Deltahedral Domes over Equiangular Polygons

MIT CompGeom Research Group

February 19, 2024

Coauthors

```
MIT CompGeom Group }\mp@subsup{}{}{1}\mathrm{ , Hugo A. Akitaya }\mp@subsup{}{}{2}\mathrm{ , Erik D. Demaine }\mp@subsup{}{}{3}\mathrm{ , Adam Hesterberg \({ }^{4}\), Anna Lubiw \({ }^{5}\), Jayson Lynch \({ }^{6}\), Joseph O'Rourke \({ }^{7}\), Frederick Stock \({ }^{8}\), and Josef Tkadlec \({ }^{9}\)
1 Artificial 1st author to highlight that coauthors worked as an equal group.
2 U. Mass. Lowell, hugo_akitaya@uml.edu
3 MIT, edemaine@mit.edu
4 Harvard U., achesterberg@gmail.com
5 U. Waterloo, alubiw@uwaterloo.ca
6 MIT, jaysonl@mit.edu
7 Smith College, jorourke@smith.edu. Corresponding author.
8 U. Mass. Lowell, fbs9594@rit.edu
9 Charles U., jtkadlec@ist.ac.at
```


Deltahedral Domes

Definition. Delta dome \mathcal{D} over P :
(1) P : convex polygon in $x y$-plane
(2) \mathcal{D} : convex surface of unit equilateral triangles
(3) Triangles can be coplanar
(4) $P \cup \mathcal{D}$ is a convex polyhedron
(5) $P \cap \mathcal{D}=\partial P$
(6) No triangle of \mathcal{D} in $x y$-plane; \mathcal{D} above P
(3) \Rightarrow faces convex polyiamonds
(6) \Rightarrow polyhedron positive volume

Rectangle domes

Figure: Integral rectangle $a \times b$: roof faces: trapezoids and triangles.

Main Theorem

Theorem

(a) The only equiangular convex polygons with integral edge lengths that can be domed have n vertices, where $n \in\{3,4,5,6,8,10,12\}$.
(b) Moreover, for each of these n, we completely characterize which integral edge-length patterns can be domed.

Glazyrin \& Pak

Question: Richard Kenyon, 2005

Answered negatively: 2022

DOMES OVER CURVES

ALEXEY GLAZYRIN* AND IGOR PAK ${ }^{\circ}$

DOMES OVER CURVES

Figure 7. Left: Nearly planar tiling of a portion of Q_{n} with rhombi. Middle: Vertical slice. Right: Example of Q_{12} with triangles and nearly-flat rhombi R_{1}.

Can every "curve" be "spanned"? NO.

Differences between Doming \& Spanning

(a) Our P is a planar convex polygon. Their P is a 3D possibly self-intersecting polygonal chain.
(b) Our dome \mathcal{D} is embedded (non-self-intersecting) and convex. Their PL-surface is (in general) nonconvex, immersed, and self-intersecting.

Glazyrin \& Pak Results (2022)

Thm. 1.2 : There is a nonplanar unit rhombus that cannot be "spanned." Thm. 1.4 : Every planar regular n-gon can be "spanned."

Regular Polygons \bar{P}_{n}

$$
\begin{gathered}
n \in\{3,4,5,6,8,10,12\} \\
(\text { Not: } n=7,9,11, \geq 13 .)
\end{gathered}
$$

$$
n=3,4,5
$$

Figure: Pyramids over regular $\bar{P}_{n}, n=3,4,5$.

Hexagon

Figure: Hexagonal Antiprism: \bar{P}_{6}.
(Hexagonal pyramid: not a dome \mathcal{D}.)

Octagon

Figure: Gyro Elongated Square Diprism \rightarrow Octagon \bar{P}_{8}.

Decagon

Figure: Icosahedron \rightarrow Decagon \bar{P}_{10}.

Dodecagon

Figure: Hexagonal Antiprism \rightarrow Dodecagon \bar{P}_{12}.

Pentagon: Dome not Unique

Figure: A different dome over \bar{P}_{5}.

Equiangular decagon

Figure: Equiangular decagon with edge lengths alternating 1, 3 .

Main Theorem (a)

Theorem

(a) The only equiangular convex polygons with integral edge lengths that can be domed have n vertices, where $n \in\{3,4,5,6,8,10,12\}$.
(b) Moreover, for each of these n, we completely characterize which integral edge-length patterns can be domed.

Impossible: $n=7,9,11, \geq 13$.

Proof Steps for Theorem (a)

(1) Each base vertex has three incident dome triangles.
(2) Curvature constraints imply that there is a dome with at most 6 (non-base) dome vertices.
(3) Of the n dome faces incident to base edges, at least half tilt toward the outside of the base and have a "private" dome vertex.
Furthermore, for n odd we strengthen this to all dome faces incident to base edges.
(4) Thus, since there are at most 6 dome vertices, $n \leq 12$, and for n odd, there are no solutions for $n \geq 6$.

Step (1): Three triangles per base vertex

Lemma

In a dome over an equiangular n-gon $P_{n}, n \geq 7$, each base vertex b_{i} is incident to three dome triangles.

Step (2): Curvature $2 \pi \Rightarrow \leq 6$ dome vertices

Lemma

For an equiangular base $P_{n}, n \geq 7$, there can be at most 6 dome vertices.

Pentagonal Antiprism: \pm Normals

Step (3): \pm Normals

Figure: (a) Both t_{1} and t_{3} downward. (b) Only t_{1} downward.

\pm Normals

Figure: Gauss map for base vertex $b_{2} . n_{2}$: upward normal. Both n_{1}, n_{3} : downward.

Step (4): $n \leq 12$; None odd $n \geq 7$

Lemma

(1) If P is a domeable convex n-gon with all angles $\geq 120^{\circ}$, then $n \leq 12$. (2) For odd $n \geq 7$, there is no domeable equiangular n-gon.

Main Theorem

Theorem

(a) The only equiangular convex polygons with integral edge lengths that can be domed have n vertices, where $n \in\{3,4,5,6,8,10,12\}$.
(b) Moreover, for each of these n, we completely characterize which integral edge-length patterns can be domed.

Open Problems

(1) Is there any convex 7 -gon that can be domed?

- We have constructed 9- and 11-gons (non-equilateral) that can be domed.
(2) Is there any convex n-gon with $n>12$ that can be domed?
- Our strongest proved upper bound is $n=24$.
(3) Can any non-equilateral triangle be domed?
- Glazyrin \& Pak conjectured that a $2 \times 2 \times 1$ isosceles triangle cannot be spanned (and so cannot be domed).

Irregular 9-gon Domed

The End

$\mathfrak{T h a n k s ! ~}$

