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Distance measures for immersed graphs

Representations of geometric networks:
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Distance measures for immersed graphs

Representations of geometric networks:
® Embedded graphs: Drawings without crossings

® Immersed graphs: Drawings that may contain crossings

® Plane graphs: Graphs embedded in R? CAMPUSPLAN i RUB

e 3N [
%?"“ " ‘A

Iwaltsre Farkalize am
Randa des Camous|

g Varsuchshallen
AkaFﬁ - AN
ol Warkstitton

(micht Btfantlich]

SPEAS-IYEPLIL-RRly

Kunst- =
O commiungen

5113 (S0 - Abtualisierung:
i
i
&

%’

Gezernat 51.4 {CAD

|a.um-n-us- ‘ A s
A : . i
m - Audimax i | E
(]

2022 Rubr-Universitat Sochum - Inh:

@
= 3 ) =
T L i = . Isatopenlabar 4
Tennisplitze H H RUBION _g
(gesperr) =
Zanrale En -
Sportplatz 12 et e P i g
o 25 50 100m il Beckmanns Hof (182} Eotanischer und Hotanischer and
| — — e Latténial Chinesischer Govter M Chinesischer Garten =
—— Gy H omein rE g B Univer ZKF Zentrum fur Alinische Farschung
TR Treppe U Universitatsoerwstiung Anmeskungen:
e 0 Infa-Tafel Ei i, vC Wita Camguss. [EN gnbiitcde der Getiaudersihen
e VZ  versnstsltungsrentrum e
Strafia unter dem Campus mteene information FNO  Farum hord-Ost i
o o m Fraverparkplats HZIO  Horssal <e<mu|||U=l ZEMOS Zentrum fir molkulare
Griinflacha m AuBenaufap e Spokrashopia um
——— Mauer B Eesuchergarkplats ITs
-Bahn-Haltestelle ZGH
—  Schuenhke |Zulshrt beschetinkt] U SHE i
s " i r "
—  Scheanke (Zufshrt gesgerrt) @ swwiescle B enwstes parknans (etgaragel - g SR N

Ruhr-Universitat Bochum, Dezernat 5.1.4 & Dezernat 5.11.3



Distance measures for immersed graphs

Representations of geometric networks:

® Embedded graphs: Drawings without crossings

® Immersed graphs: Drawings that may contain crossings

® Plane graphs: Graphs embedded in R?

We consider non-degenerate straight-line immersions
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Distance measures for immersed graphs

Representations of geometric networks:

® Embedded graphs: Drawings without crossings

® Immersed graphs: Drawings that may contain crossings

® Plane graphs: Graphs embedded in R?

We consider non-degenerate straight-line immersions
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Distance measures for immersed graphs

Representations of geometric networks:

® Embedded graphs: Drawings without crossings

® Immersed graphs: Drawings that may contain crossings

® Plane graphs: Graphs embedded in R?

We consider non-degenerate straight-line immersions
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Distance measures for immersed graphs

Representations of geometric networks:
® Embedded graphs: Drawings without crossings

® Immersed graphs: Drawings that may contain crossings
® Plane graphs: Graphs embedded in R?

We consider non-degenerate straight-line immersions

Given two representations of networks: how to compare them?

RUB

[ Lo




Distance measures for immersed graphs RUB

Representations of geometric networks: \ /

® Embedded graphs: Drawings without crossings

® Immersed graphs: Drawings that may contain crossings

® Plane graphs: Graphs embedded in R? t_‘ [

We consider non-degenerate straight-line immersions

Given two representations of networks: how to compare them?

® Many approaches: edit distances, Fréchet distance,
traversal based distances, LPH based distances,...

1
|

® Here: Weak Graph Distance due to Akitaya et al. . I

— Akitaya et al.: Distance measures for embedded graphs, CGTA 95, 2021.



Table of Contents RUB

1. Introduction
2. Hardness of deciding the weak graph distance

3. Crossing-rigid weak graph distances



Recap: Weak Fréchet distance RUB

Let s, 59:[0,1] — RY be curves. Their weak Fréchet distance is defined by

5wF(517 82) — iﬂfa,ﬁ:[o,1]—>[o,1] maXte(o,1] d(81(04(?5)), 82(5(75))

continuous surjection
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Weak graph distance RUB
Let G1, G2 be immersed graphs. A graph mapping s: G1 — G2 maps

® each vertex v of (G; to a point s(v) on an edge of G5

® each edge {u,v} of G; to a simple path from s(u) to s(v) in G5
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Weak graph distance

Let G1, G2 be immersed graphs. A graph mapping s: G1 — G2 maps
® each vertex v of (G; to a point s(v) on an edge of G5

® each edge {u,v} of G; to a simple path from s(u) to s(v) in G5

The directed weak graph distance from G1 to G is defined as

OwG = mins:G1—>G2 MaXec E(Gy) 5wF(67 5(6))
graph mapping interpreted as curves

Undirected version: §,a(G1,G2) = maX{ng(Gla Go), ng(G27 G1)}

RUB
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General decision algorithm due to Akitaya et al. RUB

Vertex placement of v € V((G1): connected component of
GQ M Bg (?))

(Weak) edge placement of e = {u,v} € FE(G1): path P in
GG connecting placements of u and v s.t. d,p(e, P) <e€

(Weak) placement of GG1: graph mapping that maps each
edge to a (weak) edge placement

Valid vertex placement: |Is connected to a placement
of each adjacent vertex through an edge placement

General decision algorithm:

1. Compute vertex placements.

2. Compute reachability information. quadratic time

3. Delete invalid placements.

4. Decide whether a placement of G; exists. NP-complete in general



General decision algorithm due to Akitaya et al.

Vertex placement of v € V((G1): connected component of

GQ M Bg (U)

(Weak) edge placement of e = {u,v} € FE(G1): path P in

GG connecting placements of u and v s.t. d,p(e, P) <e€

(Weak) placement of GG1: graph mapping that maps each

edge to a (weak) edge placement

Valid vertex placement: |Is connected to a placement
of each adjacent vertex through an edge placement

General decision algorithm:

1. Compute vertex placements.

2. Compute reachability information.

3. Delete invalid placements.

4. Decide whether a placement of (G exists.
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Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.



Hardness of deciding 5@0@(@1» G2) < e if Gy is plane RUB

Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph



Hardness of deciding 5@0@(@1» G2) < e if Gy is plane RUB

Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

1. Construct a crossing-free embedding of G



Hardness of deciding 5@0@(@1» G2) < e if Gy is plane RUB

Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

2. Choose ¢ s.t. all e-balls and tubes are separated

N 4
/ o




Hardness of deciding 5@0@(@1, G2) < e if Gy is plane RUB

Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.

Sketch of the proof by reduction from PLANAR 3COL:
Let G = (V, E) be the (planar) input graph

3. Construct G with ® vertices w, ; for u € V, i € [3]
® edges {wy,i, wy,;} for {u,v} € E, i 7 j

=] | W0y 3
Wy, 2 _ —_ Wy,2
D o _ ==X




Hardness of deciding 5@0@(@1, G2) < e if Gy is plane RUB

Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.

Sketch of the proof by reduction from PLANAR 3COL:
Let G = (V, E) be the (planar) input graph

4. Immerse G s.t. w,; lies in Be(u)




Hardness of deciding 5@0@(@1, G2) < e if Gy is plane RUB

Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.

Sketch of the proof by reduction from PLANAR 3COL:

Let G = (V, E) be the (planar) input graph

|ldea: Vertex placements <> colors




Hardness of deciding 5@0@(@1, G2) < e if Gy is plane RUB

Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.

Sketch of the proof by reduction from PLANAR 3COL:
Let G = (V, E) be the (planar) input graph

1. Construct a crossing-free embedding of G and insert a vertex uv in
the middle of each edge {u,v} — G,

N -
// 0 \\




Hardness of deciding 5@0@(@1, G2) < e if Gy is plane RUB

Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.

Sketch of the proof by reduction from PLANAR 3COL:
Let G = (V, E) be the (planar) input graph

— Each {u,v} must be placed through some {w,_;, w, ; }

N
/ N\

/ 0 \
\ /
\ /




Hardness of deciding 5@0@(@1, G2) < e if Gy is plane RUB

Theorem: Deciding whether 8,,c(G1, G2) < ¢ is NP-complete even if
(G is plane and G5 is immersed in R?.

Sketch of the proof by reduction from PLANAR 3COL:
Let G = (V, E) be the (planar) input graph

— Each {u,v} must be placed through some {w,_;, w, ; }
— Consistent graph mapping <> consistent 3-coloring

N
/ N\

/ IO \
\ /
\ /




Hardness of approximating gwg(Gh Gy) if Gy is plane RUB

Corollary: The weak graph distance is NP-hard to approximate within
any constant ratio ¢ > 1 even if G1 is plane, G5 is immersed in R2.
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Proof idea:
Immerse . within =-balls instead

e r i a i s aaa s s aaaa s s s a st a st a et aaaaaa i dleammsrd it a st a st deeananrtt



Hardness of approximating ng(Gh Gy) if Gy is plane RUB

Corollary: The weak graph distance is NP-hard to approximate within
any constant ratio ¢ > 1 even if G1 is plane, G5 is immersed in R2.

Proof idea:
mmerse G within =-balls instead

Positive case: upper bound becomes 6,¢(Gp, Ge) < £
................................................ e
- T § — ~
R e UV
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Hardness of approximating ng(Gh Gy) if Gy is plane RUB

Corollary: The weak graph distance is NP-hard to approximate within
any constant ratio ¢ > 1 even if G1 is plane, G5 is immersed in R2.

Proof idea:
mmerse G within =-balls instead

Positive case: upper bound becomes 6.,¢(Gp, G.) < £
Negative case: Lower bound of € remains intact
................................................ g
r;: D E —~
“hoie UV -

e r i a i s aaa s s aaaa s s s a st a st a et aaaaaa i dleammsrd it a st a st deeananrtt



Hardness of the embedded case in R, d > 3 RUB

Theorem: The weak graph distance is NP-hard to approximate within any constant
ratio ¢ > 1 if G1, G5 are embedded in RY for any d > 3.



Hardness of the embedded case in R, d > 3 RUB

Theorem: The weak graph distance is NP-hard to approximate within any constant
ratio ¢ > 1 if G1, G5 are embedded in RY for any d > 3.

Proof idea:
(Up to details,) embed on the 3-dim moment curve instead

!
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WGD has nice properties, but is NP-complete even in the 2-dimensional case
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Crossing-rigid weak graph distances RUB

WGD has nice properties, but is NP-complete even in the 2-dimensional case
— currently unknown whether WGD is FPT when parameterized in #crossings
Now: crossing-rigid weak graph distances
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Crossing-rigid weak graph distances RUB

Intuition: map crossings onto crossings

(Informal) Definition: A graph mapping that maps each
edge with n crossings to a path containing
® up to n crossings iIs loosely crossing-rigid
® at least one™ and at most n crossings is crossing-rigid
® exactly n crossings is strictly crossing-rigid

| =




Crossing-rigid weak graph distances RUB

Intuition: map crossings onto crossings

(Informal) Definition: A graph mapping that maps each o
edge with n crossings to a path containing
® up to n crossings iIs loosely crossing-rigid
® at least one™ and at most n crossings is crossing-rigid
® exactly n crossings is strictly crossing-rigid

| =

The directed crossing-rigid weak graph distance is defined as

—

5crwG(G17 GQ) — infs:G1—>G2 maXeecE 5wF(67 8(6))

crossing-rigid interpreted as curves erwa (G1, G2)
.Sl S "o o1-e
Analogous. 5crwG1 Cfr'wG gcrwG(Gl’ G2) _ g‘lc,r”wG<G1, G2) .__.
C— ®
o= o
@t o ®
© ®
o o
O==0
=0




Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD < ¢



Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD < ¢

. Compute crossings.

. Compute vertex placements.

. for each valid* assignment of crossings of (G5 to crossings of Gy :
Compute reachability information (under assignment).

Delete invalid placements.

if there exists a placement for G, return true.

. return false.

~N OO WN



Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD < ¢

. Compute crossings.
. Compute vertex placements.
. for each valid* assignment of crossings of G5 to crossings of G1: FPT-like bound

; polynomial time
3

4.  Compute reachability information (under assignment).

5

6

{

. . olynomial time
Delete invalid placements. POLY

if there exists a placement for G, return true. Conj.: linear*
. return false. polynomial time



Decision algorithm for the existence of crossing-rigid placements RUB

Intuition: assign crossings and check whether the fixed assignment allows WGD < ¢

1. Compute crossings. | |
2. Compute vertex placements. polynomial Lime
3. for each valid* assignment of crossings of (G5 to crossings of G1: FPT-like bound
4.  Compute reachability information (under assignment). L

. . polynomial time
5. Delete invalid placements.
6. if there exists a placement for G1, return true. Conj.: linear*
7. return false. polynomial time

Caveat: since placements are no longer compact, there might be no e-placement but
still /UGy, Ge) = ¢

crwG



Outlook RUB

We have seen:
° 5wg(G1, (G2) is NP-hard to approximate up to c even if G; is plane

° 5wg(G1, () is NP-hard to approximate for G, G5 embedded in R%, d > 3
® The CRWGDs could be good alternatives for graphs immersed in R?
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® verify conjecture on the tractability of crossing-rigid weak graph distances
® (metric) properties of crossing-rigid distances

® research the parameterized complexity of the unmodified WGD
and the complexity of our measures without regularity conditions

® experimental evaluations of the different distance measures
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We have seen:
° 5wg(G1, (G2) is NP-hard to approximate up to c even if G; is plane

° 5wg(G1, () is NP-hard to approximate for G, G5 embedded in R%, d > 3
® The CRWGDs could be good alternatives for graphs immersed in R?

Natural next steps:
® verify conjecture on the tractability of crossing-rigid weak graph distances

® (metric) properties of crossing-rigid distances

® research the parameterized complexity of the unmodified WGD
and the complexity of our measures without regularity conditions

® experimental evaluations of the different distance measures

Thank you



