon}(v)$
(Weak) edge placement of $e=\{u, v\} \in E\left(G_{1}\right)$: path P in G_{2} connecting placements of u and v s.t. $\delta_{w F}(e, P) \leq \varepsilon$

General decision algorithm due to Akitaya et al.

Vertex placement of $v \in V\left(G_{1}\right)$: connected component of $G_{2} \cap B_{\varepsilon}(v)$
(Weak) edge placement of $e=\{u, v\} \in E\left(G_{1}\right)$: path P in G_{2} connecting placements of u and v s.t. $\delta_{w F}(e, P) \leq \varepsilon$
 (Weak) placement of G_{1} : graph mapping that maps each edge to a (weak) edge placement

Vertex placement of $v \in V\left(G_{1}\right)$: connected component of $G_{2} \cap B_{\varepsilon}(v)$
(Weak) edge placement of $e=\{u, v\} \in E\left(G_{1}\right)$: path P in G_{2} connecting placements of u and v s.t. $\delta_{w F}(e, P) \leq \varepsilon$
 (Weak) placement of G_{1} : graph mapping that maps each edge to a (weak) edge placement
Valid vertex placement: Is connected to a placement of each adjacent vertex through an edge placement

Vertex placement of $v \in V\left(G_{1}\right)$: connected component of $G_{2} \cap B_{\varepsilon}(v)$
(Weak) edge placement of $e=\{u, v\} \in E\left(G_{1}\right)$: path P in G_{2} connecting placements of u and v s.t. $\delta_{w F}(e, P) \leq \varepsilon$
 (Weak) placement of G_{1} : graph mapping that maps each edge to a (weak) edge placement
Valid vertex placement: Is connected to a placement of each adjacent vertex through an edge placement

General decision algorithm:

1. Compute vertex placements.
2. Compute reachability information.
3. Delete invalid placements.
4. Decide whether a placement of G_{1} exists.

Vertex placement of $v \in V\left(G_{1}\right)$: connected component of $G_{2} \cap B_{\varepsilon}(v)$
(Weak) edge placement of $e=\{u, v\} \in E\left(G_{1}\right)$: path P in G_{2} connecting placements of u and v s.t. $\delta_{w F}(e, P) \leq \varepsilon$
 (Weak) placement of G_{1} : graph mapping that maps each edge to a (weak) edge placement
Valid vertex placement: Is connected to a placement of each adjacent vertex through an edge placement

General decision algorithm:

1. Compute vertex placements.
2. Compute reachability information. quadratic time
3. Delete invalid placements.
4. Decide whether a placement of G_{1} exists. NP-complete in general

General decision algorithm due to Akitaya et al.
Vertex placement of $v \in V\left(G_{1}\right)$: connected component of $G_{2} \cap B_{\varepsilon}(v)$
(Weak) edge placement of $e=\{u, v\} \in E\left(G_{1}\right)$: path P in G_{2} connecting placements of u and v s.t. $\delta_{w F}(e, P) \leq \varepsilon$
 (Weak) placement of G_{1} : graph mapping that maps each edge to a (weak) edge placement
Valid vertex placement: Is connected to a placement of each adjacent vertex through an edge placement

General decision algorithm:

1. Compute vertex placements.
2. Compute reachability information.
3. Delete invalid placements.
4. Decide whether a placement of G_{1} exists.

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.
Sketch of the proof by reduction from Planar 3Col:
Let $G=(V, E)$ be the (planar) input graph

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.
Sketch of the proof by reduction from Planar 3Col:
Let $G=(V, E)$ be the (planar) input graph

1. Construct a crossing-free embedding of G

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.
Sketch of the proof by reduction from Planar 3Col:
Let $G=(V, E)$ be the (planar) input graph
2. Choose ε s.t. all ε-balls and tubes are separated

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.
Sketch of the proof by reduction from Planar 3Col:
Let $G=(V, E)$ be the (planar) input graph
3. Construct G_{c} with • vertices $w_{u, i}$ for $u \in V, i \in[3]$

- edges $\left\{w_{u, i}, w_{v, j}\right\}$ for $\{u, v\} \in E, i \neq j$

$w_{u, 3} \square$

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.
Sketch of the proof by reduction from Planar 3Col:
Let $G=(V, E)$ be the (planar) input graph
4. Immerse G_{c} s.t. $w_{u, i}$ lies in $B_{\varepsilon}(u)$

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.
Sketch of the proof by reduction from Planar 3Col:
Let $G=(V, E)$ be the (planar) input graph
Idea: Vertex placements \leftrightarrow colors

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.
Sketch of the proof by reduction from Planar 3Col:
Let $G=(V, E)$ be the (planar) input graph

1. Construct a crossing-free embedding of G and insert a vertex $\widehat{u v}$ in the middle of each edge $\{u, v\} \rightarrow G_{p}$

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.
Sketch of the proof by reduction from Planar 3Col:
Let $G=(V, E)$ be the (planar) input graph
\rightarrow Each $\{u, v\}$ must be placed through some $\left\{w_{u, i}, w_{v, j}\right\}$

Hardness of deciding $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ if G_{1} is plane
Theorem: Deciding whether $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right) \leq \varepsilon$ is NP-complete even if G_{1} is plane and G_{2} is immersed in \mathbb{R}^{2}.
Sketch of the proof by reduction from Planar 3Col:
Let $G=(V, E)$ be the (planar) input graph
\rightarrow Each $\{u, v\}$ must be placed through some $\left\{w_{u, i}, w_{v, j}\right\}$
\rightarrow Consistent graph mapping \leftrightarrow consistent 3 -coloring

Corollary: The weak graph distance is NP-hard to approximate within any constant ratio $c \geq 1$ even if G_{1} is plane, G_{2} is immersed in \mathbb{R}^{2}.

Hardness of approximating $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right)$ if G_{1} is plane
Corollary: The weak graph distance is NP-hard to approximate within any constant ratio $c \geq 1$ even if G_{1} is plane, G_{2} is immersed in \mathbb{R}^{2}.

Proof idea:
Immerse G_{c} within $\frac{\varepsilon}{c}$-balls instead

Hardness of approximating $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right)$ if G_{1} is plane
Corollary: The weak graph distance is NP-hard to approximate within any constant ratio $c \geq 1$ even if G_{1} is plane, G_{2} is immersed in \mathbb{R}^{2}.

Proof idea:
Immerse G_{c} within $\frac{\varepsilon}{c}$-balls instead
Positive case: upper bound becomes $\vec{\delta}_{w G}\left(G_{p}, G_{c}\right) \leq \frac{\varepsilon}{c}$

Hardness of approximating $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right)$ if G_{1} is plane
Corollary: The weak graph distance is NP-hard to approximate within any constant ratio $c \geq 1$ even if G_{1} is plane, G_{2} is immersed in \mathbb{R}^{2}.

Proof idea:

Immerse G_{c} within $\frac{\varepsilon}{c}$-balls instead
Positive case: upper bound becomes $\vec{\delta}_{w G}\left(G_{p}, G_{c}\right) \leq \frac{\varepsilon}{c}$
Negative case: Lower bound of ε remains intact

Theorem: The weak graph distance is NP-hard to approximate within any constant ratio $c \geq 1$ if G_{1}, G_{2} are embedded in \mathbb{R}^{d} for any $d \geq 3$.

Theorem: The weak graph distance is NP-hard to approximate within any constant ratio $c \geq 1$ if G_{1}, G_{2} are embedded in \mathbb{R}^{d} for any $d \geq 3$.

Proof idea:
(Up to details,) embed on the 3-dim moment curve instead

Crossing-rigid weak graph distances

WGD has nice properties, but is NP-complete even in the 2-dimensional case

Crossing-rigid weak graph distances

WGD has nice properties, but is NP-complete even in the 2-dimensional case
\rightarrow currently unknown whether WGD is FPT when parameterized in \#crossings

Crossing-rigid weak graph distances

WGD has nice properties, but is NP-complete even in the 2-dimensional case
\rightarrow currently unknown whether WGD is FPT when parameterized in \#crossings
Now: crossing-rigid weak graph distances

Crossing-rigid weak graph distances

Intuition: map crossings onto crossings

Crossing-rigid weak graph distances

Intuition: map crossings onto crossings
(Informal) Definition: A graph mapping that maps each edge with n crossings to a path containing

- up to n crossings is loosely crossing-rigid
- at least one* and at most n crossings is crossing-rigid
- exactly n crossings is strictly crossing-rigid

Crossing-rigid weak graph distances

Intuition: map crossings onto crossings
(Informal) Definition: A graph mapping that maps each edge with n crossings to a path containing

- up to n crossings is loosely crossing-rigid
- at least one* and at most n crossings is crossing-rigid
- exactly n crossings is strictly crossing-rigid

The directed crossing-rigid weak graph distance is defined as

$$
\vec{\delta}_{c r w G}\left(G_{1}, G_{2}\right)=\inf _{s: G_{1} \rightarrow G_{2}} \max _{e \in E} \delta_{w F}(e, s(e))
$$

$$
\text { crossing-rigid } \quad \text { interpreted as curves } \quad \vec{\delta}_{c r w G}^{s}\left(G_{1}, G_{2}\right)
$$

Analogous: $\vec{\delta}_{c r w G}^{l}, \vec{\delta}_{c r w G}^{s}$

Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD $\leq \varepsilon$

Decision algorithm for the existence of crossing-rigid placements R UB

Intuition: assign crossings and check whether the fixed assignment allows WGD $\leq \varepsilon$

1. Compute crossings.
2. Compute vertex placements.
3. for each valid* assignment of crossings of G_{2} to crossings of G_{1} :
4. Compute reachability information (under assignment).
5. Delete invalid placements.
6. if there exists a placement for G_{1}, return true.
7. return false.

Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD $\leq \varepsilon$

1. Compute crossings.
2. Compute vertex placements.
polynomial time
3. for each valid* assignment of crossings of G_{2} to crossings of G_{1} : FPT-like bound
4. Compute reachability information (under assignment).
5. Delete invalid placements.
6. if there exists a placement for G_{1}, return true.
7. return false. polynomial time Conj.: linear* polynomial time

Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD $\leq \varepsilon$

1. Compute crossings.
2. Compute vertex placements.
polynomial time
3. for each valid* assignment of crossings of G_{2} to crossings of G_{1} : FPT-like bound
4. Compute reachability information (under assignment).
5. Delete invalid placements.
6. if there exists a placement for G_{1}, return true.
7. return false. polynomial time Conj.: linear* polynomial time

Caveat: since placements are no longer compact, there might be no ε-placement but still $\delta_{c r w G}^{(l) /(r)}\left(G_{1}, G_{2}\right)=\varepsilon$

Outlook

We have seen:

- $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right)$ is NP-hard to approximate up to c even if G_{1} is plane
- $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right)$ is NP-hard to approximate for G_{1}, G_{2} embedded in $\mathbb{R}^{d}, d \geq 3$
- The CRWGDs could be good alternatives for graphs immersed in \mathbb{R}^{2}

Outlook

We have seen:

- $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right)$ is NP-hard to approximate up to c even if G_{1} is plane
- $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right)$ is NP-hard to approximate for G_{1}, G_{2} embedded in $\mathbb{R}^{d}, d \geq 3$
- The CRWGDs could be good alternatives for graphs immersed in \mathbb{R}^{2}

Natural next steps:

- verify conjecture on the tractability of crossing-rigid weak graph distances
- (metric) properties of crossing-rigid distances
- research the parameterized complexity of the unmodified WGD and the complexity of our measures without regularity conditions
- experimental evaluations of the different distance measures

Outlook

We have seen:

- $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right)$ is NP-hard to approximate up to c even if G_{1} is plane
- $\vec{\delta}_{w G}\left(G_{1}, G_{2}\right)$ is NP-hard to approximate for G_{1}, G_{2} embedded in $\mathbb{R}^{d}, d \geq 3$
- The CRWGDs could be good alternatives for graphs immersed in \mathbb{R}^{2}

Natural next steps:

- verify conjecture on the tractability of crossing-rigid weak graph distances
- (metric) properties of crossing-rigid distances
- research the parameterized complexity of the unmodified WGD and the complexity of our measures without regularity conditions
- experimental evaluations of the different distance measures

Thank you

[^0]: Ruhr-Universität Bochum, Dezernat 5.I. 4 \& Dezernat 5.II. 3

[^1]: Ruhr-Universität Bochum, Dezernat 5.I. 4 \& Dezernat 5.II. 3

[^2]: Ruhr-Universität Bochum, Dezernat 5.I. 4 \& Dezernat 5.II. 3

[^3]: Ruhr-Universität Bochum, Dezernat 5.I. 4 \& Dezernat 5.II. 3

