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Clique-Based Separators

Planar Separator Theorem. [Lipton and Tarjan]
Any planar graph with n vertices has a 2/3-balanced separator of size O(

√
n).

|A| 6 2n/3 |B| 6 2n/3

A B

S

|S| = O(
√
n)



Koebe-Andreev-Thurston Theorem.
Any planar graph is the intersection graph of a set of touching disks.
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What if we allow disks to intersect?
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What if we allow disks to intersect?

Arbitrarily large cliques!
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A Separator Theorem for Disk Graphs. [de Berg et al., SICOMP 2020]
For any intersection graph G of n disks, there is a balanced separator S that can be partitioned into
O(
√
n) cliques.

size of S: number of cliques it consists of
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A Separator Theorem for Disk Graphs. [de Berg et al., SICOMP 2020]
For any intersection graph G of n disks, there is a balanced separator S that can be partitioned into
O(
√
n) cliques.

size of S: number of cliques it consists of

Why are these separators useful?

• Cliques can be handled efficiently for many problems, e.g. Independent Set, q-Coloring.

• Subexponential algorithms for the above (and other) problems. Typically 2O(size(S)) running time.
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Size of Separator

O(
√
n)

O(n2/3)

O(n2/3)

Previous work

Intersection Graphs of

Convex, Fat Objects

Pseudodisks
Geodesic Disks in a
Simple Polygon

Proof uses a packing argument based on fatness.



Intersection Graphs of Size of Separator

Convex, Fat Objects O(
√
n)

Pseudodisks O(n2/3)

Geodesic Disks in a
Simple Polygon

O(n2/3)

Previous work

Proof uses linear union complexity of pseudodisks.



Intersection Graphs of Size of Separator

Convex, Fat Objects O(
√
n)

Pseudodisks O(n2/3)

Geodesic Disks in a
Simple Polygon

O(n2/3)

Previous work

Proof uses that they behave as pseudodisks.



Intersection Graphs of Size of Separator

Convex, Fat Objects O(
√
n)

Pseudodisks O(n2/3)

Geodesic Disks in a
Simple Polygon

O(n2/3)

Geodesic Disks in R2 ?

Previous work

packing argument linear union complexity same as pseudodisks



Our setting

• F ⊂ R2: closed and path-connected.
• d: shortest-path metric on F .
• geodesic disk with center p ∈ F and radius r: all points q ∈ F such that d(p, q) 6 r.
• D: set of n geodesic disks in F .
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This includes:

• Geodesic disks in a polygonal domain
• Geodesic disks on a terrain
• Geodesic disks among weighted regions in the plane
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This includes:

• Geodesic disks in a polygonal domain
• Geodesic disks on a terrain
• Geodesic disks among weighted regions in the plane

w1

w2
w4

w5

w6

w3
w7

w8

Geodesic Disks in R2

Our setting

• F ⊂ R2: closed and path-connected.
• d: shortest-path metric on F .
• geodesic disk with center p ∈ F and radius r: all points q ∈ F such that d(p, q) 6 r.
• D: set of n geodesic disks in F .



More preliminaries

String graphs:
intersection graphs of curves in the plane
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String graphs:
intersection graphs of curves in the plane

Geodesic disk graphs ⊂ String graphs

More preliminaries

Lee’s Separator Theorem for String Graphs
Any string graph with m edges has a balanced separator of size O(

√
m).

String graphs:
intersection graphs of curves in the plane



Ply of a set of objects:
maximum number of objects with a common intersection.

Ply = 3

And a few more



Step 1: Reducing the ply. Repeatedly check whether there exists a p ∈ F with ply(p) ≥ n1/5.
Remove all such cliques from D and place them in separator S.

Construction
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Step 1: Reducing the ply. Repeatedly check whether there exists a p ∈ F with ply(p) ≥ n1/5.
Remove all such cliques from D and place them in separator S.

Construction

After Step 1: size(S) 6 n4/5 and ply(D) < n1/5.
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Step 1: Reducing the ply. Repeatedly check whether there exists a p ∈ F with ply(p) ≥ n1/5.
Remove all such cliques from D and place them in separator S.

Construction

Step 2: Bounding the remaining edges. The number of remaining edges is O(n8/5).

A Clique-Based Separator for Geodesic Disks in R2



Step 1: Reducing the ply. Repeatedly check whether there exists a p ∈ F with ply(p) ≥ n1/5.
Remove all such cliques from D and place them in separator S.

Construction

Step 2: Bounding the remaining edges. The number of remaining edges is O(n8/5).

Step 3: Applying Lee’s Separator Theorem. Gives a (normal) separator of size O(n4/5) for the
remaining disks. We place each disk of this separator in S as a singleton.
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Step 1: Reducing the ply. Repeatedly check whether there exists a p ∈ F with ply(p) ≥ n1/5.
Remove all such cliques from D and place them in separator S.

Construction

Step 2: Bounding the remaining edges. The number of remaining edges is O(n8/5).

After Step 1: size(S) 6 n4/5 and ply(D) < n1/5.

Step 3: Applying Lee’s Separator Theorem. Gives a (normal) separator of size O(n4/5) for the
remaining disks. We place each disk of this separator in S as a singleton.

After Step 3: size(S) = O(n4/5)

A Clique-Based Separator for Geodesic Disks in R2
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Step 2: Bounding the remaining edges. The number of remaining edges is O(n8/5).
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Crossing Lemma.

Any planar drawing of a graph with n vertices and m ≥ n edges has Ω
(

m3

n2

)
crossings.

X = set of crossings
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Step 2: Bounding the remaining edges. The number of remaining edges is O(n8/5).



Proof by contradiction.

Main idea:

• Assume that |E| > cn8/5 edges.

• From Crossing Lemma, |X | > c′ |E|3
n2 > ... > useful bound

• Show that
∑

x∈X ply(x) ≥ |X |n1/5

• Then there exists a crossing x ∈ X with ply(x) ≥ n1/5, contradiction.
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Step 2: Bounding the remaining edges. The number of remaining edges is O(n8/5).
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Conclusion

Intersection Graphs of Size of Separator

Convex, Fat Objects O(
√
n)

Pseudodisks O(n2/3)
Geodesic Disks in a
Simple Polygon

O(n2/3)

Geodesic Disks in R2 O(n4/5)

In SoCG 2024:

• Improvement to O(n3/4+ε).
• Application to distance oracles.

Future Directions:

• Further improving the upper bounds?
• What about lower bounds? Thank you!
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Split every edge in two half-edges by choosing a ∈ Di ∩Dj , b ∈ Dk ∩D`.
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a

b

x
• d(x, a) < d(x, b)

⇒ d(pk, x) + d(x, a) < d(pk, x) + d(x, b)

⇒ d(pk, x) + d(x, a) < rk

⇒ red crossings are in Dk

Take-away.

Intuitively, the existence of crossing x is ”responsible” for an increase in the ply of
these red crossings.

Reality is more technical...


