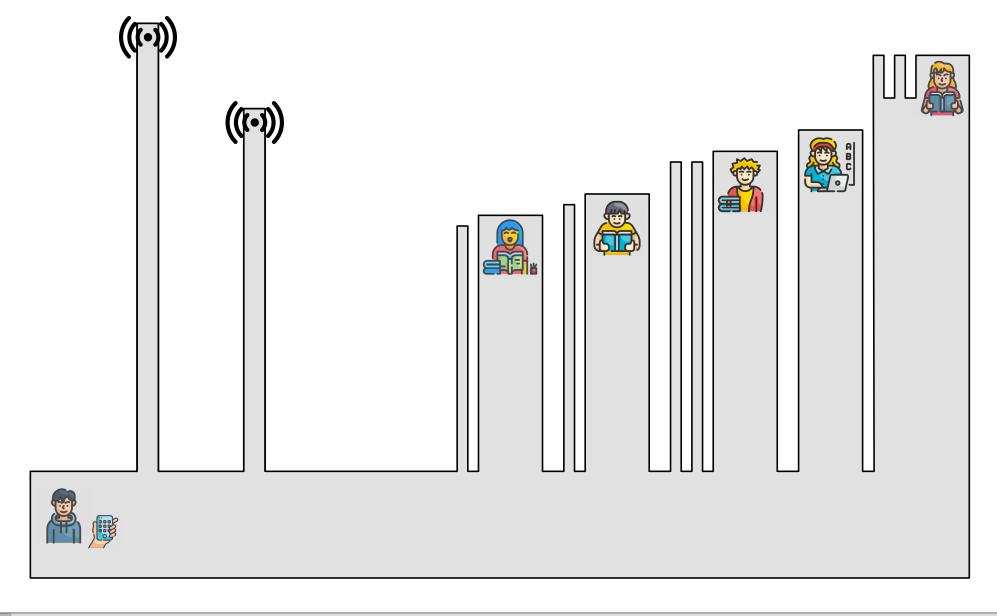
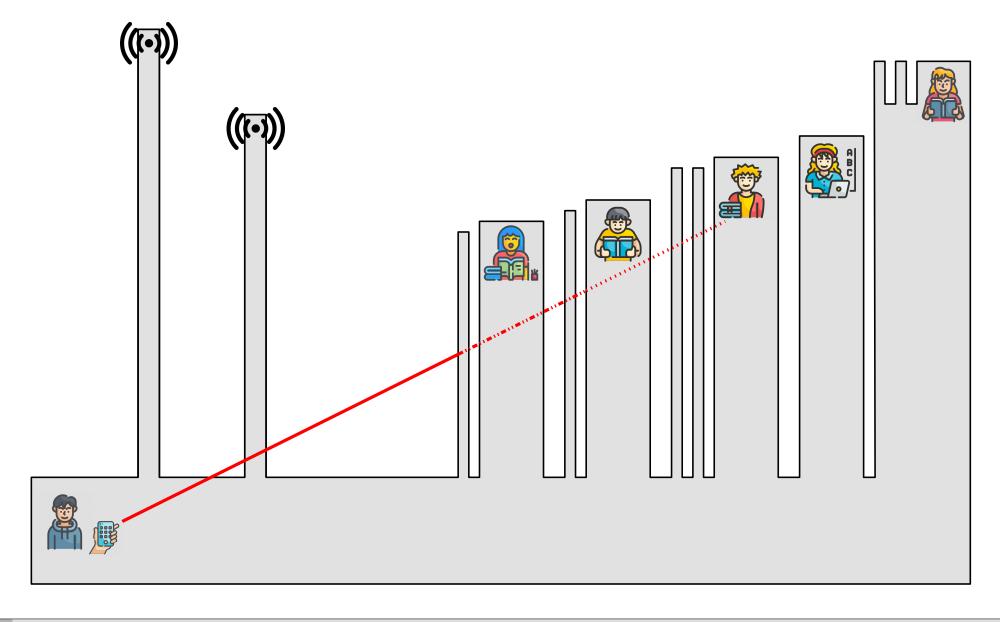
The k-Transmitter Watchman Route Problem is NP-Complete Even in Histograms and Star-Shaped Polygons

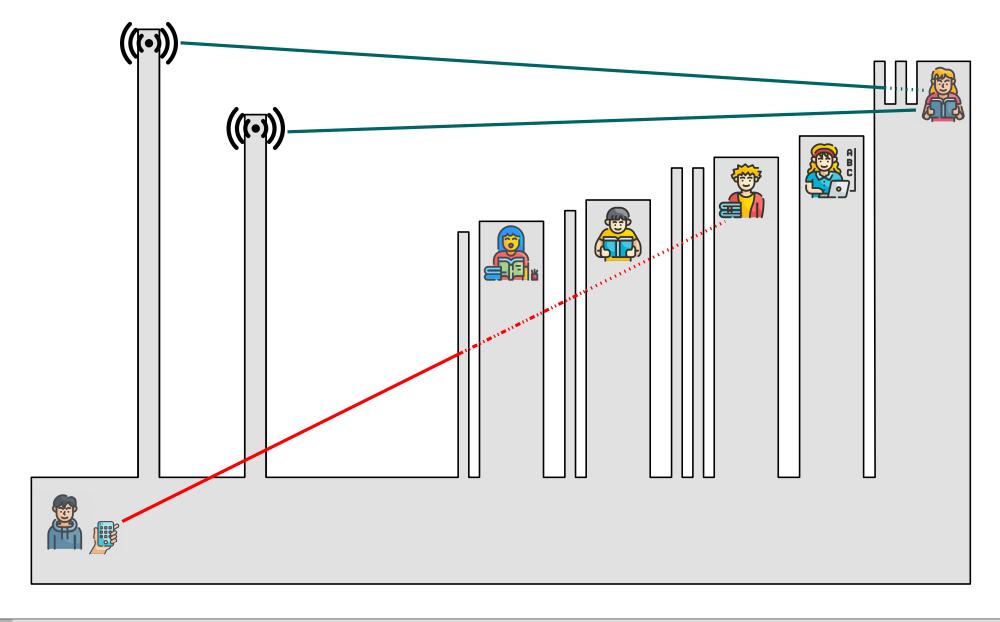
Anna Brötzner, Bengt J. Nilsson, Christiane Schmidt

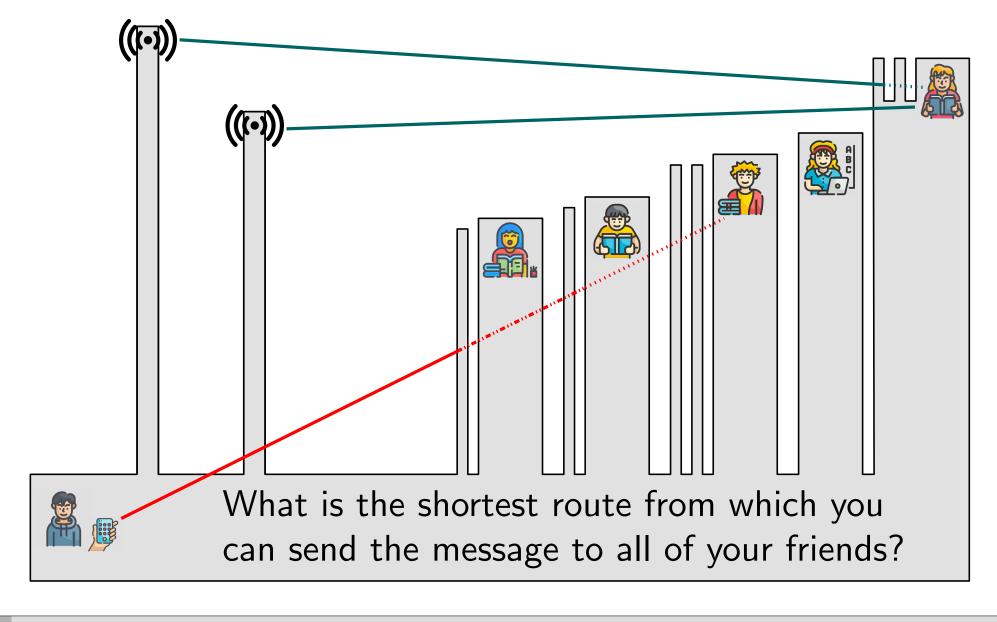
The k-Transmitter Watchman Route Problem is NP-Complete Even in Histograms and Star-Shaped Polygons

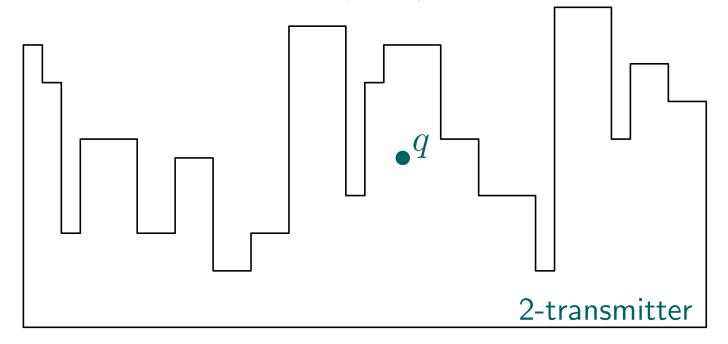
Anna Brötzner, Bengt J. Nilsson, Christiane Schmidt

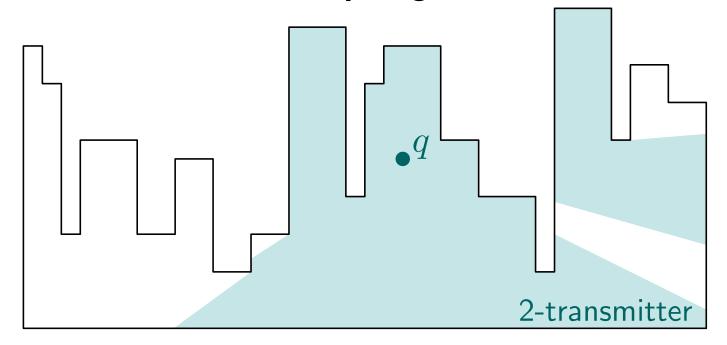


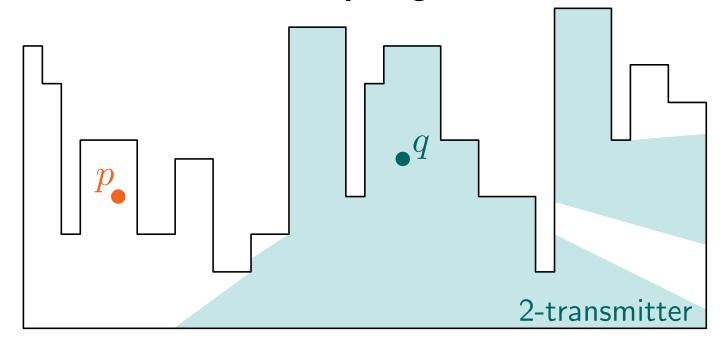


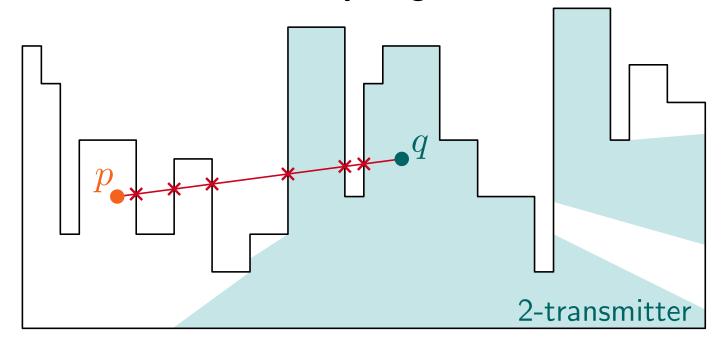




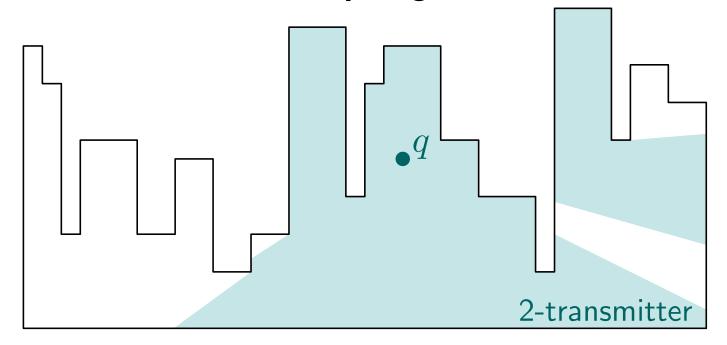






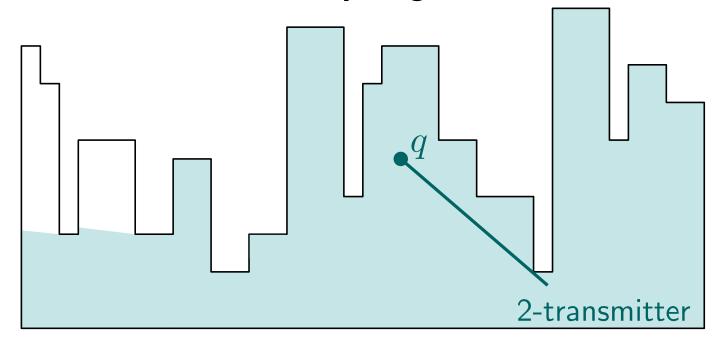


k-Transmitter q: sees a point p in the polygon if \overline{pq} intersects at most k boundary edges.



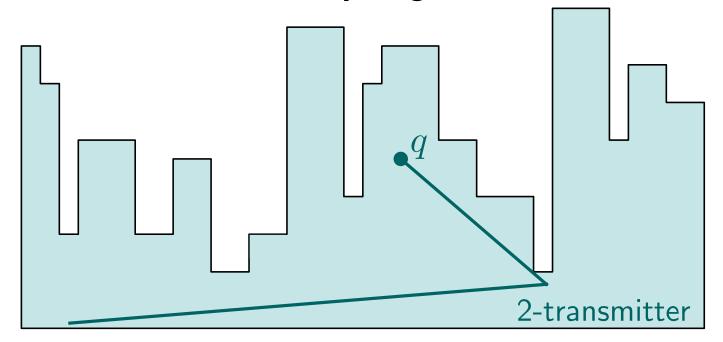
Watchman: mobile transmitter walking along a route

k-Transmitter q: sees a point p in the polygon if \overline{pq} intersects at most k boundary edges.



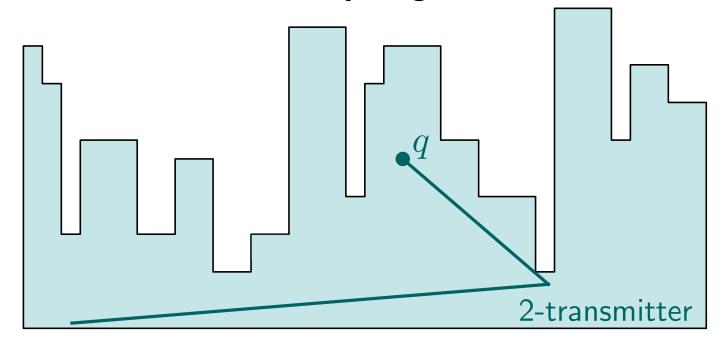
Watchman: mobile transmitter walking along a route

k-Transmitter q: sees a point p in the polygon if \overline{pq} intersects at most k boundary edges.



Watchman: mobile transmitter walking along a route

k-Transmitter q: sees a point p in the polygon if \overline{pq} intersects at most k boundary edges.



Watchman: mobile transmitter walking along a route

Our goal: see a set S of points inside a polygon P

Watchman Route Problem with Starting Point:

Given a polygon P with n vertices, a starting point s in P, and a set of interior points S in P, find a minimum length watchman route that starts at s and lies within P such that all points in S are visible from the route.

k-Transmitter

Watchman Route Problem with Starting Point:

Given a polygon P with n vertices, a starting point s in P, and a set of interior points S in P, find a minimum length watchman route that starts at s and lies within P such that all points in S are visible from the route.

k-Transmitter

Watchman Route Problem with Starting Point:

Given a polygon P with n vertices, an integer $k \geq 2$, a starting point s in P, and a set of interior points S in P, find a minimum length watchman route that starts at s and lies within P such that all points in S are visible from the route.

k-Transmitter

Watchman Route Problem with Starting Point:

Given a polygon P with n vertices, an integer $k \geq 2$, a starting point s in P, and a set of interior points S in P, find a minimum length watchman route that starts at s and lies within P such that all points in S are visible from the route.

k-visible

k-Transmitter

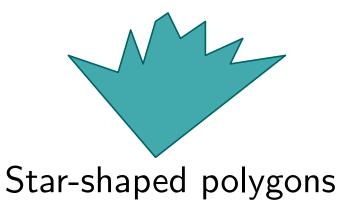
Watchman Route Problem with Starting Point:

Given a polygon P with n vertices, an integer $k \geq 2$, a starting point s in P, and a set of interior points S in P, find a minimum length watchman route that starts at s and lies within P such that all points in S are visible from the route.

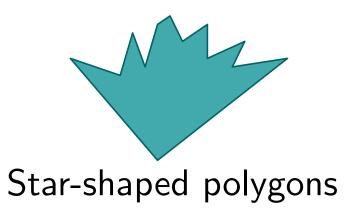
k-visible

Theorem. The k-Transmitter Watchman Route Problem for a given discrete set of points to be guarded is NP-hard both with and without a fixed starting point and cannot be approximated to within a logarithmic factor. [N.,S. 2022]

Uni-monotone polygons (aka monotone mountains aka Alps)



Uni-monotone polygons (aka monotone mountains aka Alps)



Uni-monotone polygons (aka monotone mountains aka Alps)

Theorem. For any $k \geq 2$, k-TrWRP(S, P, s) is NP-hard for histograms, uni-monotone polygons, and star-shaped polygons, and cannot be approximated within a logarithmic factor $c \log n$, for any c > 0.

Reduction from Set Cover

Reduction from Set Cover

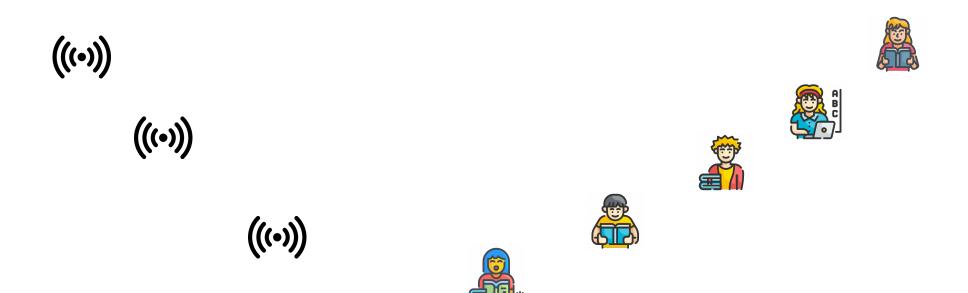
Set Cover: Given a universe $\mathcal{U} = \{\mathcal{L}, \mathcal{L}, \mathcal{L}, \mathcal{L}, \mathcal{L}\}$ and a family \mathcal{R} of subsets of \mathcal{U} , find a subfamily $\mathcal{C} \subseteq \mathcal{R}$ that contains all elements of \mathcal{U} and is of minimum cardinality.

Reduction from Set Cover

Set Cover: Given a universe $\mathcal{U} = \{\mathcal{A}, \mathcal{A}, \mathcal{$

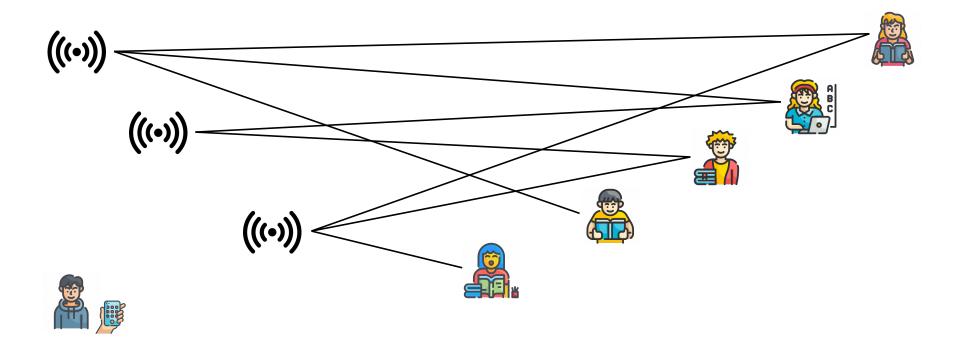
Reduction from Set Cover

Set Cover: Given a universe $\mathcal{U} = \{\mathcal{A}, \mathcal{A}, \mathcal{A}, \mathcal{A}, \mathcal{A}\}$ and a family \mathcal{R} of subsets of \mathcal{U} , find a subfamily $\mathcal{C} \subseteq \mathcal{R}$ that contains all elements of \mathcal{U} and is of minimum cardinality.



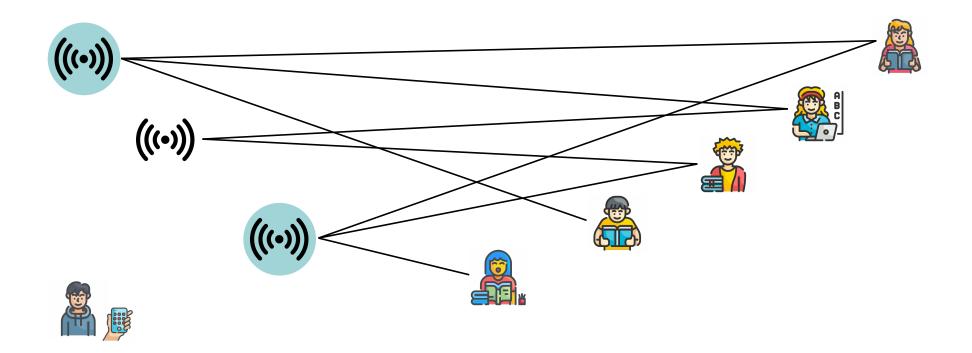
Reduction from Set Cover

Set Cover: Given a universe $\mathcal{U} = \{\mathcal{A}, \mathcal{A}, \mathcal{A}, \mathcal{A}, \mathcal{A}\}$ and a family \mathcal{R} of subsets of \mathcal{U} , find a subfamily $\mathcal{C} \subseteq \mathcal{R}$ that contains all elements of \mathcal{U} and is of minimum cardinality.



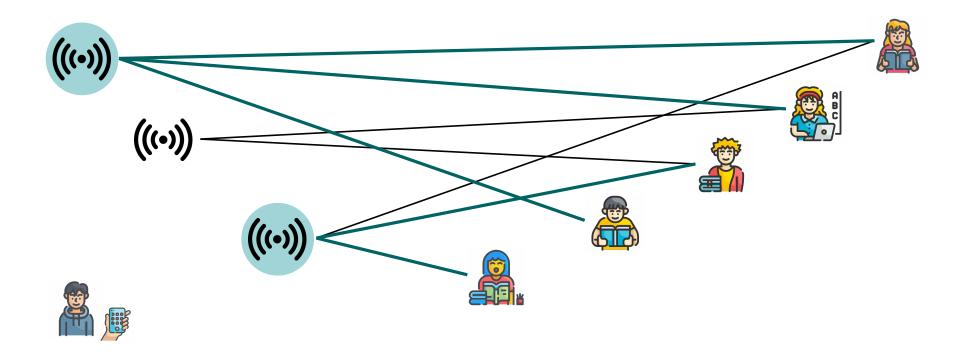
Reduction from Set Cover

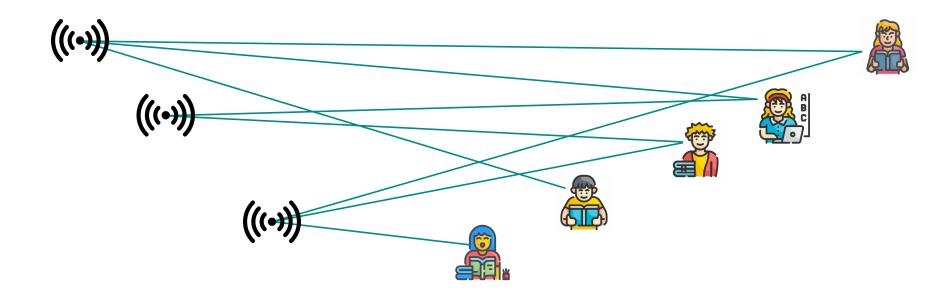
Set Cover: Given a universe $\mathcal{U} = \{\mathcal{A}, \mathcal{A}, \mathcal{A}, \mathcal{A}, \mathcal{A}\}$ and a family \mathcal{R} of subsets of \mathcal{U} , find a subfamily $\mathcal{C} \subseteq \mathcal{R}$ that contains all elements of \mathcal{U} and is of minimum cardinality.

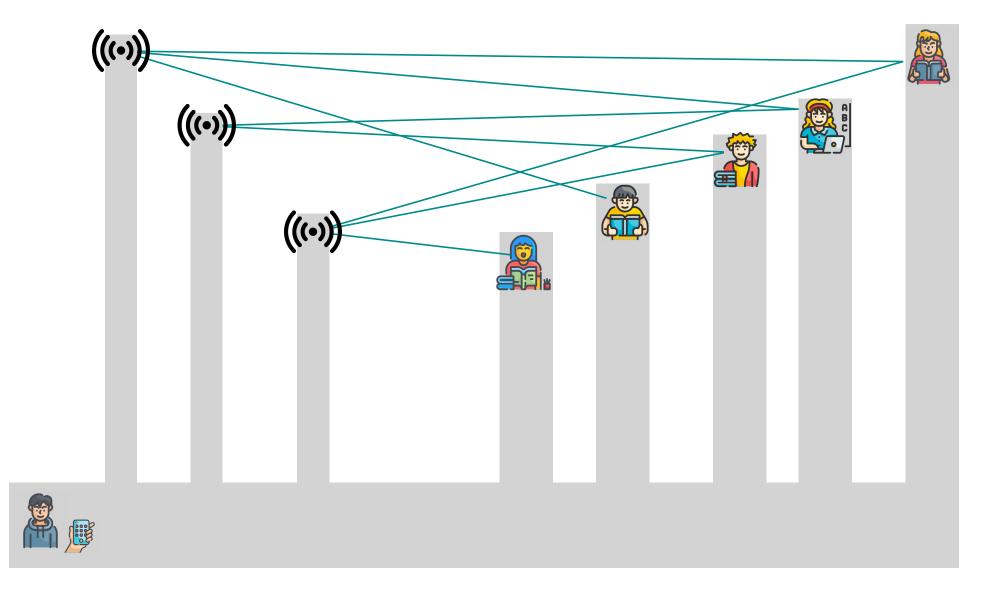


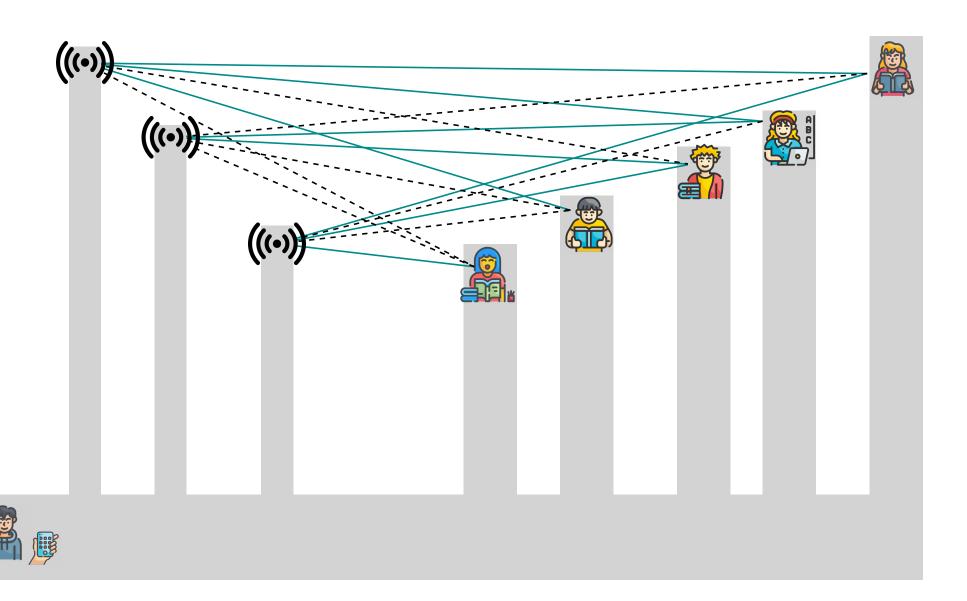
Reduction from Set Cover

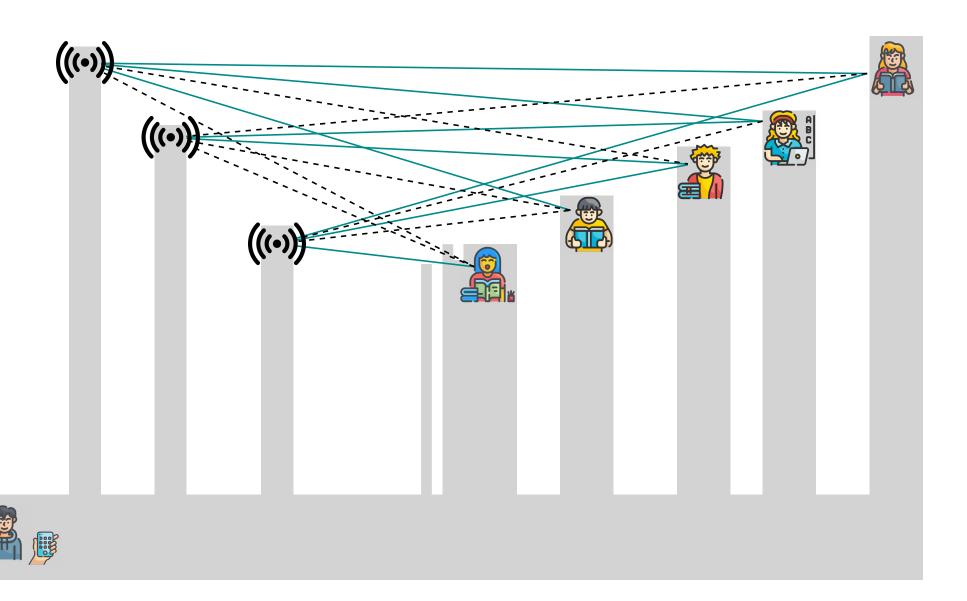
Set Cover: Given a universe $\mathcal{U} = \{\mathcal{L}, \mathcal{L}, \mathcal{$

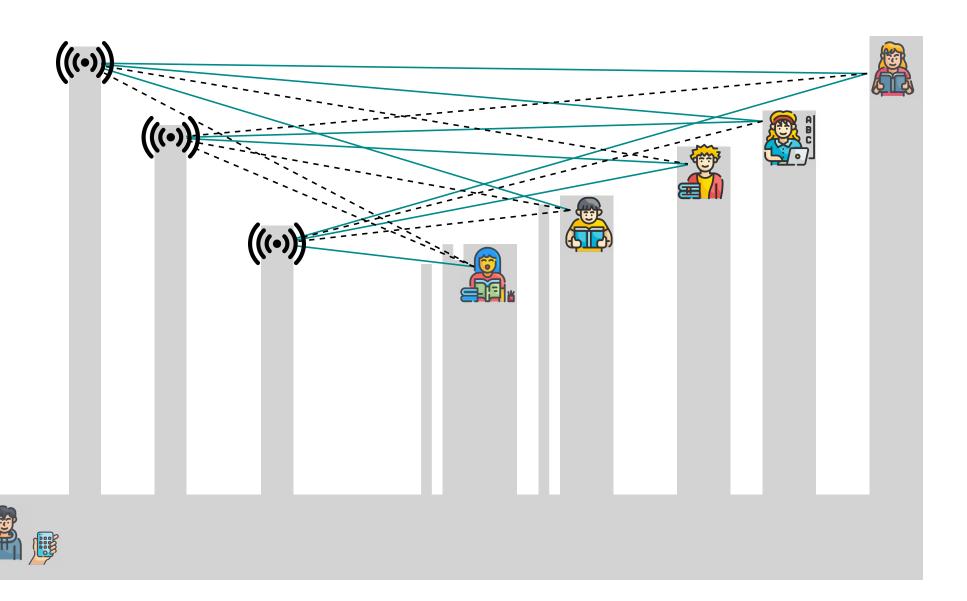


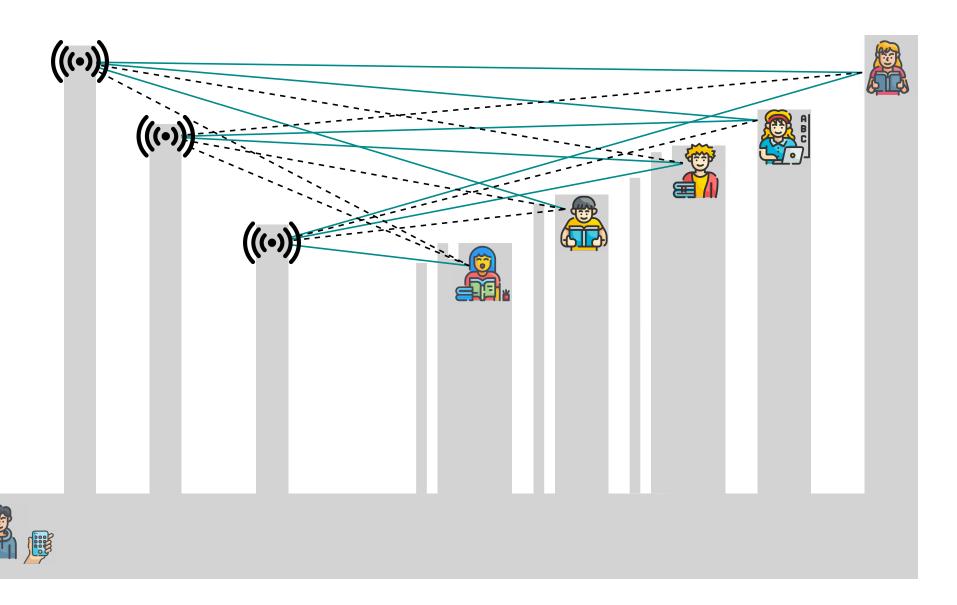


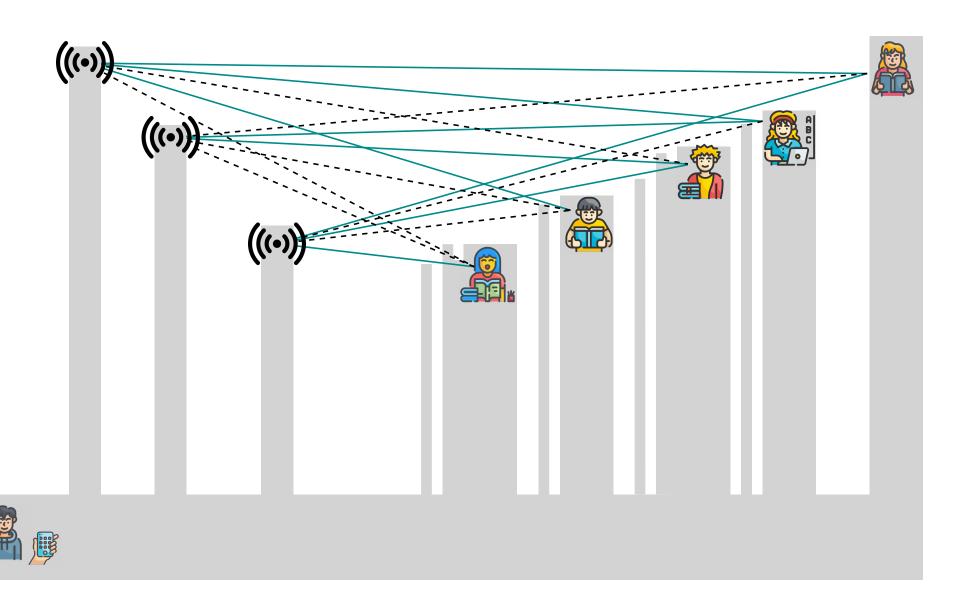


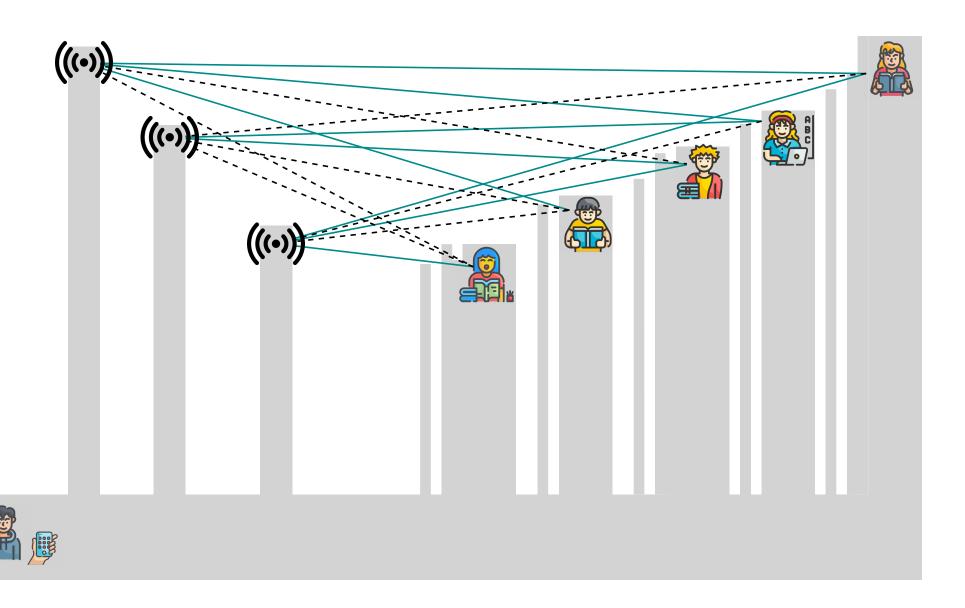


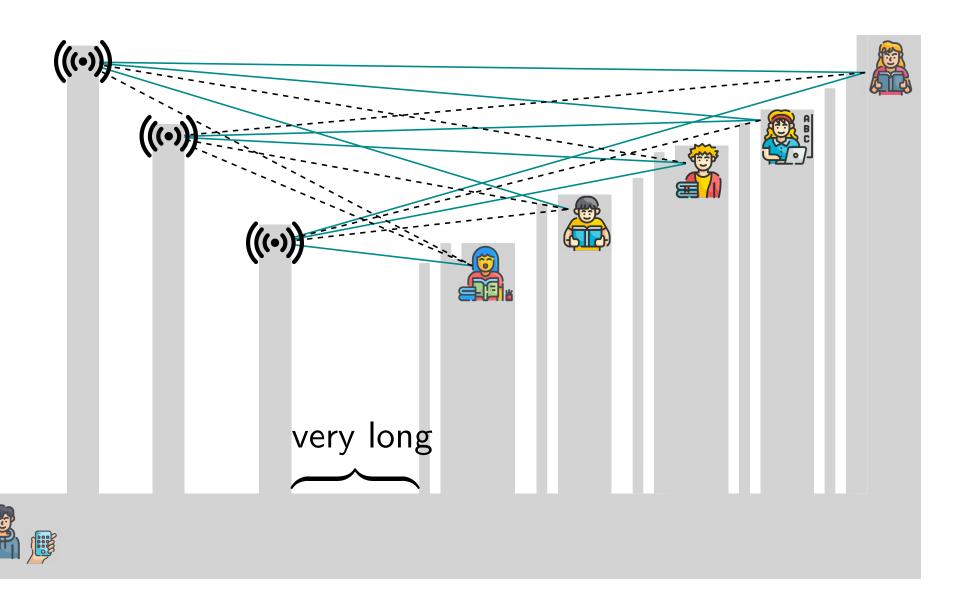


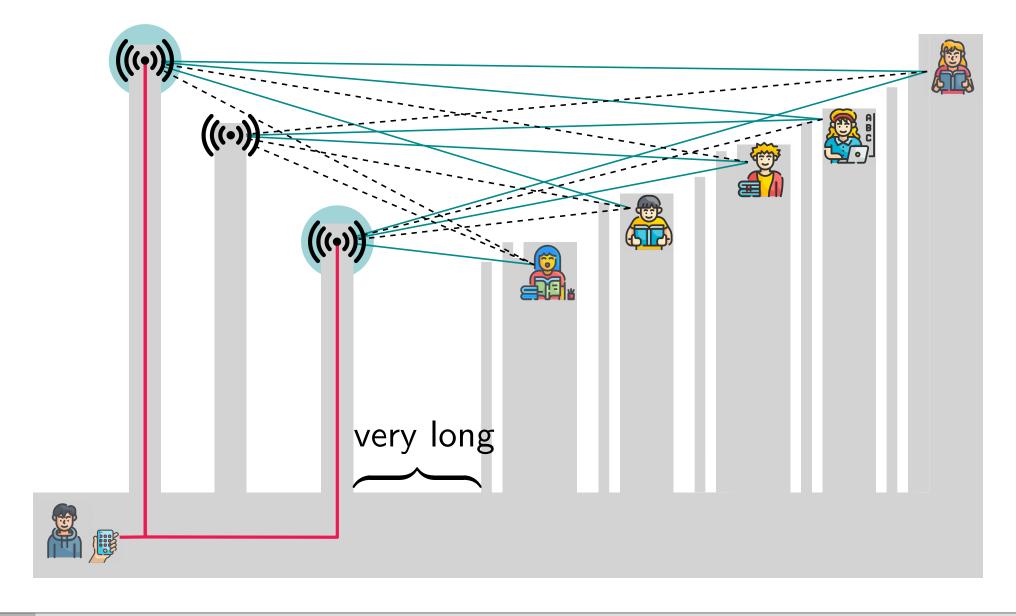


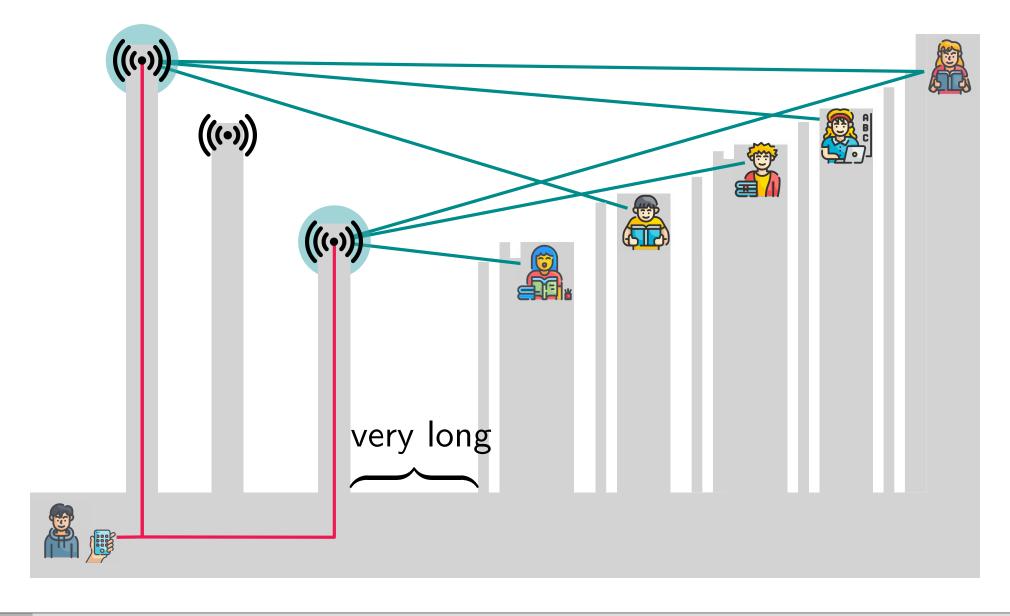


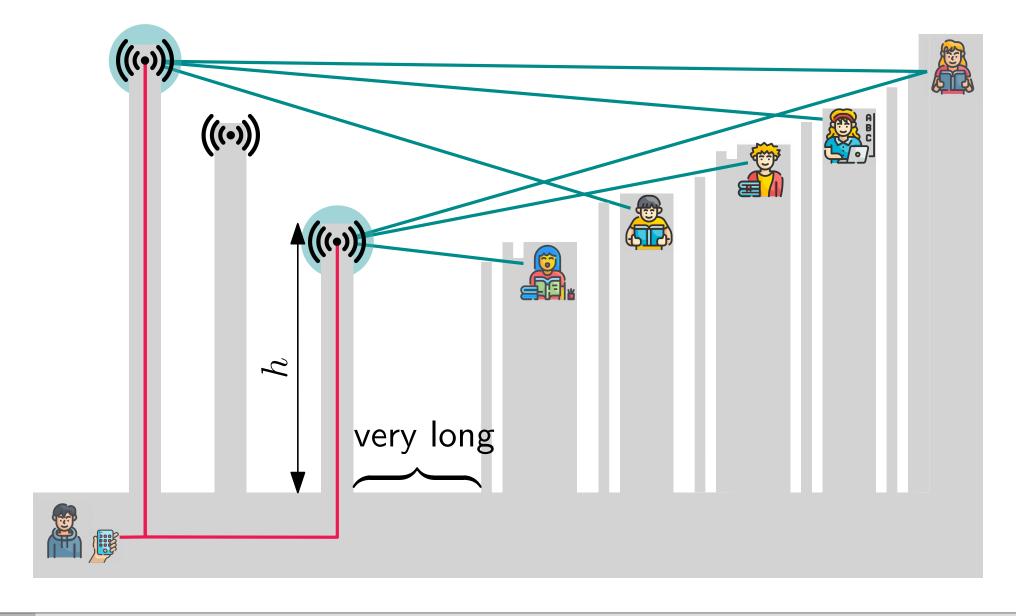


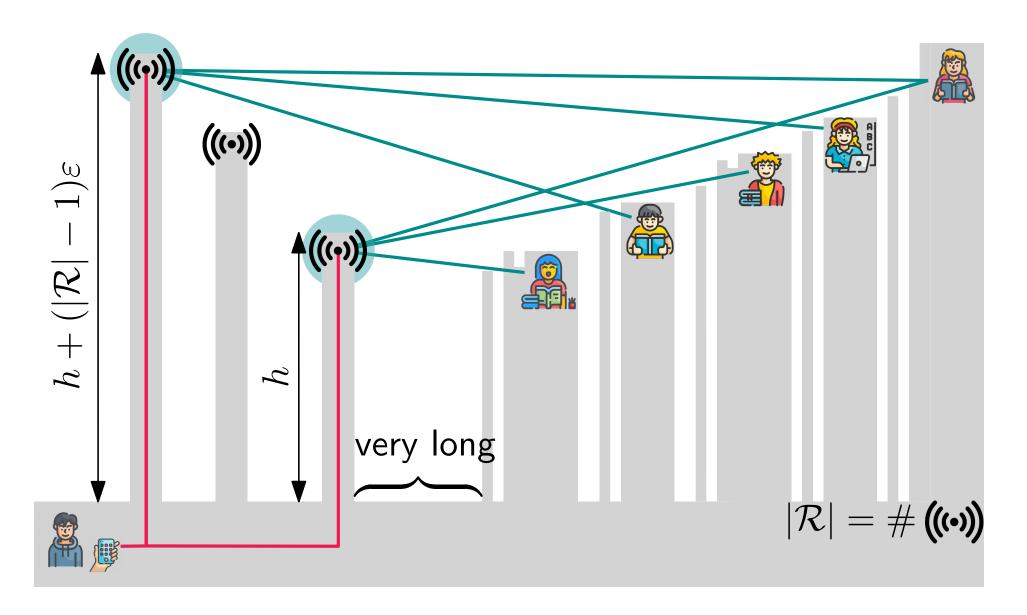


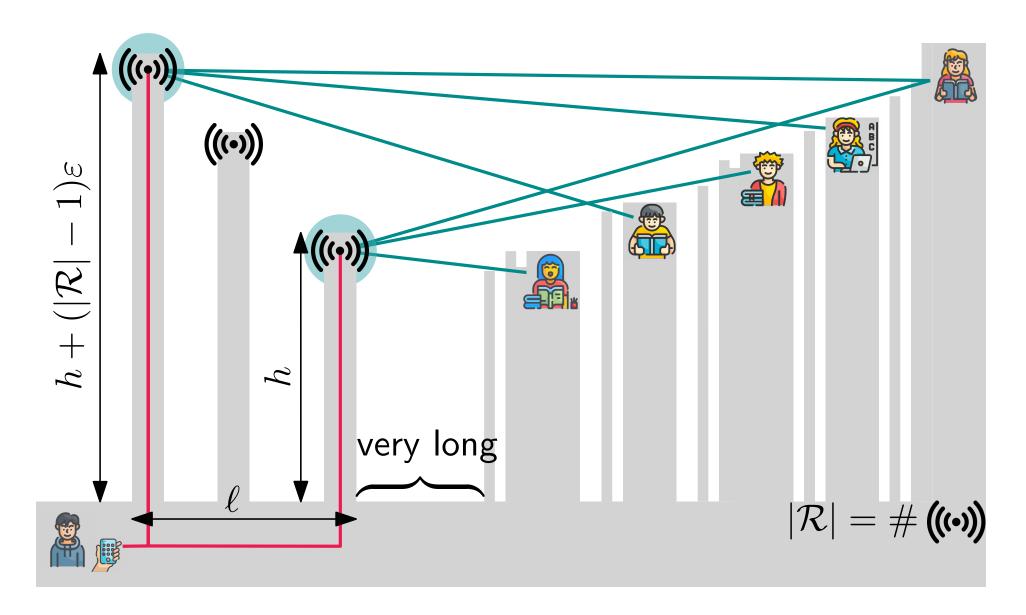


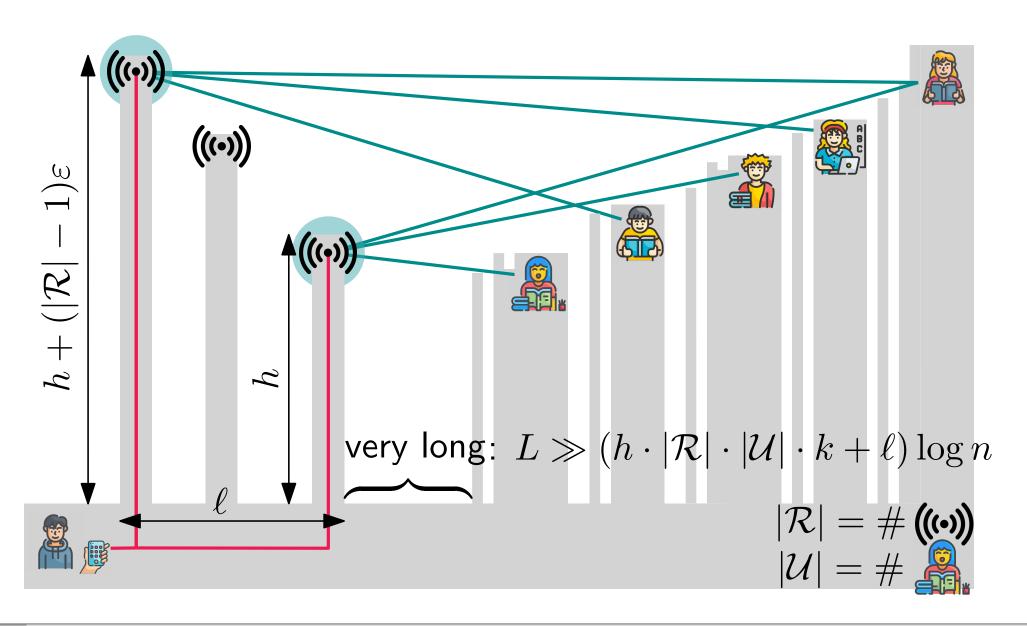




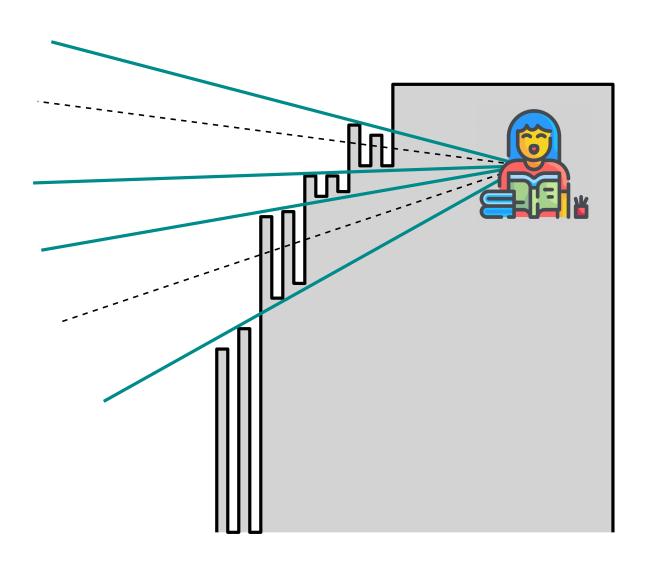


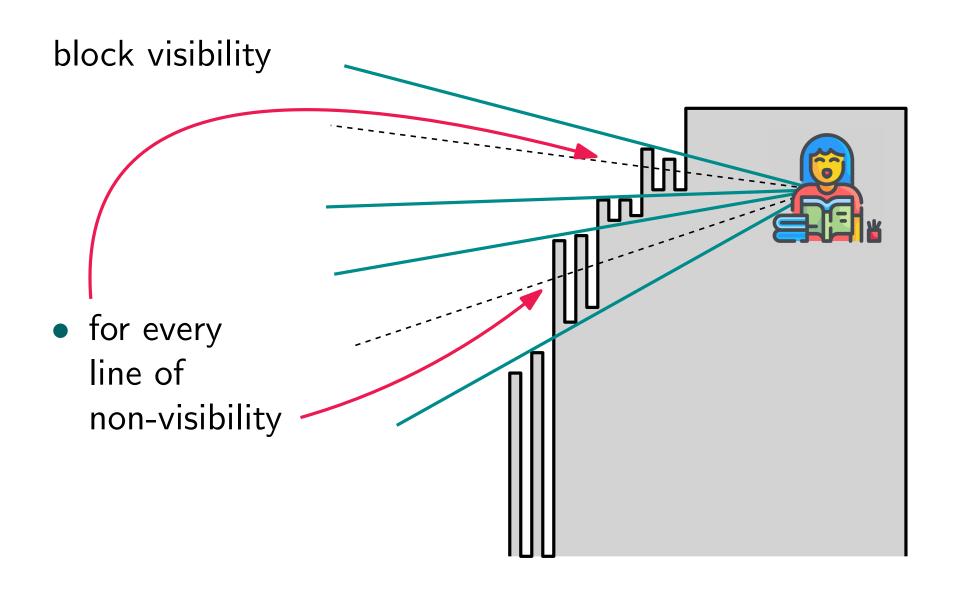


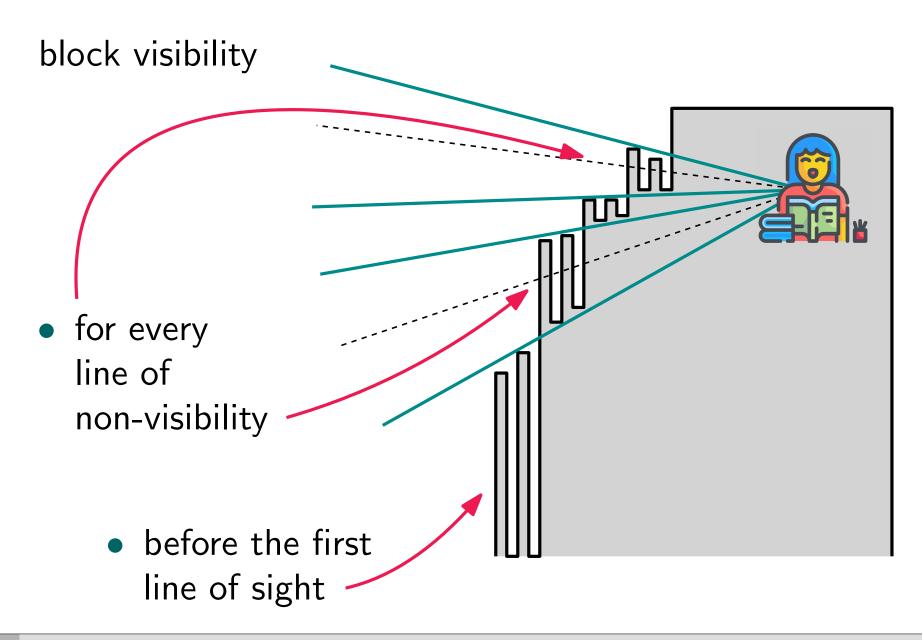


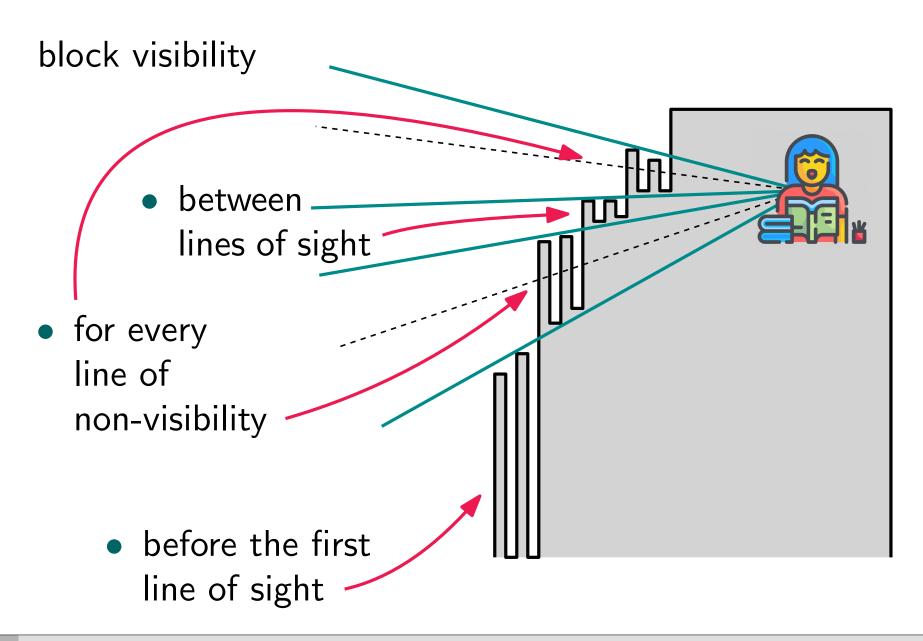


block visibility

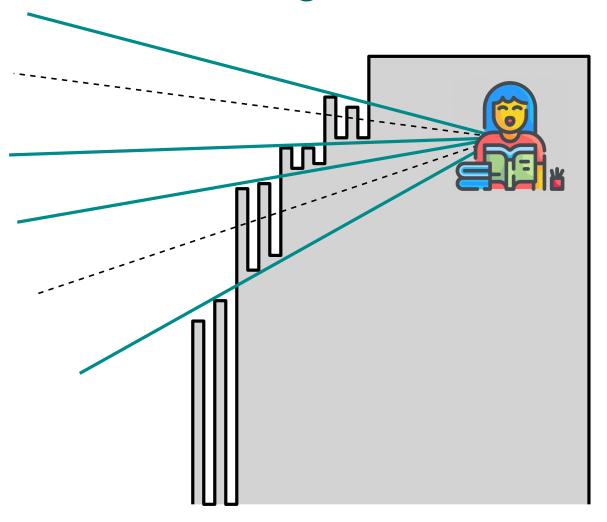




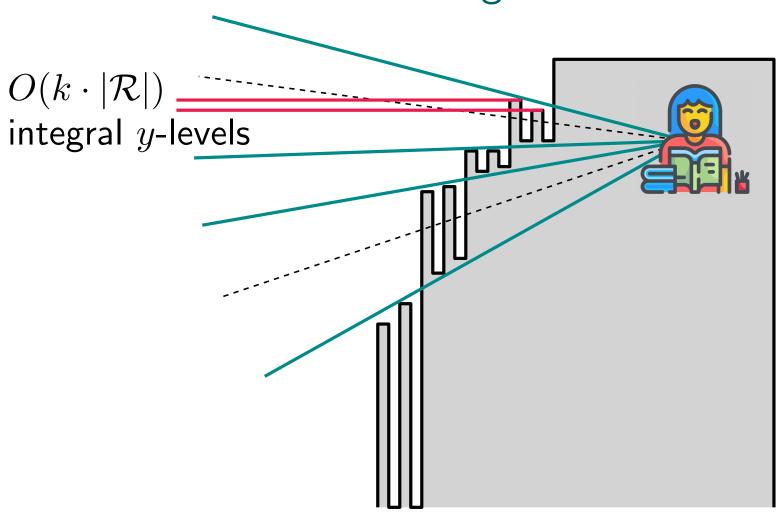




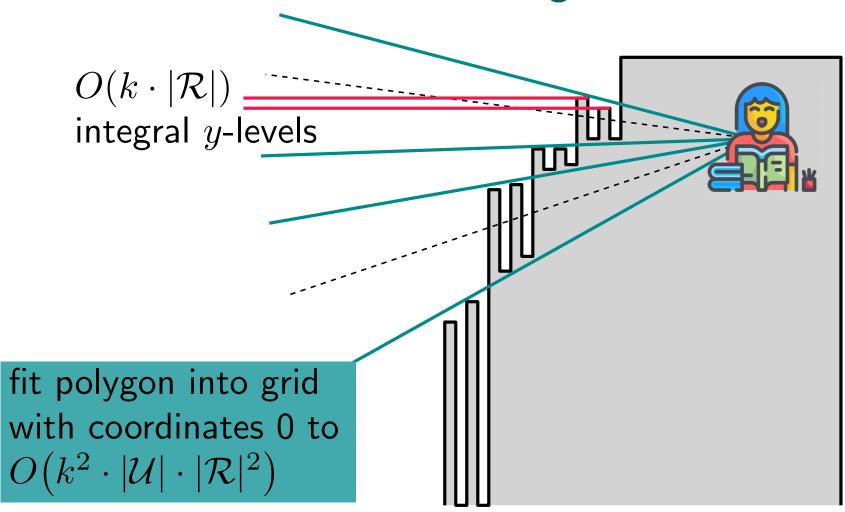
Integer Coordinates



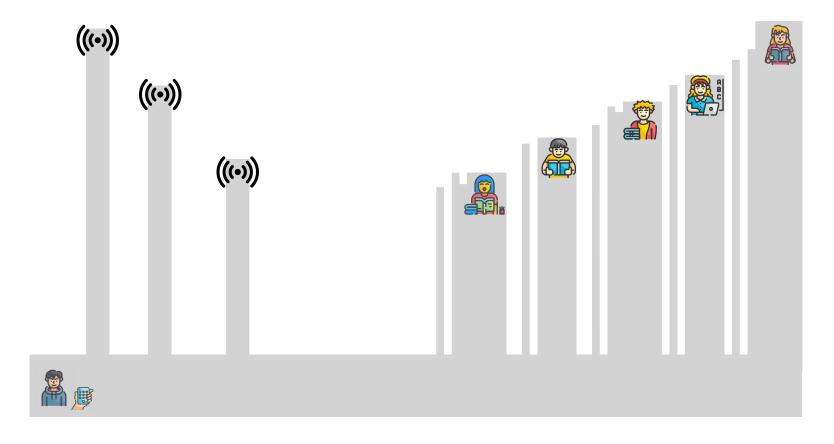
Integer Coordinates



Integer Coordinates

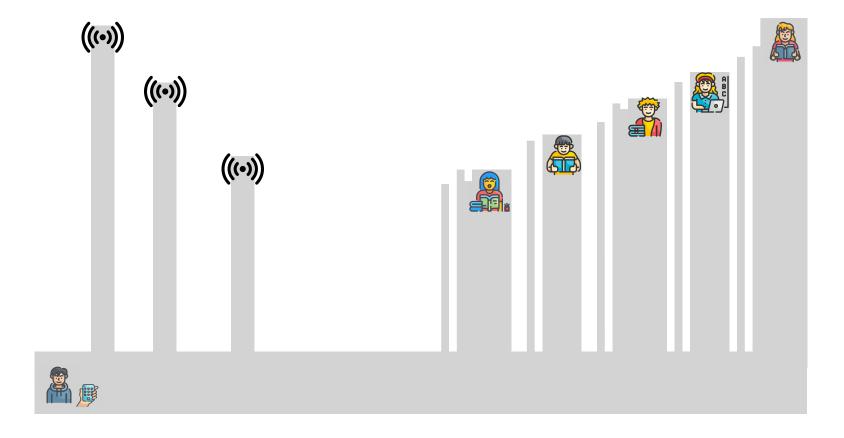


Inapproximability



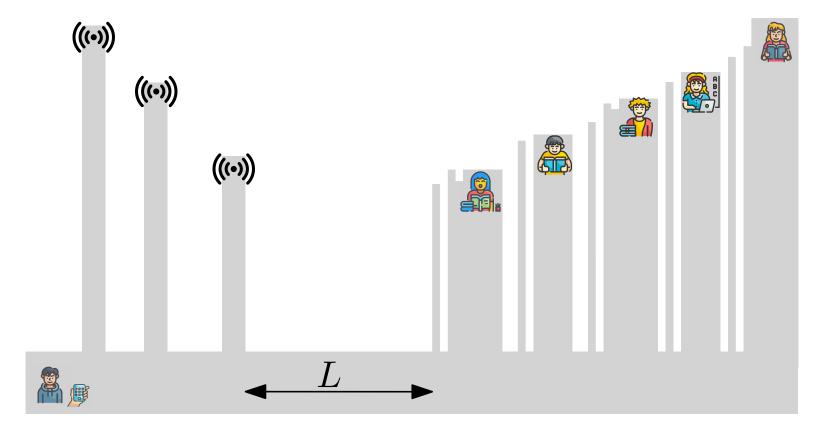
Inapproximability

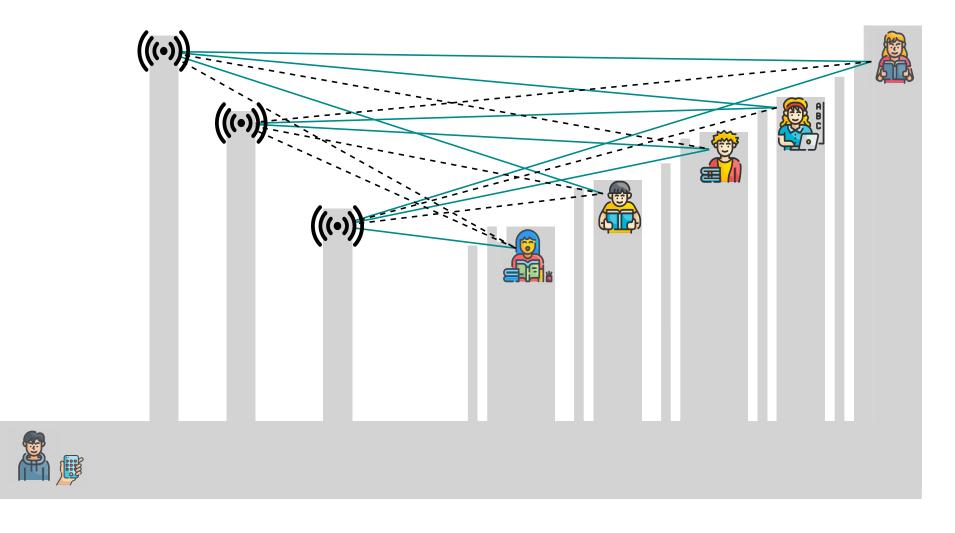
• Set Cover cannot be approximated to within a factor $(1 - o(1)) \ln |\mathcal{U}|$ in polynomial time (unless P= NP).

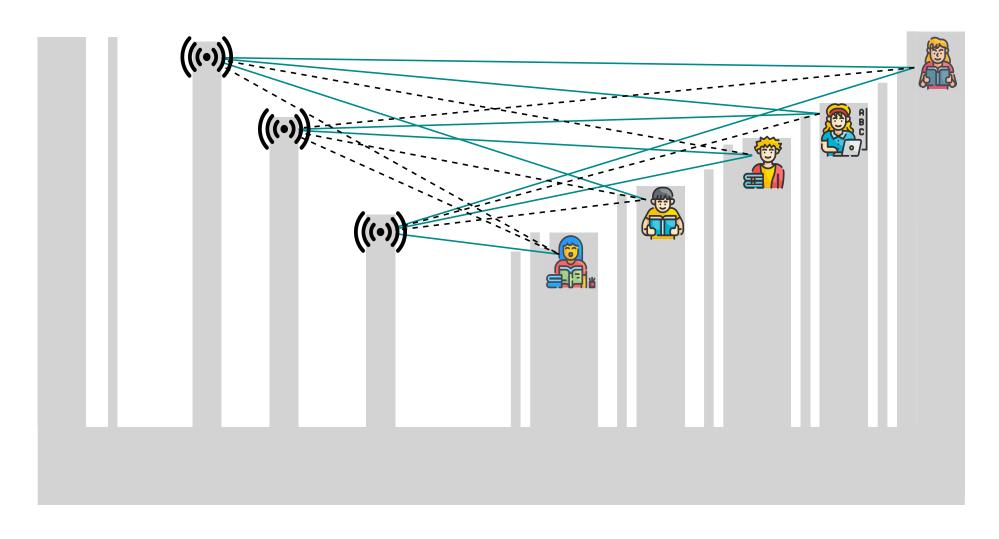


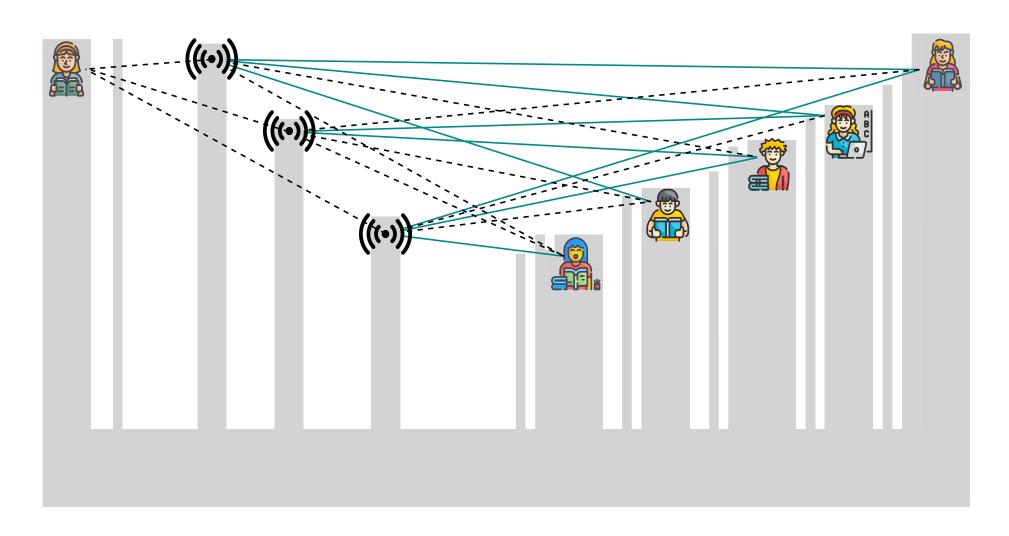
Inapproximability

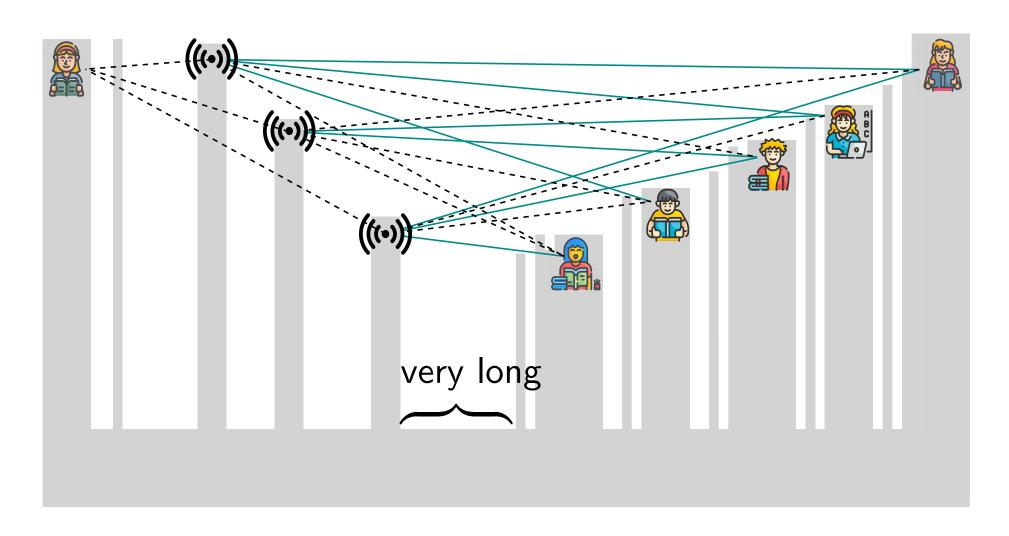
- Set Cover cannot be approximated to within a factor $(1 o(1)) \ln |\mathcal{U}|$ in polynomial time (unless P= NP).
- Length of the corridor $L \gg (h \cdot |\mathcal{R}| \cdot |\mathcal{U}| \cdot k + \ell) \log n$

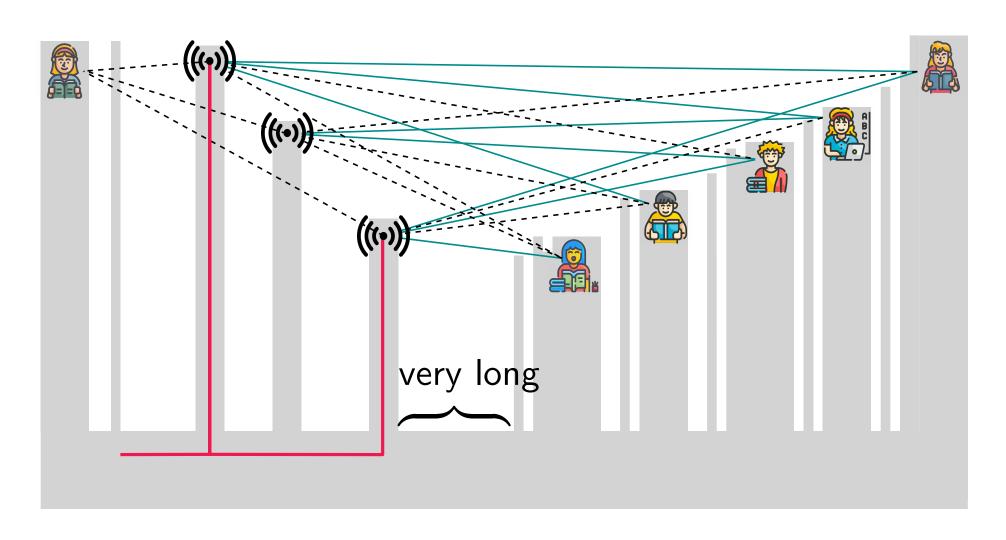




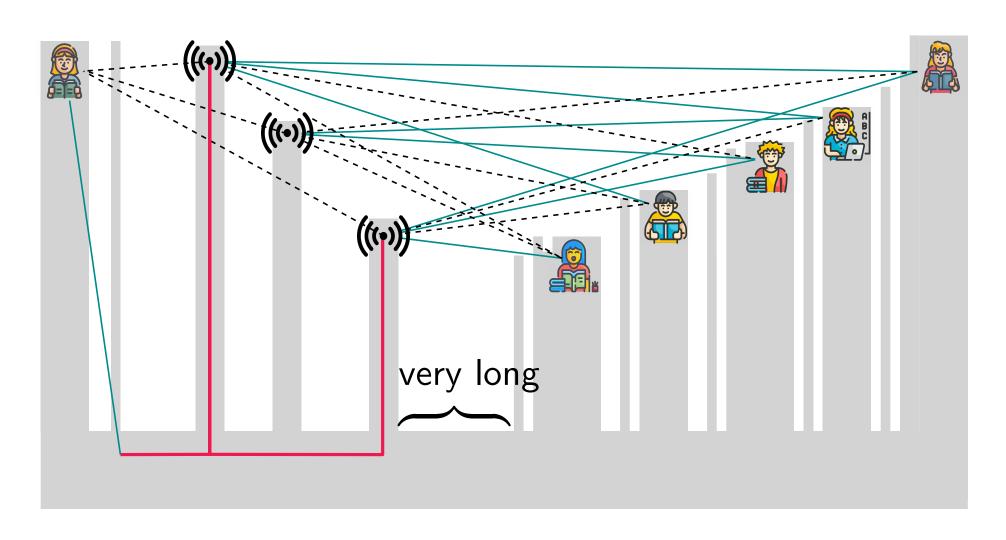








-without a fixed starting point



10 vii

Polygon P is called *uni-monotone* if

- ullet it is x-monotone: any vertical line intersects P in at most one connected component
- either the upper or the lower chain is a horizontal segment



Polygon P is called *uni-monotone* if

- it is *x-monotone*: any vertical line intersects *P* in at most one connected component
- either the upper or the lower chain is a horizontal segment
 - ⇒ Histograms are uni-monotone



Polygon P is called *uni-monotone* if

- it is *x-monotone*: any vertical line intersects *P* in at most one connected component
- either the upper or the lower chain is a horizontal segment
 - ⇒ Histograms are uni-monotone

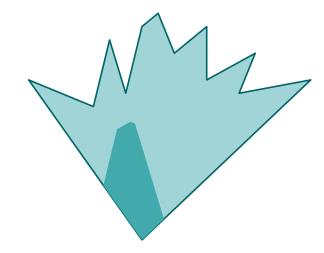


Corollary. For any $k \geq 2$, k-TrWRP(S, P, s) and k-TrWRP(S, P) are NP-hard for uni-monotone polygons and cannot be approximated within a logarithmic factor $c \log n$, for any c > 0.

Star-Shaped Polygons

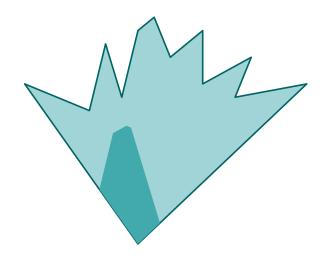
Star-Shaped Polygons

A polygon P is star-shaped if it contains a region, called the kernel, from which every point in P is 0-seen.



Star-Shaped Polygons

A polygon P is star-shaped if it contains a region, called the *kernel*, from which every point in P is 0-seen.

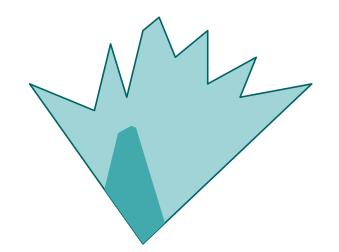


Modification to histogram: slightly stretch it



Star-Shaped Polygons

A polygon P is star-shaped if it contains a region, called the kernel, from which every point in P is 0-seen.



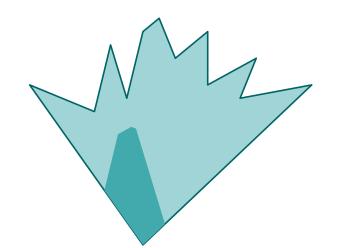
Modification to histogram: slightly stretch it

Corollary. For any $k \geq 2$, k-TrWRP(S, P, s) is NP-hard for star-shaped polygons and cannot be approximated within a logarithmic factor $c \log n$, for any c > 0.

12 iv

Star-Shaped Polygons

A polygon P is star-shaped if it contains a region, called the kernel, from which every point in P is 0-seen.



Modification to histogram: slightly stretch it

What about k-TrWRP(S, P)?

Corollary. For any $k \geq 2$,

 $k ext{-TrWRP}(S,P,s)$ is NP-hard for star-shaped polygons and cannot be approximated within a logarithmic factor $c\log n$, for any c>0.

- k-TrWRP(S, P, s) is NP-hard for
 - histograms
 - uni-monotone polygons
 - star-shaped polygons

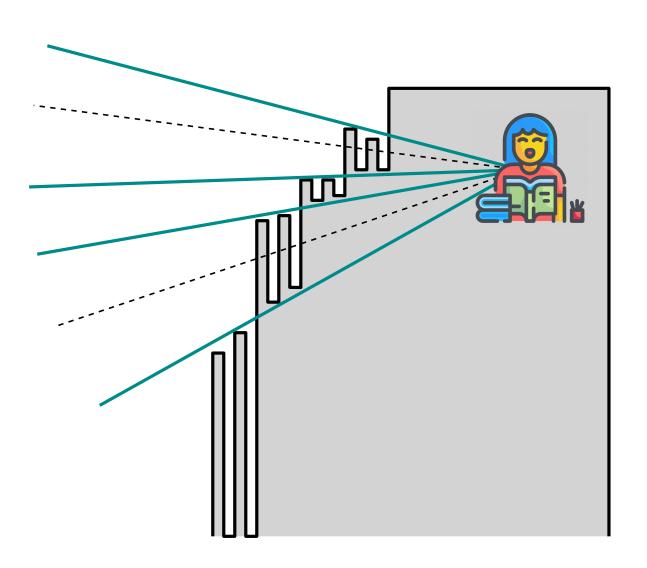
- k-TrWRP(S, P, s) is NP-hard for
 - histograms
 - uni-monotone polygons
 - star-shaped polygons
- k-TrWRP(S, P) is NP-hard for
 - histograms
 - uni-monotone polygons

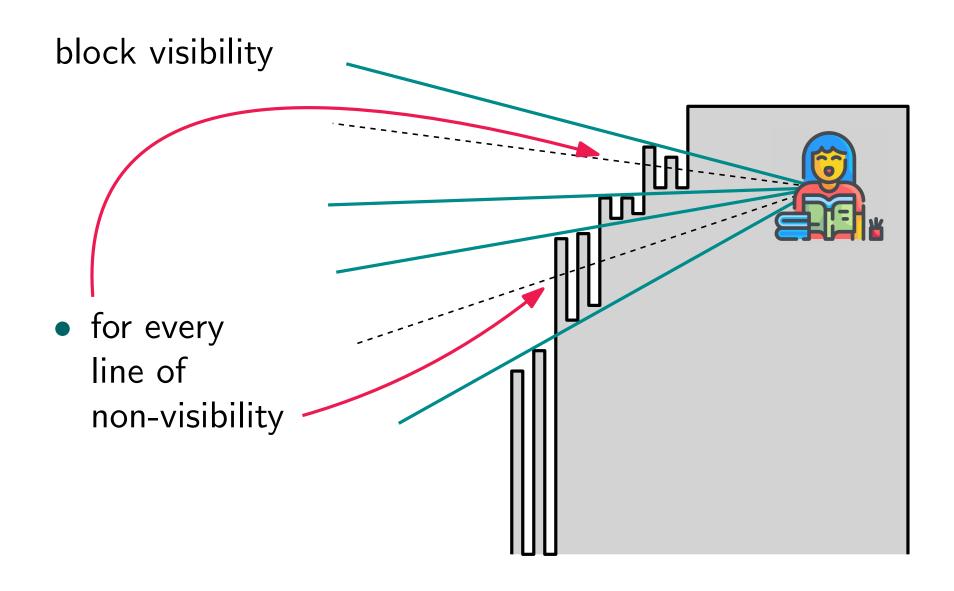
- k-TrWRP(S, P, s) is NP-hard for
 - histograms
 - uni-monotone polygons
 - star-shaped polygons
- k-TrWRP(S, P) is NP-hard for
 - histograms
 - uni-monotone polygons
- Not approximable within a logarithmic factor

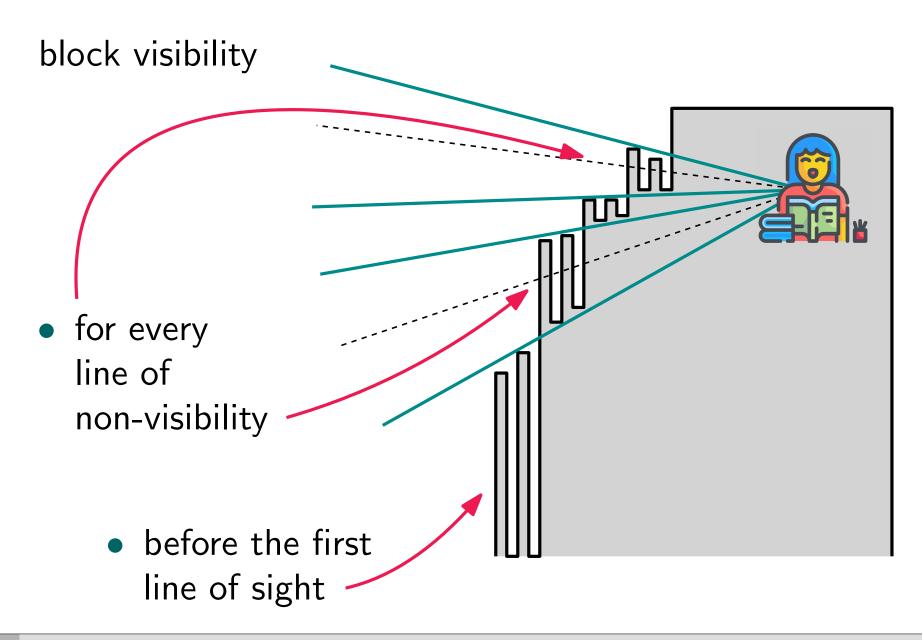
- k-TrWRP(S, P, s) is NP-hard for
 - histograms
 - uni-monotone polygons
 - star-shaped polygons
- k-TrWRP(S, P) is NP-hard for
 - histograms
 - uni-monotone polygons
- Not approximable within a logarithmic factor
- Ist it also hard for other polygon classes?

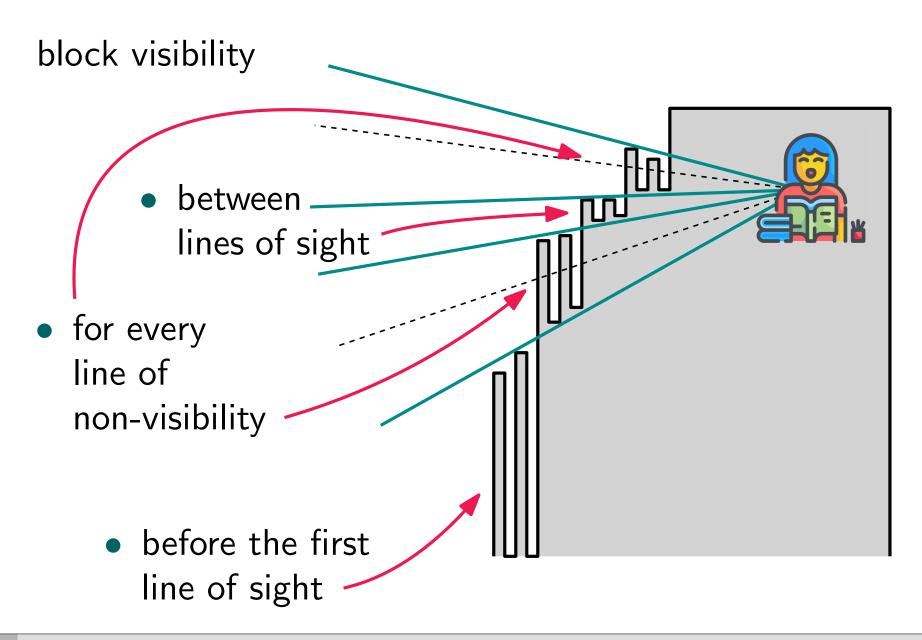
- k-TrWRP(S, P, s) is NP-hard for
 - histograms
 - uni-monotone polygons
 - star-shaped polygons
- k-TrWRP(S, P) is NP-hard for
 - histograms
 - uni-monotone polygons
- Not approximable within a logarithmic factor
- Ist it also hard for other polygon classes?
- What about NP-completeness? Or $\exists \mathbb{R}$ -hardness?

block visibility

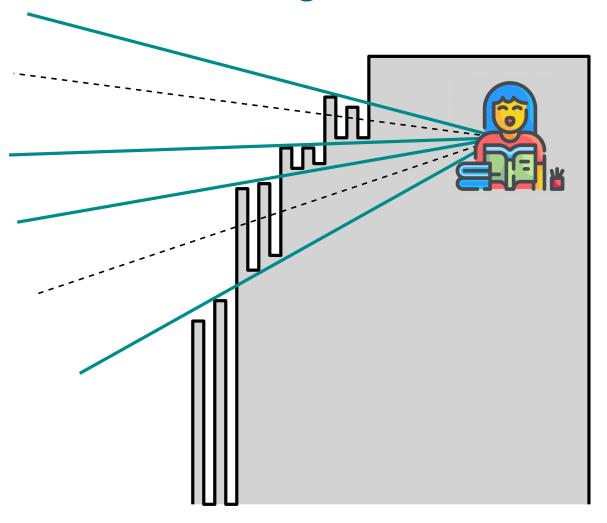








Integer Coordinates



Integer Coordinates

