Deltahedral Domes over Equiangular Polygons

MIT CompGeom Research Group

February 19, 2024

ヨトィヨト

Coauthors

MIT CompGeom Group¹, Hugo A. Akitaya², Erik D. Demaine³, Adam Hesterberg⁴, Anna Lubiw⁵, Jayson Lynch⁶, Joseph O'Rourke⁷, Frederick Stock⁸, and Josef Tkadlec⁹

- 1 Artificial 1st author to highlight that coauthors worked as an equal group.
- 2 U. Mass. Lowell, hugo_akitaya@uml.edu
- 3 MIT, edemaine@mit.edu
- 4 Harvard U., achesterberg@gmail.com
- 5 U. Waterloo, alubiw@uwaterloo.ca
- 6 MIT, jaysonl@mit.edu
- 7 Smith College, jorourke@smith.edu. Corresponding author.
- 8 U. Mass. Lowell, fbs9594@rit.edu
- 9 Charles U., jtkadlec@ist.ac.at

ヘロト 人間 とくほとう ほとう

Deltahedral Domes

Definition. Delta dome \mathcal{D} over P:

- (1) P: convex polygon in xy-plane
- (2) \mathcal{D} : convex surface of unit equilateral triangles
- (3) Triangles can be coplanar
- (4) $P \cup D$ is a convex polyhedron
- (5) $P \cap \mathcal{D} = \partial P$
- (6) No triangle of \mathcal{D} in *xy*-plane; \mathcal{D} above *P*

 $\begin{array}{l} (3) \Rightarrow {\sf faces \ convex \ polyiamonds} \\ (6) \Rightarrow {\sf polyhedron \ positive \ volume} \end{array}$

3

Rectangle domes

Figure: Integral rectangle $a \times b$: roof faces: trapezoids and triangles.

<ロト < 聞 > < 臣 > < 臣 > .

э

Main Theorem

Theorem

(a) The only equiangular convex polygons with integral edge lengths that can be domed have n vertices, where $n \in \{3, 4, 5, 6, 8, 10, 12\}$.

(b) Moreover, for each of these n, we completely characterize which integral edge-length patterns can be domed.

Glazyrin & Pak

Question: Richard Kenyon, 2005 Answered negatively: 2022

Can every "curve" be "spanned"? NO.

MIT CompGeom Research Group

Deltahedral Domes over Equiangular Polygon

February 19, 2024 6 / 28

Differences between Doming & Spanning

- (a) Our *P* is a planar convex polygon. Their *P* is a 3D possibly self-intersecting polygonal chain.
- (b) Our dome D is embedded (non-self-intersecting) and convex. Their PL-surface is (in general) nonconvex, immersed, and self-intersecting.

(人間) とうきょうきょう

Glazyrin & Pak Results (2022)

Thm. 1.2 : There is a nonplanar unit rhombus that cannot be "spanned."

Thm. 1.4 : Every planar regular *n*-gon can be "spanned."

Regular Polygons \bar{P}_n

$n \in \{3, 4, 5, 6, 8, 10, 12\}$ (Not: $n = 7, 9, 11, \ge 13.$)

n = 3, 4, 5

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Hexagon

Figure: Hexagonal Antiprism: \bar{P}_6 .

イロト イポト イヨト イヨト

э

(Hexagonal pyramid: not a dome \mathcal{D} .)

Octagon

Figure: Gyro Elongated Square Diprism \rightarrow Octagon \bar{P}_8 .

MIT CompGeom Research Group Deltahedral Domes over Equiangular Polygon: Februa

February 19, 2024 12 / 2

2

Decagon

Figure: Icosahedron \rightarrow Decagon \bar{P}_{10} .

MIT CompGeom Research Group Deltahedral Domes over Equiangular Polygon

February 19, 2024

Dodecagon

Figure: Hexagonal Antiprism \rightarrow Dodecagon \bar{P}_{12} .

MIT CompGeom Research Group Deltahedral Domes over Equiangular Polygon

Pentagon: Dome not Unique

Figure: A different dome over \bar{P}_5 .

イロト イヨト イヨト イヨト

æ

MIT CompGeom Research Group Deltahedral Domes over Equiangular Polygon: February 19, 2024

Equiangular decagon

Figure: Equiangular decagon with edge lengths alternating 1, 3.

MIT CompGeom Research Group Deltahedral Domes over Equiangular Polygon

Main Theorem (a)

Theorem

(a) The only equiangular convex polygons with integral edge lengths that can be domed have n vertices, where $n \in \{3, 4, 5, 6, 8, 10, 12\}$.

(b) Moreover, for each of these n, we completely characterize which integral edge-length patterns can be domed.

Impossible: $n = 7, 9, 11, \ge 13$.

イロト イポト イヨト イヨト

3

Proof Steps for Theorem (a)

- (1) Each base vertex has three incident dome triangles.
- (2) Curvature constraints imply that there is a dome with at most 6 (non-base) dome vertices.
- (3) Of the *n* dome faces incident to base edges, at least half tilt toward the outside of the base and have a "private" dome vertex. Furthermore, for *n* odd we strengthen this to *all* dome faces incident to base edges.
- (4) Thus, since there are at most 6 dome vertices, $n \le 12$, and for n odd, there are no solutions for $n \ge 6$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

3

Step (1): Three triangles per base vertex

Lemma

In a dome over an equiangular n-gon P_n , $n \ge 7$, each base vertex b_i is incident to three dome triangles.

э

Step (2): Curvature $2\pi \Rightarrow \leq 6$ dome vertices

Lemma

For an equiangular base P_n , $n \ge 7$, there can be at most 6 dome vertices.

MIT CompGeom Research Group Deltahedral Domes over Equiangular Polygon: February 19, 2024

◆□▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 20/28</p>

Pentagonal Antiprism: ±Normals

Deltahedral Domes over Equiangular Polygon MIT CompGeom Research Group February 19, 2024

イロト イポト イモト イモト 一日

Step (3): \pm Normals

Figure: (a) Both t_1 and t_3 downward. (b) Only t_1 downward.

イロト イ想ト イヨト イヨト

2

$\pm {\sf Normals}$

Figure: Gauss map for base vertex b_2 . n_2 : upward normal. Both n_1 , n_3 : downward.

MIT CompGeom Research Group Deltahedral Domes over Equiangular Polygon

Step (4): $n \leq 12$; None odd $n \geq 7$

Lemma

(1) If P is a domeable convex n-gon with all angles $\geq 120^{\circ}$, then $n \leq 12$.

(2) For odd $n \ge 7$, there is no domeable equiangular n-gon.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨーのへで 24/28

Main Theorem

Theorem

(a) The only equiangular convex polygons with integral edge lengths that can be domed have n vertices, where $n \in \{3, 4, 5, 6, 8, 10, 12\}$.

(b) Moreover, for each of these n, we completely characterize which integral edge-length patterns can be domed.

イロト イポト イヨト イヨト

3

Open Problems

- (1) Is there any convex 7-gon that can be domed?
 - \circ We have constructed 9- and 11-gons (non-equilateral) that can be domed.
- (2) Is there any convex *n*-gon with n > 12 that can be domed?
 - \circ Our strongest proved upper bound is n = 24.
- (3) Can any non-equilateral triangle be domed?

 \circ Glazyrin & Pak conjectured that a $2\times 2\times 1$ isosceles triangle cannot be spanned (and so cannot be domed).

イロト イポト イヨト イヨト

Irregular 9-gon Domed

The End

Thanks!

MIT CompGeom Research Group Deltahedral Domes over Equiangular Polygon: February 19, 2024

イロト イポト イヨト イヨト

2