Connected matchings

Sergio Cabello University of Ljubljana and IMFM, Slovenia

Joint work with Oswin Aichholzer – Graz University of Technology, Austria Viola Mészáros – University of Szeged, Hungary Jan Soukup – Charles University, Czech Republic

The problem

- P a set of points in the plane, general position
- Consider connected matchings for P

The problem

- P a set of points in the plane, general position
- Consider connected matchings for P

The problem

- P a set of points in the plane, general position
- Consider connected matchings for P

Question: find the largest f(n) such that any point set P with n points has a connected matching with at least f(n) segments

What do we show?

- ► There exists a set of *n* points where each connected matching has at most $\sim \frac{n}{3} = .3333 \dots n$ segments
- Each set of *n* points has a connected matching with $\frac{5}{27}n = .185185...n$ segments
 - better than $\frac{1}{6}n = .1666 \dots n$
 - computable in $O(n \log n)$ time
- An interesting discrete geometry result: balanced separator with two edges spanned by P
 - readily implies the $\frac{1}{6}n = .1666 \dots n$ bound
 - computable in O(n) time
 - remake of a result of Ábrego and Fernández-Merchant The rectilinear local crossing number of K_n [JCTA 2017]

Related work?

- Crossing families: find the largest g(n) such that any point set P with n points has at least g(n) segments that pairwise cross
 - · connected vs all pairs intersect

Related work?

- Crossing families: find the largest g(n) such that any point set P with n points has at least g(n) segments that pairwise cross
 - connected vs all pairs intersect
- Ω(√n) by Aronov, Erdőss, Goddard, Kleitman, Klugerman, Pach, and Schulman Crossing families [Combinatorica 1994]
- at least n^{1-o(1)} by Pach, Rubin, and Tardos
 Planar point sets determine many pairwise crossing segments
 [Adv. Math. 2021]
- at most ~ 8n/41 by Aichholzer, Kyncl, Scheucher, Vogtenhuber, and Valtr
 On crossing-families in planar point sets [Comput. Geom. 2022]

Upper bound

best connected matching has $\sim n/3$ segments

Upper bound

best connected matching has $\sim n/3$ segments

Upper bound

best connected matching has $\sim n/3$ segments

Towards lower bound: 2-edge separator

P any set of n points in general position in the plane There exists a path with the following properties

- at most two edges
- vertices at P
- boundary of CH(P) to boundary of CH(P)
- balanced separation: at least $\sim n/3$ points on each side

• now it is easy to get a connected matching with $\sim n/6$ edges

- now it is easy to get a connected matching with $\sim n/6$ edges
- how to get $\sim n/6 + n/100$ edges

- now it is easy to get a connected matching with $\sim n/6$ edges
- how to get $\sim n/6 + n/100$ edges

- now it is easy to get a connected matching with $\sim n/6$ edges
- how to get $\sim n/6 + n/100$ edges

- now it is easy to get a connected matching with $\sim n/6$ edges
- how to get $\sim n/6 + n/100$ edges

- now it is easy to get a connected matching with $\sim n/6$ edges
- how to get $\sim n/6 + n/100$ edges
- Optimize the idea from n/100 to n/54

Conclusions

- New problem: connected matching
- Upper bound $\sim n/3$
- Lower bound $\sim 5n/27$
- 2-edge separator

Conclusions

- New problem: connected matching
- Upper bound $\sim n/3$
- Lower bound $\sim 5n/27$
- 2-edge separator
- Algorithmic construction
- Colored version
- Clossing the gap?
- Optimization problem?

Conclusions

- New problem: connected matching
- Upper bound $\sim n/3$
- Lower bound $\sim 5n/27$
- 2-edge separator
- Algorithmic construction
- Colored version
- Clossing the gap?
- Optimization problem?

THANKS for your time!!