Connected matchings

Sergio Cabello
University of Ljubljana and IMFM, Slovenia

Joint work with
Oswin Aichholzer - Graz University of Technology, Austria Viola Mészáros - University of Szeged, Hungary Jan Soukup - Charles University, Czech Republic

The problem

- P a set of points in the plane, general position
- Consider connected matchings for P

The problem

- P a set of points in the plane, general position
- Consider connected matchings for P

The problem

- P a set of points in the plane, general position
- Consider connected matchings for P

- Question: find the largest $f(n)$ such that any point set P with n points has a connected matching with at least $f(n)$ segments

What do we show?

- There exists a set of n points where each connected matching has at most $\sim \frac{n}{3}=.3333 \ldots n$ segments
- Each set of n points has a connected matching with $\frac{5}{27} n=.185185 \ldots n$ segments
- better than $\frac{1}{6} n=.1666 \ldots n$
- computable in $O(n \log n)$ time
- An interesting discrete geometry result: balanced separator with two edges spanned by P
- readily implies the $\frac{1}{6} n=.1666 \ldots n$ bound
- computable in $O(n)$ time
- remake of a result of Ábrego and Fernández-Merchant The rectilinear local crossing number of $K_{n} \quad$ [JCTA 2017]

Related work?

- Crossing families: find the largest $g(n)$ such that any point set P with n points has at least $g(n)$ segments that pairwise cross
- connected vs all pairs intersect

Related work?

- Crossing families: find the largest $g(n)$ such that any point set P with n points has at least $g(n)$ segments that pairwise cross
- connected vs all pairs intersect
- $\Omega(\sqrt{n})$ by Aronov, Erdőss, Goddard, Kleitman, Klugerman, Pach, and Schulman Crossing families
[Combinatorica 1994]
- at least $n^{1-o(1)}$ by Pach, Rubin, and Tardos

Planar point sets determine many pairwise crossing segments
[Adv. Math. 2021]

- at most $\sim 8 n / 41$ by Aichholzer, Kyncl, Scheucher, Vogtenhuber, and Valtr
On crossing-families in planar point sets [Comput. Geom. 2022]

Upper bound

best connected matching has $\sim n / 3$ segments
$\because \frac{n}{3}$

Upper bound

best connected matching has $\sim n / 3$ segments

Upper bound

best connected matching has $\sim n / 3$ segments

Towards lower bound: 2-edge separator

P any set of n points in general position in the plane
There exists a path with the following properties

- at most two edges
- vertices at P
- boundary of $C H(P)$ to boundary of $C H(P)$
- balanced separation: at least $\sim n / 3$ points on each side

Lower bound

- now it is easy to get a connected matching with $\sim n / 6$ edges

Lower bound

- now it is easy to get a connected matching with $\sim n / 6$ edges
- how to get $\sim n / 6+n / 100$ edges

Lower bound

- now it is easy to get a connected matching with $\sim n / 6$ edges
- how to get $\sim n / 6+n / 100$ edges

Lower bound

- now it is easy to get a connected matching with $\sim n / 6$ edges
- how to get $\sim n / 6+n / 100$ edges

Lower bound

- now it is easy to get a connected matching with $\sim n / 6$ edges
- how to get $\sim n / 6+n / 100$ edges

$$
\geq 2 n / 3-n / 100
$$

$$
\begin{aligned}
& \geq n / 3 \\
& <n / 3+n / 100
\end{aligned}
$$

Lower bound

- now it is easy to get a connected matching with $\sim n / 6$ edges
- how to get $\sim n / 6+n / 100$ edges
- Optimize the idea from $n / 100$ to $n / 54$
$\geq 2 n / 3-n / 100$

$$
\begin{aligned}
& \geq n / 3 \\
& <n / 3+n / 100
\end{aligned}
$$

Conclusions

- New problem: connected matching
- Upper bound $\sim n / 3$
- Lower bound $\sim 5 n / 27$
- 2-edge separator

Conclusions

- New problem: connected matching
- Upper bound $\sim n / 3$
- Lower bound $\sim 5 n / 27$
- 2-edge separator
- Algorithmic construction
- Colored version
- Clossing the gap?
- Optimization problem?

Conclusions

- New problem: connected matching
- Upper bound $\sim n / 3$
- Lower bound $\sim 5 n / 27$
- 2-edge separator
- Algorithmic construction
- Colored version
- Clossing the gap?
- Optimization problem?

THANKS for your time!!

