A Clique-Based Separator for Intersection Graphs of Geodesic Disks in \mathbb{R}^{2}

Leonidas Theocharous (TU Eindhoven)

Joint work with:

- Boris Aronov (NYU)
- Mark de Berg (TU/e)

Clique-Based Separators

Planar Separator Theorem. [Lipton and Tarjan]
Any planar graph with n vertices has a 2/3-balanced separator of size $O(\sqrt{n})$.

Clique-Based Separators

Koebe-Andreev-Thurston Theorem.

Any planar graph is the intersection graph of a set of touching disks.

Clique-Based Separators

What if we allow disks to intersect?

Clique-Based Separators

What if we allow disks to intersect?

Clique-Based Separators

Clique-Based Separators

A Separator Theorem for Disk Graphs. [de Berg et al., SICOMP 2020]
For any intersection graph G of n disks, there is a balanced separator S that can be partitioned into $O(\sqrt{n})$ cliques.
size of S : number of cliques it consists of

Clique-Based Separators

A Separator Theorem for Disk Graphs. [de Berg et al., SICOMP 2020]

For any intersection graph G of n disks, there is a balanced separator S that can be partitioned into $O(\sqrt{n})$ cliques.
size of S : number of cliques it consists of

Why are these separators useful?

- Cliques can be handled efficiently for many problems, e.g. Independent Set, q-Coloring.
- Subexponential algorithms for the above (and other) problems. Typically $2^{O(\text { size }(S))}$ running time.

Previous work

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O\left(n^{2 / 3}\right)$
Geodesic Disks in a Simple Polygon	$O\left(n^{2 / 3}\right)$

Proof uses a packing argument based on fatness.

Previous work

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O\left(n^{2 / 3}\right)$
Geodesic Disks in a Simple Polygon	$O\left(n^{2 / 3}\right)$

Proof uses linear union complexity of pseudodisks.

Previous work

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O\left(n^{2 / 3}\right)$
Geodesic Disks in a Simple Polygon	$O\left(n^{2 / 3}\right)$

Proof uses that they behave as pseudodisks.

Previous work

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O\left(n^{2 / 3}\right)$
Geodesic Disks in a	$O\left(n^{2 / 3}\right)$
Simple Polygon	$\boldsymbol{?}$

packing argument

linear union complexity

same as pseudodisks

Geodesic Disks in \mathbb{R}^{2}

Our setting

- $F \subset \mathbb{R}^{2}$: closed and path-connected.
- d : shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r : all points $q \in F$ such that $d(p, q) \leqslant r$.
- \mathcal{D} : set of n geodesic disks in F.

Geodesic Disks in \mathbb{R}^{2}

Our setting

- $F \subset \mathbb{R}^{2}$: closed and path-connected.
- d : shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r : all points $q \in F$ such that $d(p, q) \leqslant r$.
- \mathcal{D} : set of n geodesic disks in F.

Geodesic Disks in \mathbb{R}^{2}

Our setting

- $F \subset \mathbb{R}^{2}$: closed and path-connected.
- d : shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r : all points $q \in F$ such that $d(p, q) \leqslant r$.
- \mathcal{D} : set of n geodesic disks in F.

This includes:

- Geodesic disks in a polygonal domain
- Geodesic disks on a terrain
- Geodesic disks among weighted regions in the plane

Geodesic Disks in \mathbb{R}^{2}

Our setting

- $F \subset \mathbb{R}^{2}$: closed and path-connected.
- d : shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r : all points $q \in F$ such that $d(p, q) \leqslant r$.
- \mathcal{D} : set of n geodesic disks in F.

This includes:

- Geodesic disks in a polygonal domain
- Geodesic disks on a terrain
- Geodesic disks among weighted regions in the plane

Geodesic Disks in \mathbb{R}^{2}

Our setting

- $F \subset \mathbb{R}^{2}$: closed and path-connected.
- d : shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r : all points $q \in F$ such that $d(p, q) \leqslant r$.
- \mathcal{D} : set of n geodesic disks in F.

This includes:

- Geodesic disks in a polygonal domain
- Geodesic disks on a terrain
- Geodesic disks among weighted regions in the plane

More preliminaries

String graphs:
intersection graphs of curves in the plane

More preliminaries

String graphs:
intersection graphs of curves in the plane

String graphs: intersection graphs of curves in the plane

Geodesic disk graphs \subset String graphs

String graphs: intersection graphs of curves in the plane

Geodesic disk graphs \subset String graphs

Lee's Separator Theorem for String Graphs

Any string graph with m edges has a balanced separator of size $O(\sqrt{m})$.

And a few more

Ply of a set of objects:
maximum number of objects with a common intersection.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

Construction

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $\operatorname{ply}(p) \geq n^{1 / 5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S}.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

Construction

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $\operatorname{ply}(p) \geq n^{1 / 5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S}.

After Step 1: $\operatorname{size}(\mathcal{S}) \leqslant n^{4 / 5}$ and $\operatorname{ply}(\mathcal{D})<n^{1 / 5}$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

Construction

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $\operatorname{ply}(p) \geq n^{1 / 5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S}.

Step 2: Bounding the remaining edges. The number of remaining edges is $O\left(n^{8 / 5}\right)$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

Construction

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $\operatorname{ply}(p) \geq n^{1 / 5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S}.

Step 2: Bounding the remaining edges. The number of remaining edges is $O\left(n^{8 / 5}\right)$.

Step 3: Applying Lee's Separator Theorem. Gives a (normal) separator of size $O\left(n^{4 / 5}\right)$ for the remaining disks. We place each disk of this separator in \mathcal{S} as a singleton.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

Construction

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $\operatorname{ply}(p) \geq n^{1 / 5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S}.

After Step 1: $\operatorname{size}(\mathcal{S}) \leqslant n^{4 / 5}$ and $\operatorname{ply}(\mathcal{D})<n^{1 / 5}$.

Step 2: Bounding the remaining edges. The number of remaining edges is $O\left(n^{8 / 5}\right)$.

Step 3: Applying Lee's Separator Theorem. Gives a (normal) separator of size $O\left(n^{4 / 5}\right)$ for the remaining disks. We place each disk of this separator in \mathcal{S} as a singleton.

After Step 3: $\operatorname{size}(\mathcal{S})=O\left(n^{4 / 5}\right)$

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

Step 2: Bounding the remaining edges. The number of remaining edges is $O\left(n^{8 / 5}\right)$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

Step 2: Bounding the remaining edges. The number of remaining edges is $O\left(n^{8 / 5}\right)$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

Step 2: Bounding the remaining edges. The number of remaining edges is $O\left(n^{8 / 5}\right)$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

Step 2: Bounding the remaining edges. The number of remaining edges is $O\left(n^{8 / 5}\right)$.

$$
\mathcal{X}=\text { set of crossings }
$$

Crossing Lemma.

Any planar drawing of a graph with n vertices and $m \geq n$ edges has $\Omega\left(\frac{m^{3}}{n^{2}}\right)$ crossings.

Step 2: Bounding the remaining edges. The number of remaining edges is $O\left(n^{8 / 5}\right)$.

Proof by contradiction.

Main idea:

- Assume that $|E|>c n^{8 / 5}$ edges.
- From Crossing Lemma, $|\mathcal{X}|>c^{\prime} \frac{|E|^{3}}{n^{2}}>\ldots>$ useful bound
- Show that $\sum_{x \in \mathcal{X}} \operatorname{ply}(x) \geq|\mathcal{X}| n^{1 / 5}$
- Then there exists a crossing $x \in \mathcal{X}$ with $\operatorname{ply}(x) \geq n^{1 / 5}$, contradiction.

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O\left(n^{2 / 3}\right)$
Geodesic Disks in a Simple Polygon	$O\left(n^{2 / 3}\right)$
Geodesic Disks in \mathbb{R}^{2}	$O\left(n^{4 / 5}\right)$

Conclusion

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O\left(n^{2 / 3}\right)$
Geodesic Disks in a Simple Polygon	$O\left(n^{2 / 3}\right)$
Geodesic Disks in \mathbb{R}^{2}	$O\left(n^{4 / 5}\right)$

In SoCG 2024:

- Improvement to $O\left(n^{3 / 4+\varepsilon}\right)$.
- Application to distance oracles.

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O\left(n^{2 / 3}\right)$
Geodesic Disks in a Simple Polygon	$O\left(n^{2 / 3}\right)$
Geodesic Disks in \mathbb{R}^{2}	$O\left(n^{4 / 5}\right)$

In SoCG 2024:

- Improvement to $O\left(n^{3 / 4+\varepsilon}\right)$.
- Application to distance oracles.

Future Directions:

- Further improving the upper bounds?
- What about lower bounds?

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O\left(n^{2 / 3}\right)$
Geodesic Disks in a Simple Polygon	$O\left(n^{2 / 3}\right)$
Geodesic Disks in \mathbb{R}^{2}	$O\left(n^{4 / 5}\right)$

Future Directions:

- Further improving the upper bounds?
- What about lower bounds?

In SoCG 2024:

- Improvement to $O\left(n^{3 / 4+\varepsilon}\right)$.
- Application to distance oracles.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

Split every edge in two half-edges by choosing $a \in D_{i} \cap D_{j}, b \in D_{k} \cap D_{\ell}$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

Split every edge in two half-edges by choosing $a \in D_{i} \cap D_{j}, b \in D_{k} \cap D_{\ell}$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

Split every edge in two half-edges by choosing $a \in D_{i} \cap D_{j}, b \in D_{k} \cap D_{\ell}$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

Split every edge in two half-edges by choosing $a \in D_{i} \cap D_{j}, b \in D_{k} \cap D_{\ell}$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

Split every edge in two half-edges by choosing $a \in D_{i} \cap D_{j}, b \in D_{k} \cap D_{\ell}$.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

Either:

- $d(x, a)<d(x, b)$ or
- $d(x, b) \leqslant d(x, a)$

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively

Either:

- $d(x, a)<d(x, b)$ or
- $d(x, b) \leqslant d(x, a)$

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively
- $d(x, a)<d(x, b)$
$\Rightarrow d\left(p_{k}, x\right)+d(x, a)<d\left(p_{k}, x\right)+d(x, b)$
$\Rightarrow d\left(p_{k}, x\right)+d(x, a)<r_{k}$

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively
- $d(x, a)<d(x, b)$
$\Rightarrow d\left(p_{k}, x\right)+d(x, a)<d\left(p_{k}, x\right)+d(x, b)$
$\Rightarrow d\left(p_{k}, x\right)+d(x, a)<r_{k}$
\Rightarrow red crossings are in D_{k}

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively
- $d(x, a)<d(x, b)$
$\Rightarrow d\left(p_{k}, x\right)+d(x, a)<d\left(p_{k}, x\right)+d(x, b)$
$\Rightarrow d\left(p_{k}, x\right)+d(x, a)<r_{k}$
\Rightarrow red crossings are in D_{k}

Take-away.
Intuitively, the existence of crossing x is "responsible" for an increase in the ply of these red crossings.

A Clique-Based Separator for Geodesic Disks in \mathbb{R}^{2}

- p_{m}, r_{m} : center and radius of D_{m} respectively
- $d(x, a)<d(x, b)$
$\Rightarrow d\left(p_{k}, x\right)+d(x, a)<d\left(p_{k}, x\right)+d(x, b)$
$\Rightarrow d\left(p_{k}, x\right)+d(x, a)<r_{k}$
\Rightarrow red crossings are in D_{k}

Take-away.
Intuitively, the existence of crossing x is "responsible" for an increase in the ply of these red crossings.

Reality is more technical...

