A Clique-Based Separator for Intersection Graphs of Geodesic Disks in \mathbb{R}^2

Leonidas Theocharous (TU Eindhoven)

Joint work with:

- Boris Aronov (NYU)
- Mark de Berg (TU/e)

Planar Separator Theorem. [Lipton and Tarjan]

Any planar graph with n vertices has a 2/3-balanced separator of size $O(\sqrt{n})$.

Koebe-Andreev-Thurston Theorem.

Any planar graph is the intersection graph of a set of touching disks.

What if we allow disks to intersect?

What if we allow disks to intersect?

A Separator Theorem for Disk Graphs. [de Berg et al., SICOMP 2020] For any intersection graph G of n disks, there is a balanced separator S that can be partitioned into $O(\sqrt{n})$ cliques.

size of S: number of cliques it consists of

A Separator Theorem for Disk Graphs. [de Berg et al., SICOMP 2020] For any intersection graph G of n disks, there is a balanced separator S that can be partitioned into $O(\sqrt{n})$ cliques.

size of S: number of cliques it consists of

Why are these separators useful?

- Cliques can be handled efficiently for many problems, e.g. INDEPENDENT SET, q-COLORING.
- Subexponential algorithms for the above (and other) problems. Typically $2^{O(size(S))}$ running time.

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O(n^{2/3})$
Geodesic Disks in a Simple Polygon	$O(n^{2/3})$

Proof uses a packing argument based on fatness.

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O(n^{2/3})$
Geodesic Disks in a Simple Polygon	$O(n^{2/3})$

Proof uses linear union complexity of pseudodisks.

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O(n^{2/3})$
Geodesic Disks in a Simple Polygon	$O(n^{2/3})$

Proof uses that they behave as pseudodisks.

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O(n^{2/3})$
Geodesic Disks in a Simple Polygon	$O(n^{2/3})$
Geodesic Disks in \mathbb{R}^2	?

packing argument

linear union complexity

same as pseudodisks

Our setting

- $F \subset \mathbb{R}^2$: closed and path-connected.
- d: shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r: all points $q \in F$ such that $d(p,q) \leq r$.
- \mathcal{D} : set of n geodesic disks in F.

Our setting

- $F \subset \mathbb{R}^2$: closed and path-connected.
- d: shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r: all points $q \in F$ such that $d(p,q) \leq r$.
- \mathcal{D} : set of n geodesic disks in F.

Our setting

- $F \subset \mathbb{R}^2$: closed and path-connected.
- d: shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r: all points $q \in F$ such that $d(p,q) \leq r$.
- \mathcal{D} : set of *n* geodesic disks in *F*.

This includes:

- Geodesic disks in a **polygonal domain**
- Geodesic disks on a terrain
- Geodesic disks among weighted regions in the plane

Our setting

- $F \subset \mathbb{R}^2$: closed and path-connected.
- d: shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r: all points $q \in F$ such that $d(p,q) \leq r$.
- \mathcal{D} : set of *n* geodesic disks in *F*.

This includes:

- Geodesic disks in a polygonal domain
- Geodesic disks on a **terrain**
- Geodesic disks among weighted regions in the plane

Our setting

- $F \subset \mathbb{R}^2$: closed and path-connected.
- d: shortest-path metric on F.
- geodesic disk with center $p \in F$ and radius r: all points $q \in F$ such that $d(p,q) \leq r$.
- \mathcal{D} : set of *n* geodesic disks in *F*.

This includes:

- Geodesic disks in a polygonal domain
- Geodesic disks on a terrain
- Geodesic disks among weighted regions in the plane

String graphs: intersection graphs of curves in the plane

String graphs: intersection graphs of curves in the plane

String graphs: intersection graphs of curves in the plane

Geodesic disk graphs \subset **String graphs**

String graphs: intersection graphs of curves in the plane

Geodesic disk graphs \subset **String graphs**

Lee's Separator Theorem for String Graphs Any string graph with m edges has a balanced separator of size $O(\sqrt{m})$.

And a few more

Ply of a set of objects:

maximum number of objects with a common intersection.

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $ply(p) \ge n^{1/5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S} .

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $ply(p) \geq n^{1/5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S} .

After **Step 1**: size(S) $\leq n^{4/5}$ and ply(D) $< n^{1/5}$.

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $ply(p) \geq n^{1/5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S} .

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $ply(p) \geq n^{1/5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S} .

Step 2: Bounding the remaining edges. The number of remaining edges is $O(n^{8/5})$.

Step 3: Applying Lee's Separator Theorem. Gives a (normal) separator of size $O(n^{4/5})$ for the remaining disks. We place each disk of this separator in \mathcal{S} as a singleton.

Step 1: Reducing the ply. Repeatedly check whether there exists a $p \in F$ with $ply(p) \geq n^{1/5}$. Remove all such cliques from \mathcal{D} and place them in separator \mathcal{S} .

After **Step 1**: size(S) $\leq n^{4/5}$ and ply(D) $< n^{1/5}$.

Step 2: Bounding the remaining edges. The number of remaining edges is $O(n^{8/5})$.

Step 3: Applying Lee's Separator Theorem. Gives a (normal) separator of size $O(n^{4/5})$ for the remaining disks. We place each disk of this separator in \mathcal{S} as a singleton.

After **Step 3**: size(S) = $O(n^{4/5})$

Crossing Lemma.

Any planar drawing of a graph with n vertices and $m \ge n$ edges has $\Omega\left(\frac{m^3}{n^2}\right)$ crossings.

$\mathcal{X} = \text{set of crossings}$

Proof by contradiction. Main idea:

• Assume that $|E| > cn^{8/5}$ edges.

- From Crossing Lemma, $|\mathcal{X}| > c' \frac{|E|^3}{n^2} > ... >$ useful bound
- Show that $\sum_{x \in \mathcal{X}} \mathsf{ply}(x) \ge |\mathcal{X}| n^{1/5}$
- Then there exists a crossing $x \in \mathcal{X}$ with $ply(x) \ge n^{1/5}$, contradiction.

Conclusion

Intersection Graphs of	Size of Separator	
Convex, Fat Objects	$O(\sqrt{n})$	
Pseudodisks	$O(n^{2/3})$	
Geodesic Disks in a	$O(n^{2/3})$	
Simple Polygon	O(n +)	
Geodesic Disks in \mathbb{R}^2	$O(n^{4/5})$	

C	•
Conc	lusion

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O(n^{2/3})$
Geodesic Disks in a	$O(n^{2/3})$
Simple Polygon	O(n +)
Geodesic Disks in \mathbb{R}^2	$O(n^{4/5})$

In SoCG 2024:

- Improvement to $O(n^{3/4+\varepsilon})$.
- Application to distance oracles.

$e^{3/4+arepsilon}$).

Conc	lusion

Intersection Graphs of	Size of Separator
Convex, Fat Objects	$O(\sqrt{n})$
Pseudodisks	$O(n^{2/3})$
Geodesic Disks in a	$O(n^{2/3})$
Simple Polygon	$O(n^{\prime})$
Geodesic Disks in \mathbb{R}^2	$O(n^{4/5})$

In SoCG 2024:

- Improvement to $O(n^{3/4+\varepsilon})$.
- Application to distance oracles.

Future Directions:

- Further improving the upper bounds?
- What about lower bounds?

$e^{3/4+arepsilon}$).

Conc	lusion

Intersection Graphs of	Size of Separator	
Convex, Fat Objects	$O(\sqrt{n})$	
Pseudodisks	$O(n^{2/3})$	
Geodesic Disks in a	$O(n^{2/3})$	
Simple Polygon		
Geodesic Disks in \mathbb{R}^2	$O(n^{4/5})$	

In SoCG 2024:

- Improvement to $O(n^{3/4+\varepsilon})$.
- Application to distance oracles.

Future Directions:

- Further improving the upper bounds?
- What about lower bounds?

Thank you!

Split every edge in two half-edges by choosing $a \in D_i \cap D_j$, $b \in D_k \cap D_\ell$.

Split every edge in two half-edges by choosing $a \in D_i \cap D_j$, $b \in D_k \cap D_\ell$.

Split every edge in two half-edges by choosing $a \in D_i \cap D_j$, $b \in D_k \cap D_\ell$.

Split every edge in two half-edges by choosing $a \in D_i \cap D_j$, $b \in D_k \cap D_\ell$.

Split every edge in two half-edges by choosing $a \in D_i \cap D_j$, $b \in D_k \cap D_\ell$.

Either:

- d(x,a) < d(x,b) or $d(x,b) \leqslant d(x,a)$

• p_m, r_m : center and radius of D_m respectively

Either:

- d(x,a) < d(x,b) or $d(x,b) \leq d(x,a)$

• d(x,a) < d(x,b) $\Rightarrow d(p_k, x) + d(x, a) < r_k$

• p_m, r_m : center and radius of D_m respectively

- d(x,a) < d(x,b) $\Rightarrow d(p_k, x) + d(x, a) < r_k$
 - \Rightarrow red crossings are in D_k

• p_m, r_m : center and radius of D_m respectively

Take-away.

Intuitively, the existence of crossing x is "responsible" for an increase in the ply of these red crossings.

• p_m, r_m : center and radius of D_m respectively

Take-away.

Intuitively, the existence of crossing x is "responsible" for an increase in the ply of these red crossings.

Reality is more technical...

• p_m, r_m : center and radius of D_m respectively