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Clique-Based Separators

Planar Separator Theorem. [Lipton and Tarjan]
Any planar graph with n vertices has a 2/3-balanced separator of size O(y/n).
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Clique-Based Separators

Koebe-Andreev-Thurston Theorem.
Any planar graph is the intersection graph of a set of touching disks.

o
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Clique-Based Separators

What if we allow disks to intersect?

Arbitrarily large cliques!




Clique-Based Separators

A Separator Theorem for Disk Graphs. [de Berg et al., SICOMP 2020]
For any intersection graph G of n disks, there is a balanced separator S that can be partitioned into

O(y/n) cliques.

size of S: number of cliques it consists of



Clique-Based Separators

A Separator Theorem for Disk Graphs. [de Berg et al., SICOMP 2020]
For any intersection graph G of n disks, there is a balanced separator S that can be partitioned into

O(y/n) cliques.

size of S: number of cliques it consists of

Why are these separators useful?

e Cliques can be handled efficiently for many problems, e.g. INDEPENDENT SET, ¢-COLORING.

e Subexponential algorithms for the above (and other) problems. Typically 29(i¢(5)) running time.



Previous work

Intersection Graphs of | Size of Separator

Convex, Fat Objects O(y/n)
Pseudodisks O(RQ/S)
Geodesic Disks in a O(n2/3)

Simple Polygon

Proof uses a packing argument based on fatness.
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Simple Polygon

Proof uses linear union complexity of pseudodisks.




Previous work

Intersection Graphs of | Size of Separator

Convex, Fat Objects O(/n)
Pseudodisks O(”2/3)
Geodesic Disks in a O(n2/3)

Simple Polygon

Proof uses that they behave as pseudodisks.



Previous work

Intersection Graphs of | Size of Separator

Convex, Fat Objects O(/n)
Pseudodisks O(RQ/S)
Geodesic Disks in a 2/3
Simple Polygon On™*)
Geodesic Disks in R? ?

same as pseudodisks

packing argument linear union complexity



Geodesic Disks in R?

Our setting

F C R?: closed and path-connected.
d: shortest-path metric on F'.

geodesic disk with center p € F' and radius r: all points ¢ € F such that d(p,q) < r.
D: set of n geodesic disks in F.
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Our setting
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More preliminaries

String graphs:
intersection graphs of curves in the plane

Geodesic disk graphs C String graphs

Lee’s Separator Theorem for String Graphs
Any string graph with m edges has a balanced separator of size O(y/m).



And a few more

Ply of a set of objects:
maximum number of objects with a common intersection.

Ply = 3




A Clique-Based Separator for Geodesic Disks in R?

Construction

Step 1: Reducing the ply. Repeatedly check whether there exists a p € F with ply(p) > n'/5.

Remove all such cliques from D and place them in separator S.
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Construction
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Remove all such cliques from D and place them in separator S.

After Step 1: size(S) < n*/% and ply(D) < n'/?.
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Remove all such cliques from D and place them in separator S.

Step 2: Bounding the remaining edges. The number of remaining edges is O(n®/%).

Step 3: Applying Lee’s Separator Theorem. Gives a (normal) separator of size O(n*/?) for the
remaining disks. We place each disk of this separator in & as a singleton.



A Clique-Based Separator for Geodesic Disks in R?

Construction

Step 1: Reducing the ply. Repeatedly check whether there exists a p € F with ply(p) > n'/5.

Remove all such cliques from D and place them in separator S.

After Step 1: size(S) < n*/% and ply(D) < n'/?.

Step 2: Bounding the remaining edges. The number of remaining edges is O(n®/%).

Step 3: Applying Lee’s Separator Theorem. Gives a (normal) separator of size O(n*/?) for the
remaining disks. We place each disk of this separator in & as a singleton.

After Step 3: size(S) = O(n*/?)



A Clique-Based Separator for Geodesic Disks in R?

Step 2: Bounding the remaining edges. The number of remaining edges is O(n®/%).
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A Clique-Based Separator for Geodesic Disks in R?

Step 2: Bounding the remaining edges. The number of remaining edges is O(n®/%).

X = set of crossings

Crossing Lemma.

m>

s ) crossings.

Any planar drawing of a graph with n vertices and m > n edges has () (



A Clique-Based Separator for Geodesic Disks in R?

Step 2: Bounding the remaining edges. The number of remaining edges is O(n®/%).

Proof by contradiction.

Main idea:

o Assume that |E| > cn®/® edges.

/| E|?
’)’LQ

> ... > useful bound

e From Crossing Lemma, |X| > c
e Show that }___ 5 ply(z) > |X|nt/5

e Then there exists a crossing = € X with ply(z) > n'/?, contradiction.



Conclusion

Intersection Graphs of | Size of Separator
Convex, Fat Objects O(y/n)

Pseudodisks O(n?/3)
Geodesic Disks in a
Simple Polygon

Geodesic Disks in R? O(n*/5)
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Intersection Graphs of | Size of Separator In S0CG 2024:
Convex, Fat Objects O(y/n)
Pseudodisks O(n2/3) e Improvement to O(n3/4+5).

Geodesic Disks in 3 e Application to distance oracles.

2/3
Simple Polygon O(n™*)
Geodesic Disks in R? O(n*/5)

Future Directions:

e Further improving the upper bounds? | h a n k O u I
e What about lower bounds? .
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Pk ® ., center and ra-
dius of D,,, respectively

Either:
D; e d(x,a) < d(x,b) or
e d(x,b) <d(z,a)



A Clique-Based Separator for Geodesic Disks in R?

Pk ® ., center and ra-
dius of D,,, respectively

D, o d(z,a) < d(x,b)
= d(pr,x) + d(x,a) < d(pg,x) + d(z, b)
Di = d(pg,x) + d(x,a) < rg
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b = red crossings are in Dy,
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Pk ® ., center and ra-
dius of D,,, respectively

L a
D, e d(x,a) < d(x,b)
= d(pr,x) +d(x,a) < d(pr,x) + d(x,b)
i = d(pg, ) + d(x,a) < g
b = red crossings are in Dy,

Take-away.

Intuitively, the existence of crossing x is "responsible” for an increase in the ply of
these red crossings.

Reality 1s more technical...



