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Distance measures for immersed graphs

We consider non-degenerate straight-line immersions

Representations of geometric networks:

• Embedded graphs: Drawings without crossings

• Immersed graphs: Drawings that may contain crossings

• Plane graphs: Graphs embedded in R2

Given two representations of networks: how to compare them?

• Many approaches: edit distances, Fréchet distance,
traversal based distances, LPH based distances,...

• Here: Weak Graph Distance due to Akitaya et al.

→ Akitaya et al.: Distance measures for embedded graphs, CGTA 95, 2021.
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• each edge {u, v} of G1 to a simple path from s(u) to s(v) in G2



Weak graph distance

Let G1, G2 be immersed graphs. A graph mapping s:G1 → G2 maps

• each vertex v of G1 to a point s(v) on an edge of G2

• each edge {u, v} of G1 to a simple path from s(u) to s(v) in G2

u

v

w



Weak graph distance

Let G1, G2 be immersed graphs. A graph mapping s:G1 → G2 maps

• each vertex v of G1 to a point s(v) on an edge of G2

• each edge {u, v} of G1 to a simple path from s(u) to s(v) in G2

u

v

w

s(u)

s(v)

s(w)



Weak graph distance

Let G1, G2 be immersed graphs. A graph mapping s:G1 → G2 maps

• each vertex v of G1 to a point s(v) on an edge of G2

• each edge {u, v} of G1 to a simple path from s(u) to s(v) in G2

u

v

w

s(u)

s(v)

s(w)

s(e1)



Weak graph distance

Let G1, G2 be immersed graphs. A graph mapping s:G1 → G2 maps

• each vertex v of G1 to a point s(v) on an edge of G2

• each edge {u, v} of G1 to a simple path from s(u) to s(v) in G2

u

v

w

s(u)

s(v)

s(w)

s(e2)s(e1)



Weak graph distance

Let G1, G2 be immersed graphs. A graph mapping s:G1 → G2 maps

• each vertex v of G1 to a point s(v) on an edge of G2

• each edge {u, v} of G1 to a simple path from s(u) to s(v) in G2

The directed weak graph distance from G1 to G2 is defined as

δ⃗wG = mins:G1→G2 maxe∈E(G1) δwF (e, s(e))
graph mapping interpreted as curves

Undirected version: δwG(G1, G2) = max{δ⃗wG(G1, G2), δ⃗wG(G2, G1)}



General decision algorithm due to Akitaya et al.

Vertex placement of v ∈ V (G1): connected component of
G2 ∩Bε(v)



General decision algorithm due to Akitaya et al.

Vertex placement of v ∈ V (G1): connected component of
G2 ∩Bε(v)

(Weak) edge placement of e = {u, v} ∈ E(G1): path P in
G2 connecting placements of u and v s.t. δwF (e, P ) ≤ ε



General decision algorithm due to Akitaya et al.

Vertex placement of v ∈ V (G1): connected component of
G2 ∩Bε(v)

(Weak) edge placement of e = {u, v} ∈ E(G1): path P in
G2 connecting placements of u and v s.t. δwF (e, P ) ≤ ε



General decision algorithm due to Akitaya et al.

Vertex placement of v ∈ V (G1): connected component of
G2 ∩Bε(v)

(Weak) edge placement of e = {u, v} ∈ E(G1): path P in
G2 connecting placements of u and v s.t. δwF (e, P ) ≤ ε

no placement!



General decision algorithm due to Akitaya et al.

Vertex placement of v ∈ V (G1): connected component of
G2 ∩Bε(v)

(Weak) edge placement of e = {u, v} ∈ E(G1): path P in
G2 connecting placements of u and v s.t. δwF (e, P ) ≤ ε

(Weak) placement of G1: graph mapping that maps each
edge to a (weak) edge placement



General decision algorithm due to Akitaya et al.

Vertex placement of v ∈ V (G1): connected component of
G2 ∩Bε(v)

(Weak) edge placement of e = {u, v} ∈ E(G1): path P in
G2 connecting placements of u and v s.t. δwF (e, P ) ≤ ε

(Weak) placement of G1: graph mapping that maps each
edge to a (weak) edge placement

Valid vertex placement: Is connected to a placement
of each adjacent vertex through an edge placement



General decision algorithm due to Akitaya et al.

Vertex placement of v ∈ V (G1): connected component of
G2 ∩Bε(v)

(Weak) edge placement of e = {u, v} ∈ E(G1): path P in
G2 connecting placements of u and v s.t. δwF (e, P ) ≤ ε

(Weak) placement of G1: graph mapping that maps each
edge to a (weak) edge placement

General decision algorithm:

1. Compute vertex placements.
2. Compute reachability information.
3. Delete invalid placements.
4. Decide whether a placement of G1 exists.

Valid vertex placement: Is connected to a placement
of each adjacent vertex through an edge placement



General decision algorithm due to Akitaya et al.

quadratic time

NP-complete in general
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General decision algorithm due to Akitaya et al.

Vertex placement of v ∈ V (G1): connected component of
G2 ∩Bε(v)

(Weak) edge placement of e = {u, v} ∈ E(G1): path P in
G2 connecting placements of u and v s.t. δwF (e, P ) ≤ ε

v2

v1
u

(Weak) placement of G1: graph mapping that maps each
edge to a (weak) edge placement

General decision algorithm:

1. Compute vertex placements.
2. Compute reachability information.
3. Delete invalid placements.
4. Decide whether a placement of G1 exists.

Valid vertex placement: Is connected to a placement
of each adjacent vertex through an edge placement
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Theorem: Deciding whether δ⃗wG(G1, G2) ≤ ε is NP-complete even if
G1 is plane and G2 is immersed in R2.

Sketch of the proof by reduction from Planar 3Col:

Let G = (V,E) be the (planar) input graph

2. Choose ε s.t. all ε-balls and tubes are separated
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Theorem: Deciding whether δ⃗wG(G1, G2) ≤ ε is NP-complete even if
G1 is plane and G2 is immersed in R2.
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Theorem: Deciding whether δ⃗wG(G1, G2) ≤ ε is NP-complete even if
G1 is plane and G2 is immersed in R2.

Sketch of the proof by reduction from Planar 3Col:

Let G = (V,E) be the (planar) input graph

4. Immerse Gc s.t. wu,i lies in Bε(u)
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Hardness of deciding δ⃗wG(G1, G2) ≤ ε if G1 is plane

Theorem: Deciding whether δ⃗wG(G1, G2) ≤ ε is NP-complete even if
G1 is plane and G2 is immersed in R2.

Sketch of the proof by reduction from Planar 3Col:

Let G = (V,E) be the (planar) input graph

Idea: Vertex placements ↔ colors
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Hardness of deciding δ⃗wG(G1, G2) ≤ ε if G1 is plane

Theorem: Deciding whether δ⃗wG(G1, G2) ≤ ε is NP-complete even if
G1 is plane and G2 is immersed in R2.

Sketch of the proof by reduction from Planar 3Col:

Let G = (V,E) be the (planar) input graph

1̃. Construct a crossing-free embedding of G and insert a vertex ûv in
the middle of each edge {u, v} → Gp
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Hardness of deciding δ⃗wG(G1, G2) ≤ ε if G1 is plane

Theorem: Deciding whether δ⃗wG(G1, G2) ≤ ε is NP-complete even if
G1 is plane and G2 is immersed in R2.

Sketch of the proof by reduction from Planar 3Col:

Let G = (V,E) be the (planar) input graph

→ Each {u, v} must be placed through some {wu,i, wv,j}
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Hardness of deciding δ⃗wG(G1, G2) ≤ ε if G1 is plane

Theorem: Deciding whether δ⃗wG(G1, G2) ≤ ε is NP-complete even if
G1 is plane and G2 is immersed in R2.

Sketch of the proof by reduction from Planar 3Col:

Let G = (V,E) be the (planar) input graph

→ Each {u, v} must be placed through some {wu,i, wv,j}
→ Consistent graph mapping ↔ consistent 3-coloring

wu,1

wv,1

wu,2

wu,3

wv,2

wv,3

ûv

u v
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any constant ratio c ≥ 1 even if G1 is plane, G2 is immersed in R2.
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Proof idea:

Immerse Gc within ε
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Positive case: upper bound becomes δ⃗wG(Gp, Gc) ≤ ε
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Hardness of approximating δ⃗wG(G1, G2) if G1 is plane

Corollary: The weak graph distance is NP-hard to approximate within
any constant ratio c ≥ 1 even if G1 is plane, G2 is immersed in R2.

ε
c

ε

Proof idea:

Immerse Gc within ε
c -balls instead

Positive case: upper bound becomes δ⃗wG(Gp, Gc) ≤ ε
c

Negative case: Lower bound of ε remains intact

ûv
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Theorem: The weak graph distance is NP-hard to approximate within any constant
ratio c ≥ 1 if G1, G2 are embedded in Rd for any d ≥ 3.



Hardness of the embedded case in Rd, d ≥ 3

Theorem: The weak graph distance is NP-hard to approximate within any constant
ratio c ≥ 1 if G1, G2 are embedded in Rd for any d ≥ 3.

Proof idea:

(Up to details,) embed on the 3-dim moment curve instead

m(x) = (x, x2, x3)
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Crossing-rigid weak graph distances

WGD has nice properties, but is NP-complete even in the 2-dimensional case

→ currently unknown whether WGD is FPT when parameterized in #crossings

Now: crossing-rigid weak graph distances
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Crossing-rigid weak graph distances

δ⃗crwG(G1, G2) = δ⃗lcrwG(G1, G2)

δ⃗scrwG(G1, G2)

Intuition: map crossings onto crossings

(Informal) Definition: A graph mapping that maps each
edge with n crossings to a path containing
• up to n crossings is loosely crossing-rigid
• at least one* and at most n crossings is crossing-rigid
• exactly n crossings is strictly crossing-rigid

The directed crossing-rigid weak graph distance is defined as

Analogous: δ⃗lcrwG, δ⃗
s
crwG

δ⃗crwG(G1, G2) = infs:G1→G2
maxe∈E δwF (e, s(e))

crossing-rigid interpreted as curves
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1. Compute crossings.
2. Compute vertex placements.
3. for each valid* assignment of crossings of G2 to crossings of G1:
4. Compute reachability information (under assignment).
5. Delete invalid placements.
6. if there exists a placement for G1, return true.
7. return false.
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Decision algorithm for the existence of crossing-rigid placements

Intuition: assign crossings and check whether the fixed assignment allows WGD ≤ ε

1. Compute crossings.
2. Compute vertex placements.
3. for each valid* assignment of crossings of G2 to crossings of G1:
4. Compute reachability information (under assignment).
5. Delete invalid placements.
6. if there exists a placement for G1, return true.
7. return false.

Caveat: since placements are no longer compact, there might be no ε-placement but

still δ
(l)/(r)
crwG (G1, G2) = ε

polynomial time

FPT-like bound

polynomial time

Conj.: linear*
polynomial time



Outlook

We have seen:
• δ⃗wG(G1, G2) is NP-hard to approximate up to c even if G1 is plane

• δ⃗wG(G1, G2) is NP-hard to approximate for G1, G2 embedded in Rd, d ≥ 3

• The CRWGDs could be good alternatives for graphs immersed in R2
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Outlook

Natural next steps:
• verify conjecture on the tractability of crossing-rigid weak graph distances

• research the parameterized complexity of the unmodified WGD
and the complexity of our measures without regularity conditions

• experimental evaluations of the different distance measures

• (metric) properties of crossing-rigid distances

Thank you

We have seen:
• δ⃗wG(G1, G2) is NP-hard to approximate up to c even if G1 is plane

• δ⃗wG(G1, G2) is NP-hard to approximate for G1, G2 embedded in Rd, d ≥ 3

• The CRWGDs could be good alternatives for graphs immersed in R2


