

On k-Plane Insertion into Plane Drawings

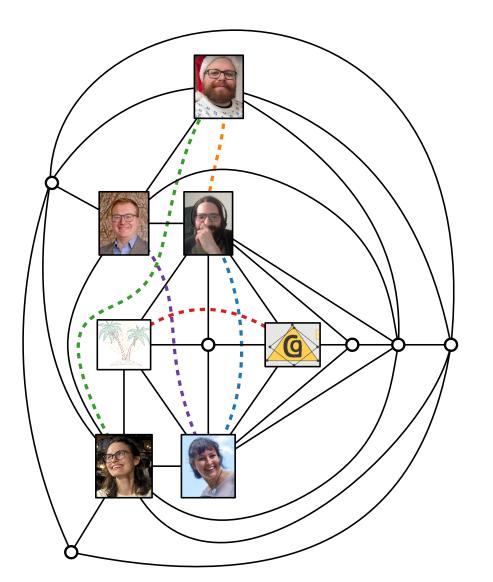
Julia Katheder

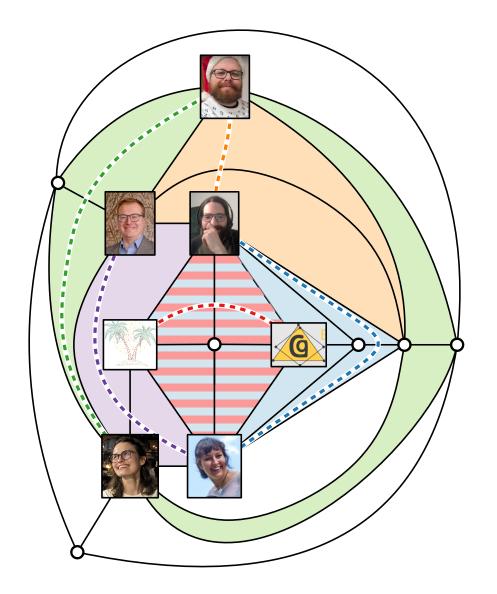
Philipp Kindermann

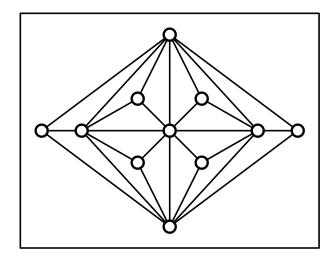
Fabian Klute

Irene Parada

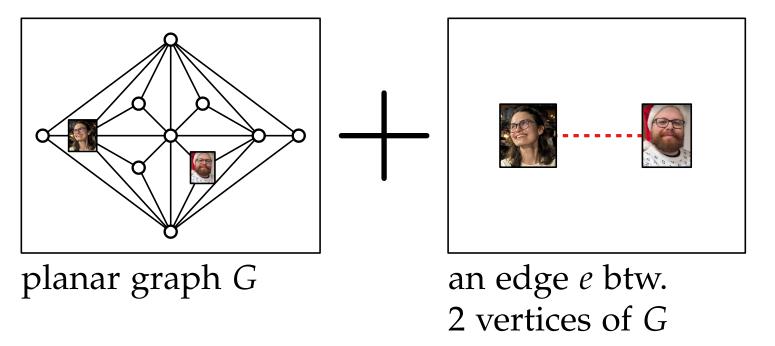
Ignaz Rutter

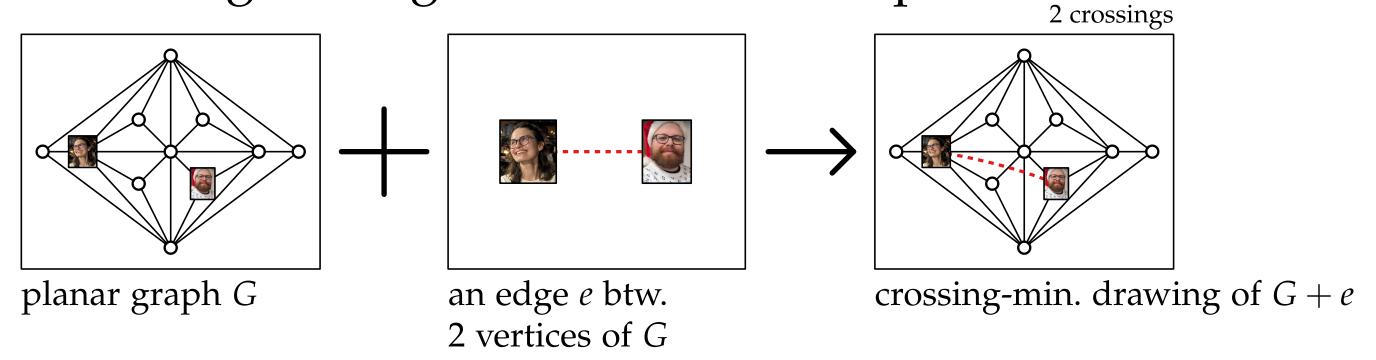


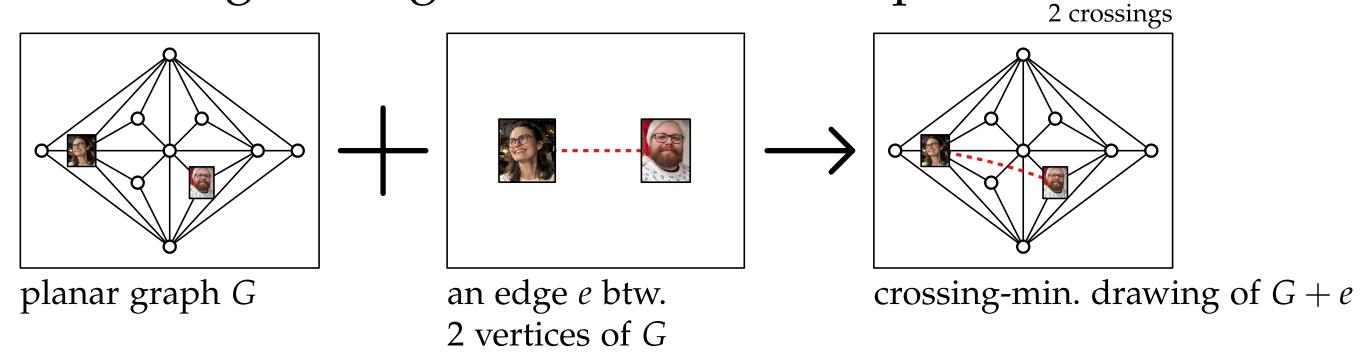


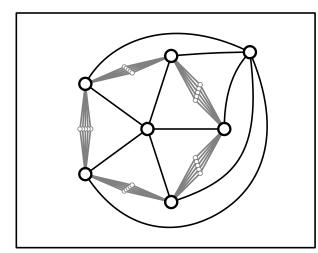


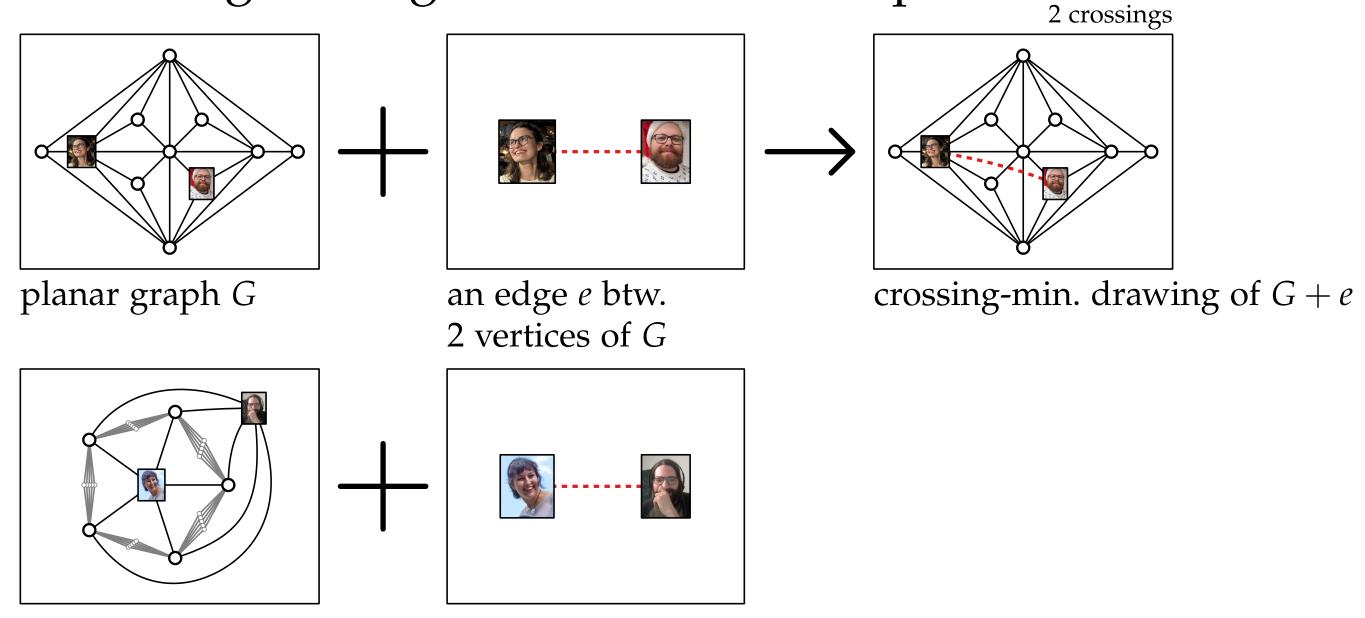
planar graph G

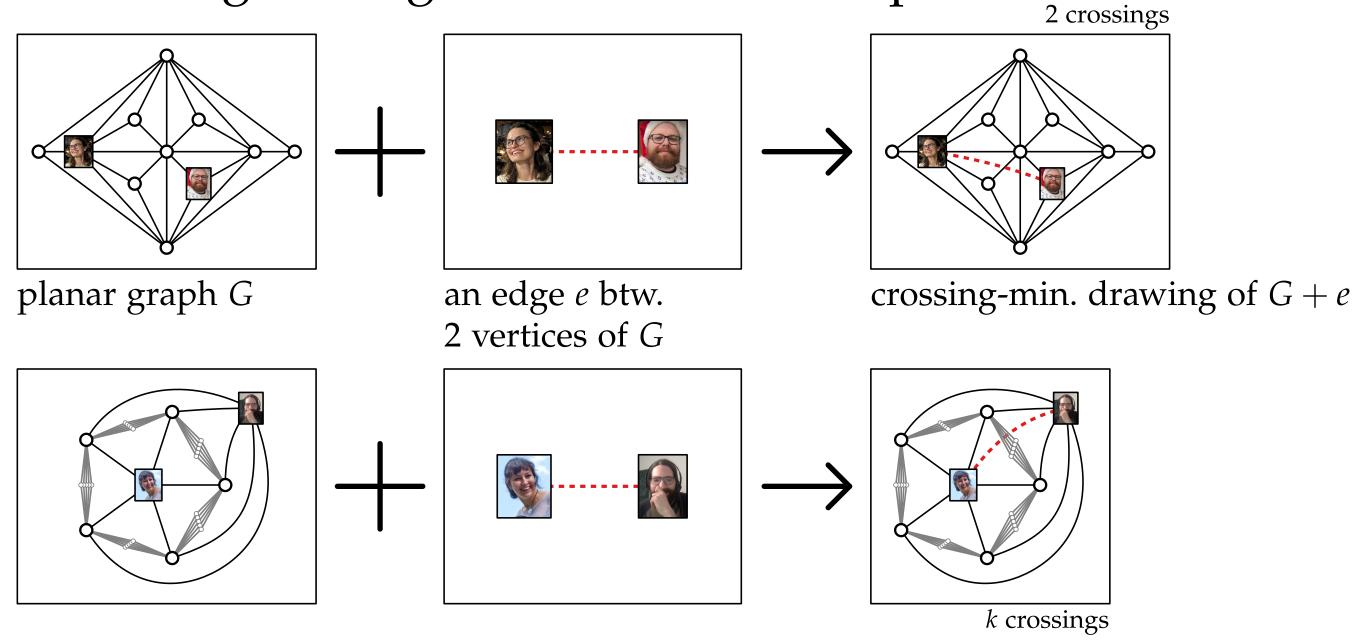


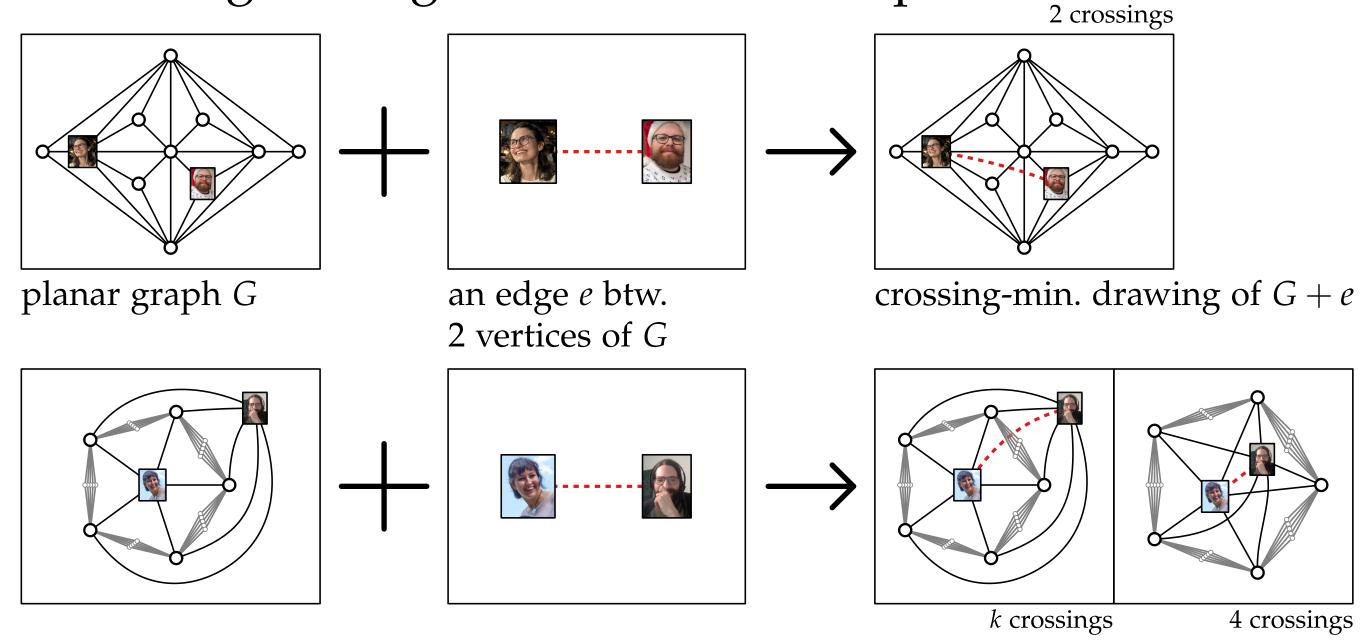


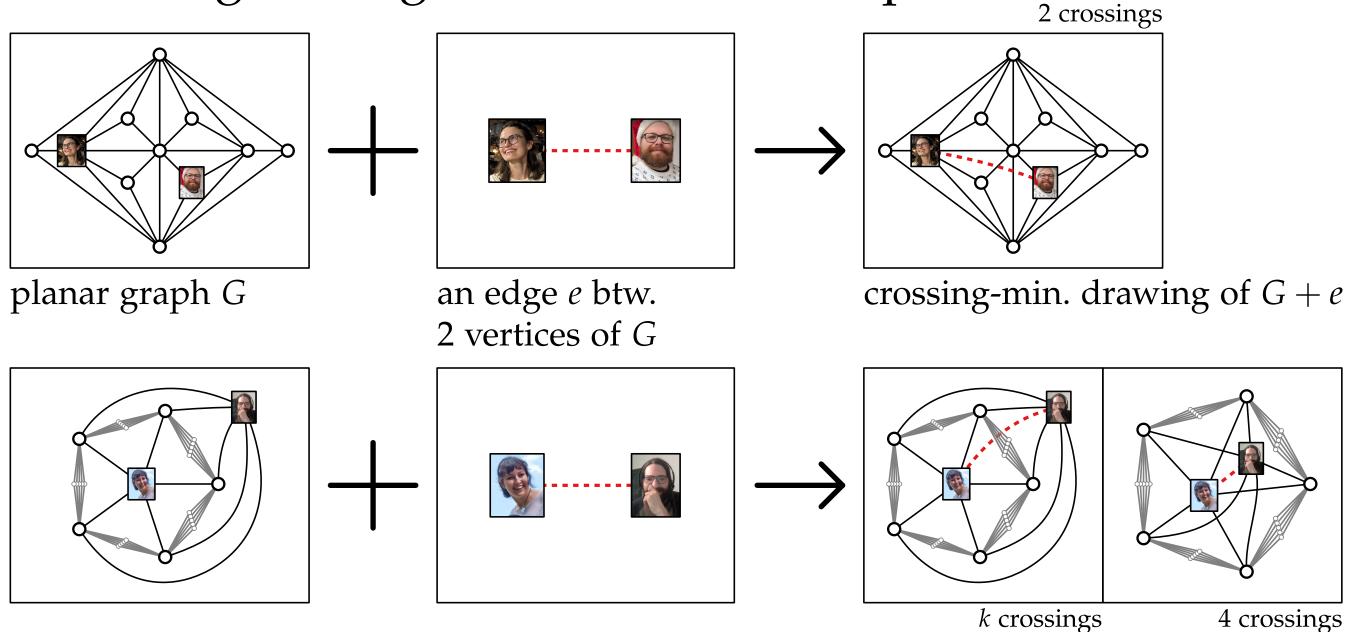






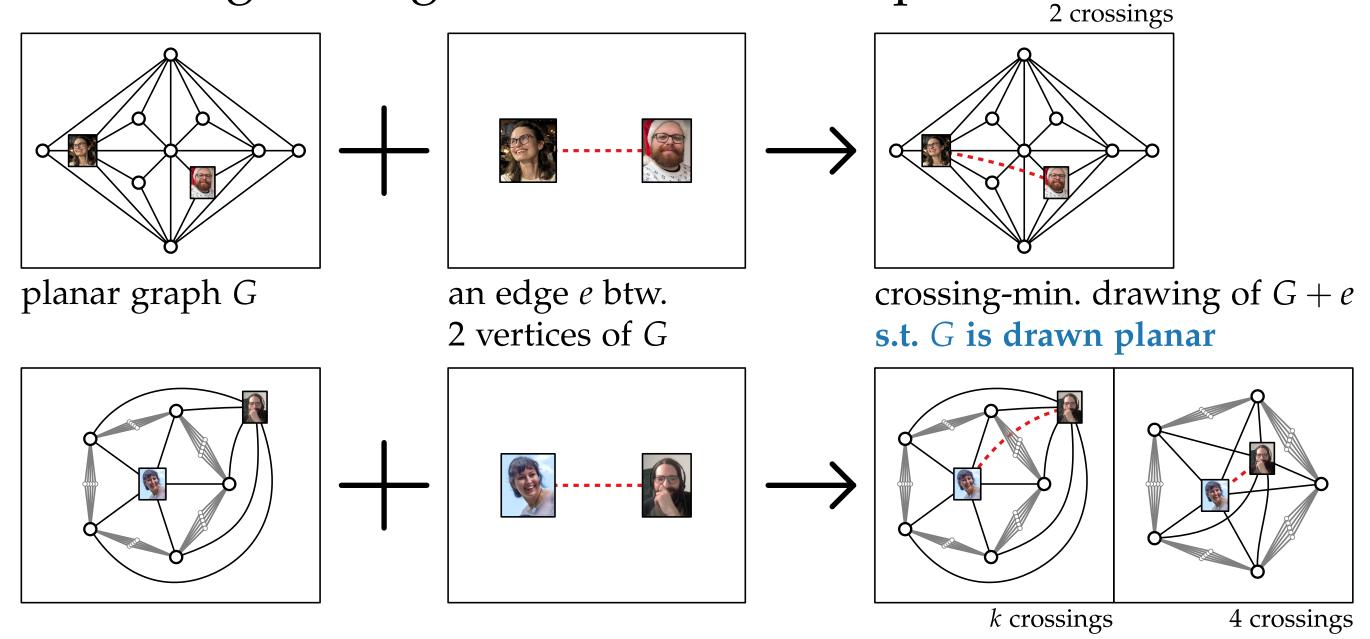


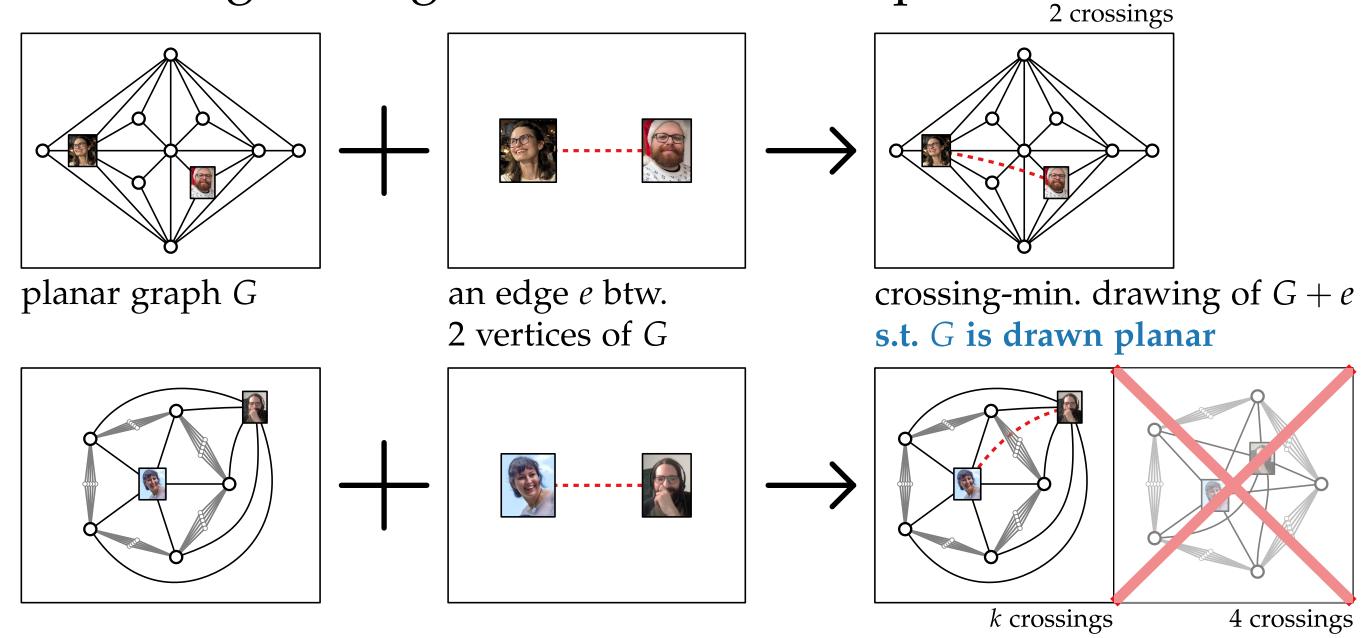


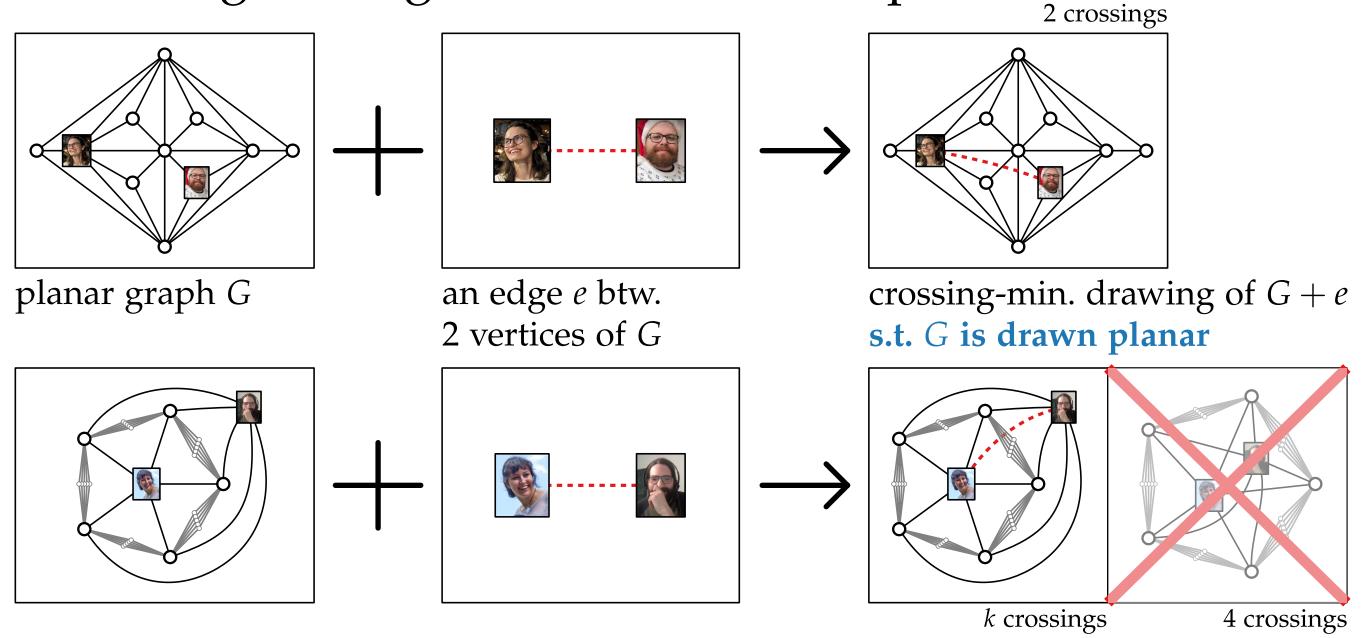


This problem is NP-hard.

[Cabello & Mohar '08]

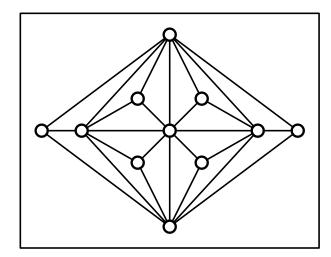




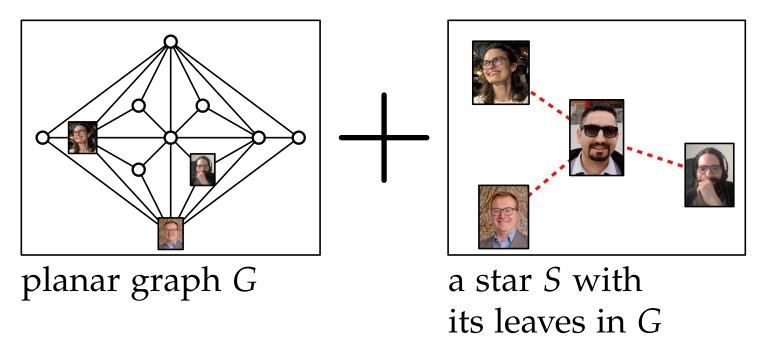


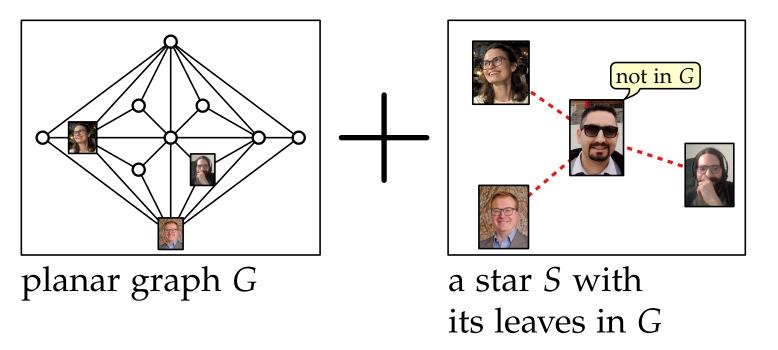
This problem can be solved in O(n) time.

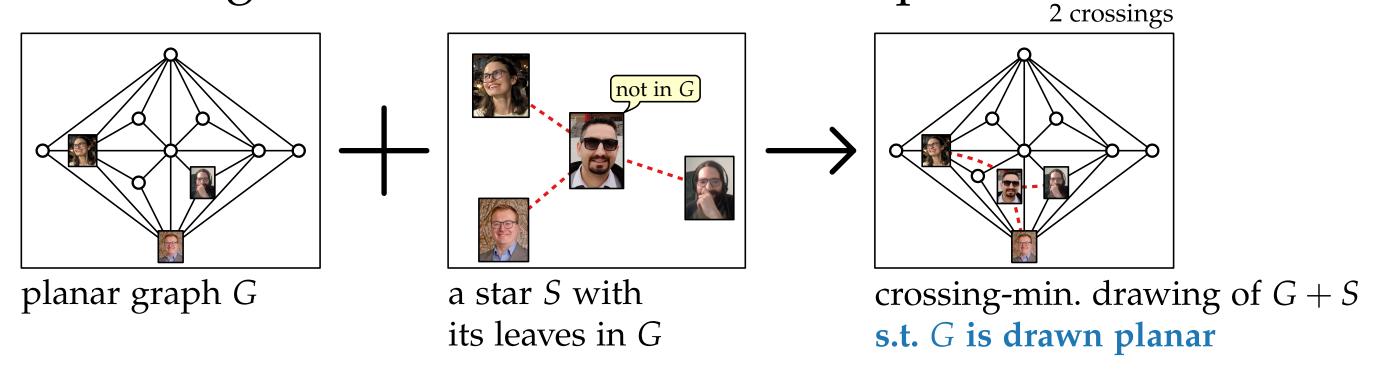
[Gutwenger, Mutzel & Weiskircher '05]

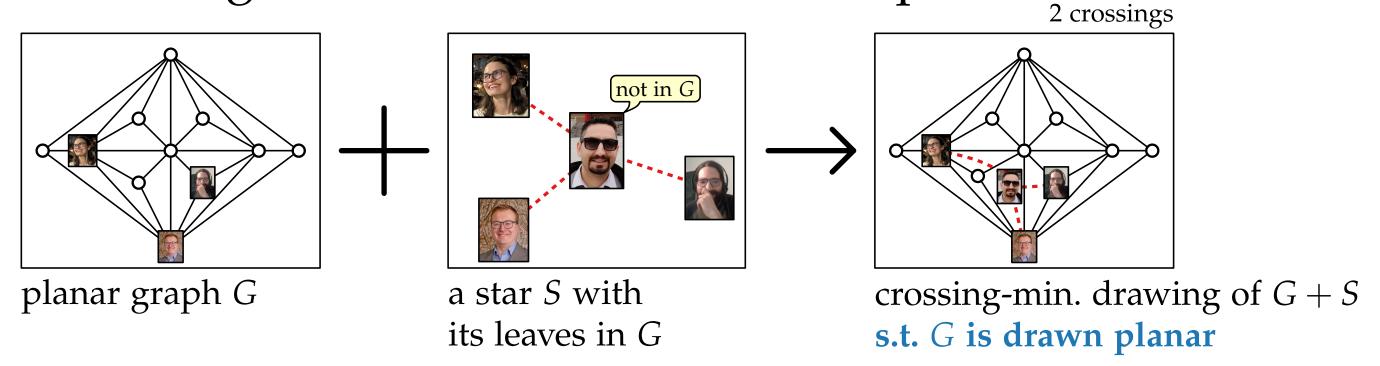


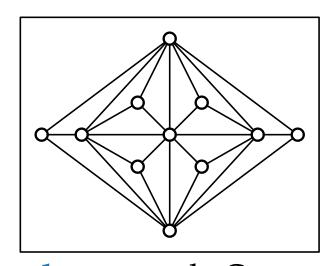
planar graph G



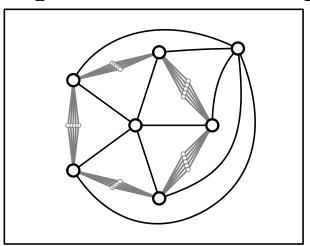


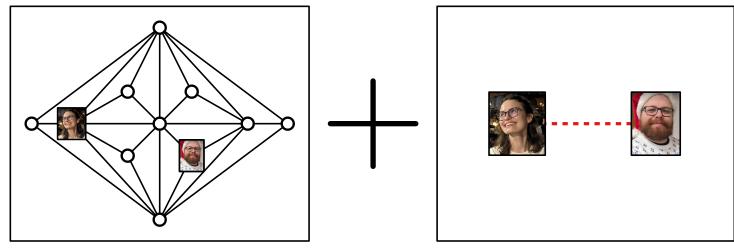






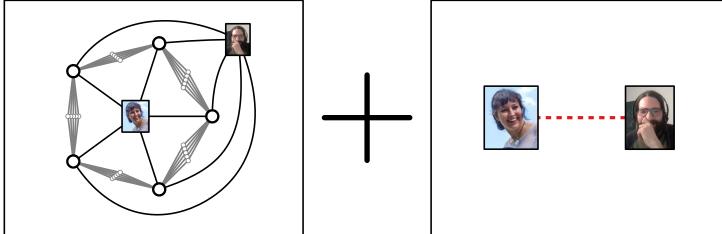
plane graph G
(planar graph
+ planar embedding)

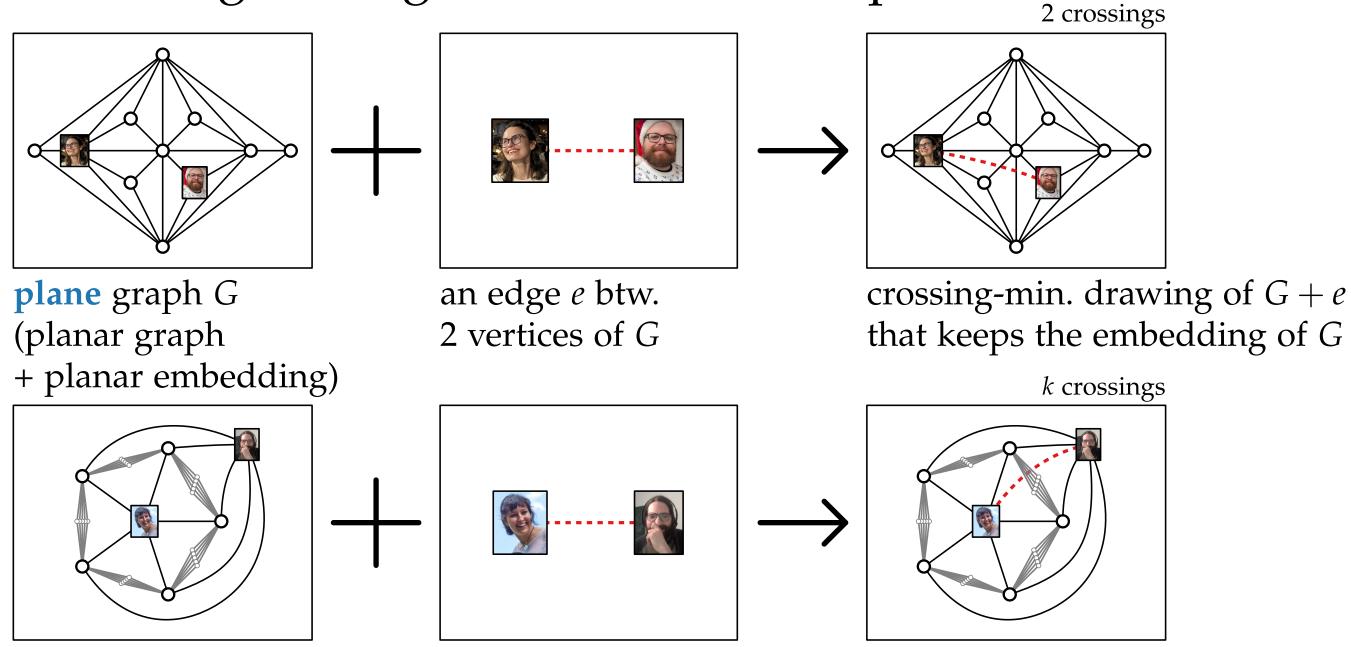


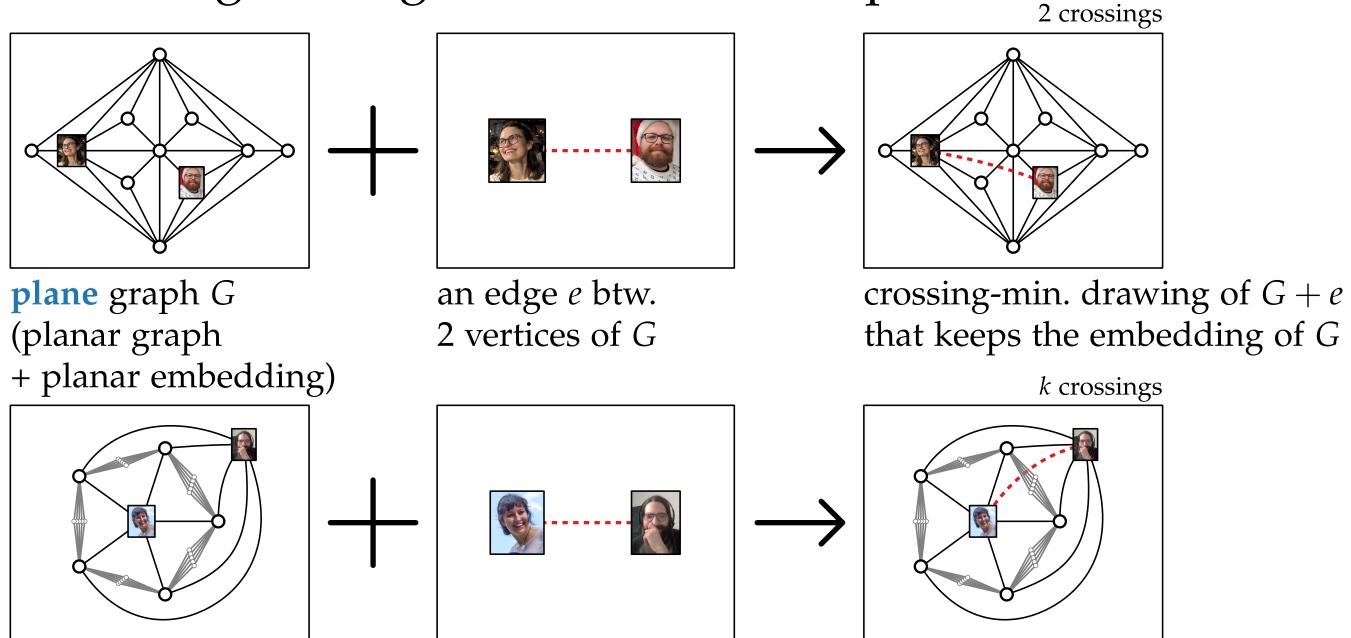


plane graph G
(planar graph
+ planar embedding)

an edge *e* btw. 2 vertices of *G*

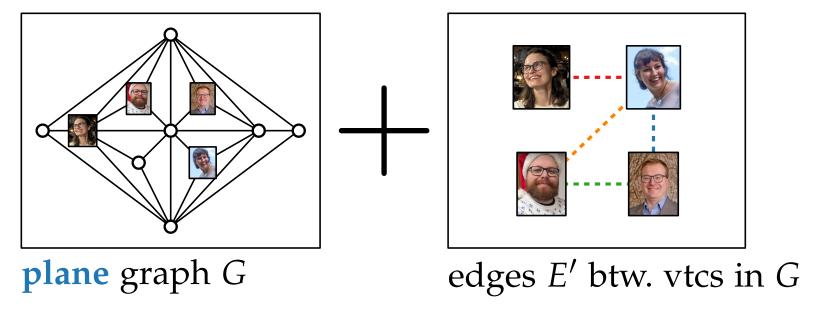


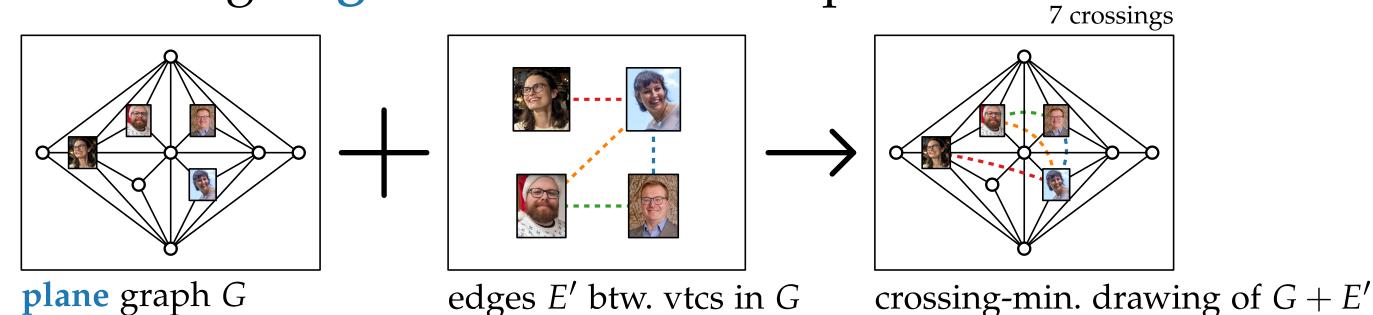




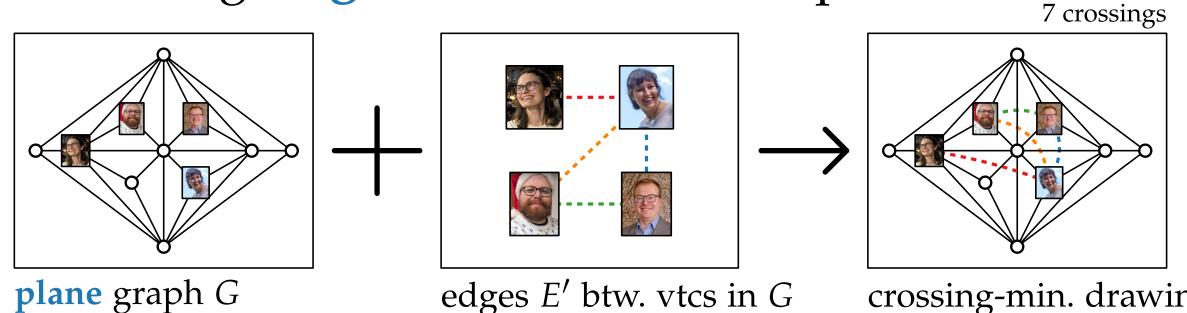
This problem can be solved in O(n) time.

[BFS]





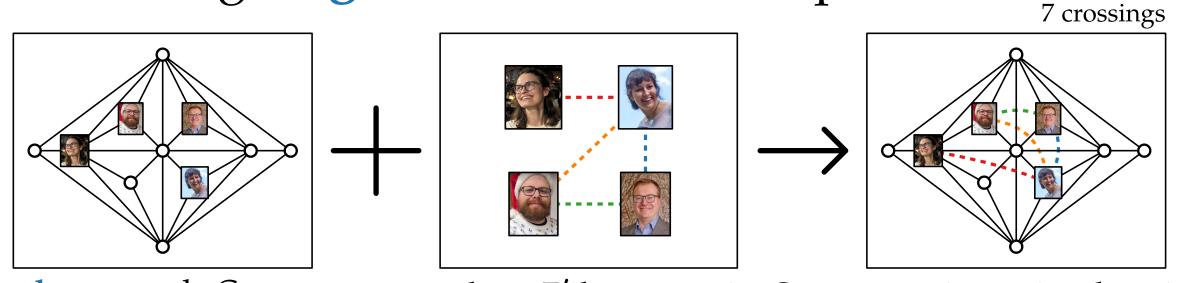
that keeps the embedding of *G*



This problem is NP-hard.

crossing-min. drawing of G + E' that keeps the embedding of G

[Ziegler '01]



plane graph G

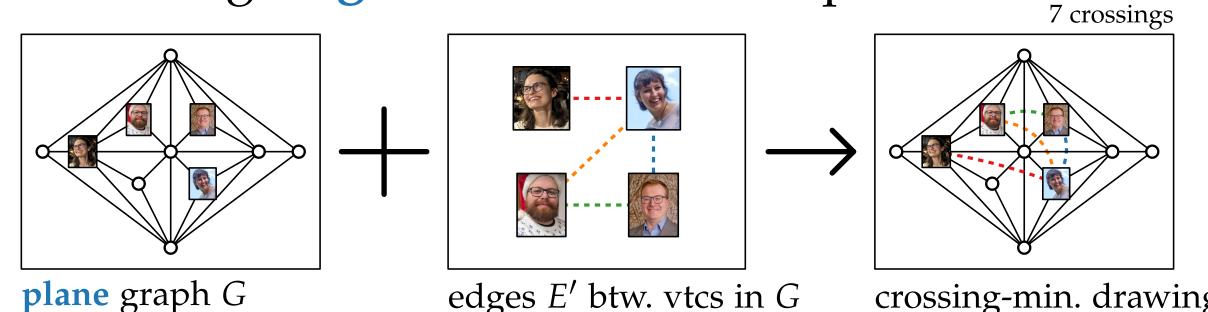
edges E' btw. vtcs in G

crossing-min. drawing of G + E' that keeps the embedding of G

This problem is NP-hard.

 \dots even if G is biconnected.

[Ziegler '01]



ne graph G edges E' btw. vtcs in G crossing-min. drawing of G+E' that keeps the embedding of G

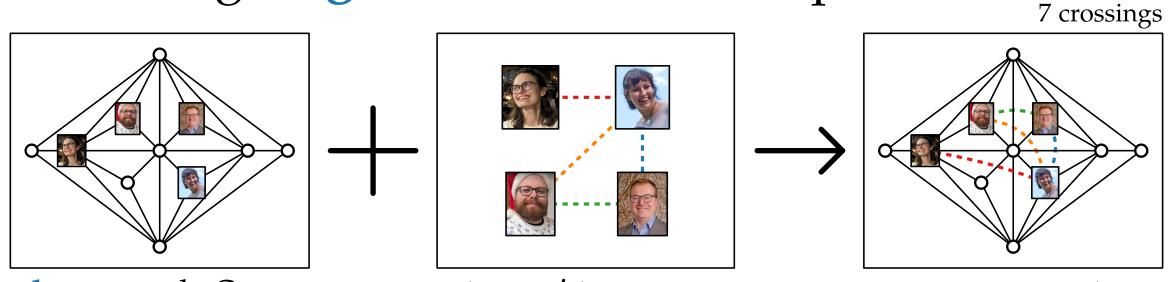
This problem is NP-hard.

... even if *G* is biconnected.

This problem is in FPT parameterized by #crossings.

[Hamm & Hliněný '22]

[Ziegler '01]



plane graph G

edges E' btw. vtcs in G

crossing-min. drawing of G + E' that keeps the embedding of G

This problem is NP-hard.

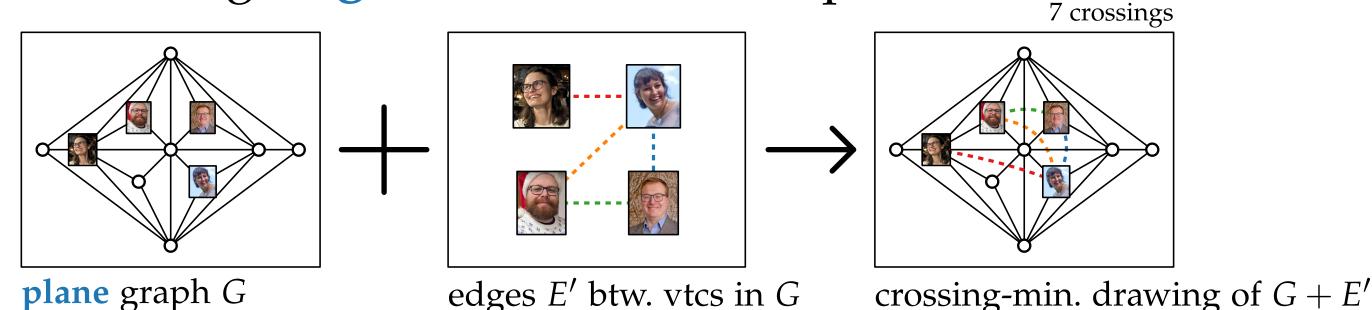
[Ziegler '01]

... even if *G* is biconnected.

This problem is in FPT parameterized by #crossings.

[Hamm & Hliněný '22]

 \dots even if G is non-planar (or drawn with crossings)



that keeps the embedding of *G* This problem is NP-hard.

... even if *G* is biconnected.

This problem is in FPT parameterized by #crossings.

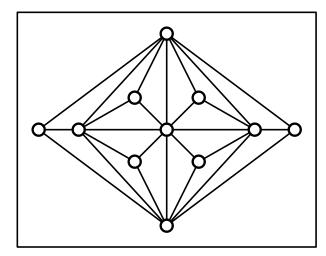
... even if *G* is non-planar (or drawn with crossings)

[Hamm & Hliněný '22]

[Ziegler '01]

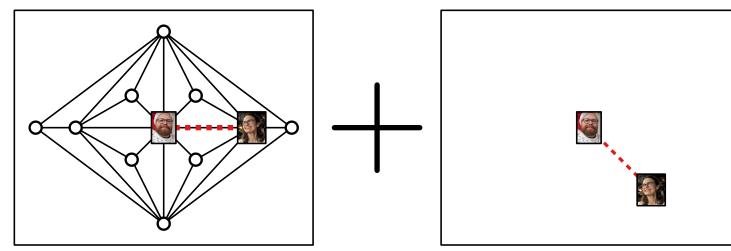
This problem is in FPT parameterized by |E'|if *G* is biconnected or all cutvertices have constant degree. [Chimani & Hliněný '23]

Partial Embedding – General Definition



graph G + drawing style Φ (e.g., straight-line planar)

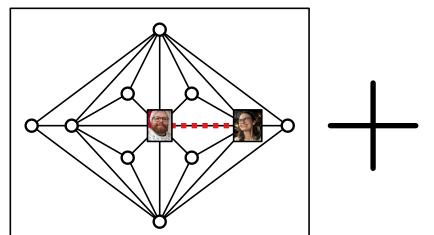
Partial Embedding – General Definition



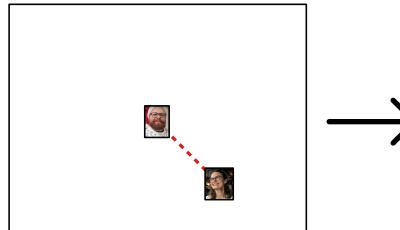
graph G + drawing style Φ (e.g., straight-line planar)

drawing with style Φ of a subgraph $H \subseteq G$

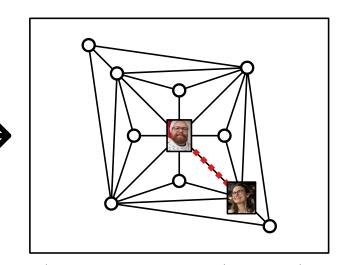
Partial Embedding – General Definition



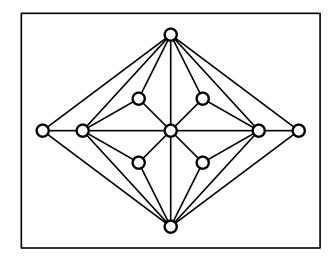
graph G + drawing style Φ (e.g., straight-line planar)



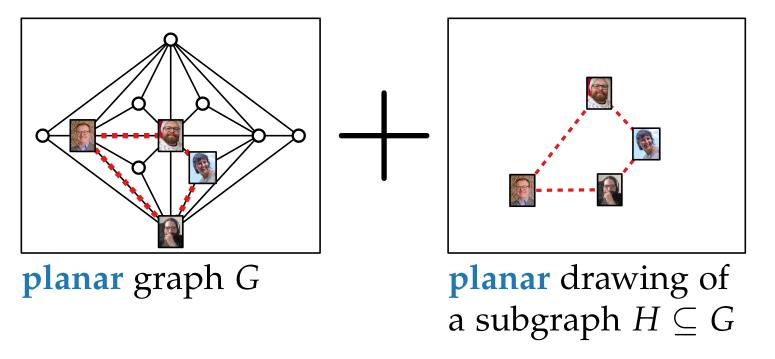
drawing with style Φ of a subgraph $H \subseteq G$

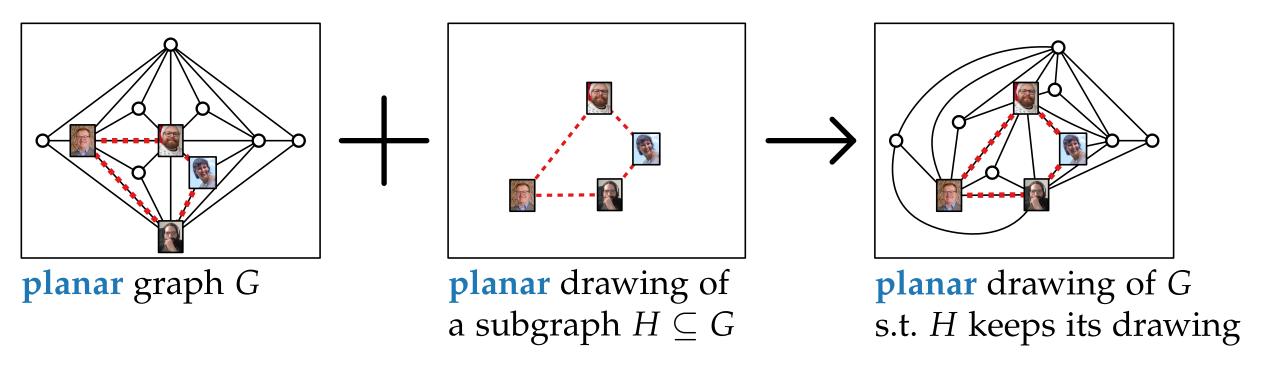


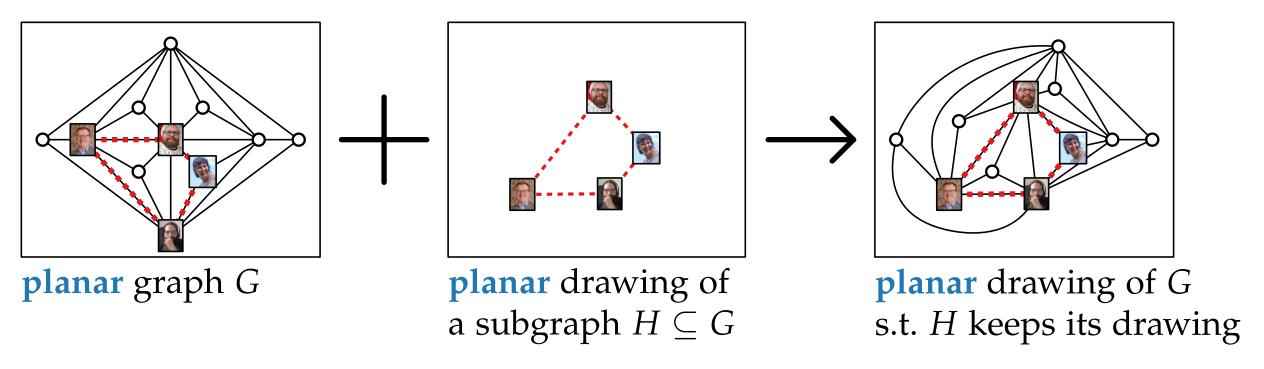
drawing with style Φ of G s.t. H **keeps its drawing**



planar graph G

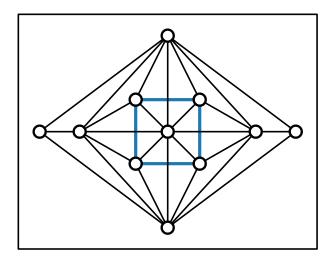




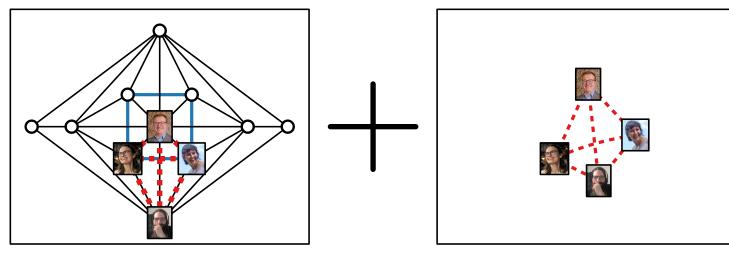


This problem can be solved in O(n) time.

[Angelini, Di Battista, Frati, Jelínek, Kratochvíl, Patrignani, Rutter '10]

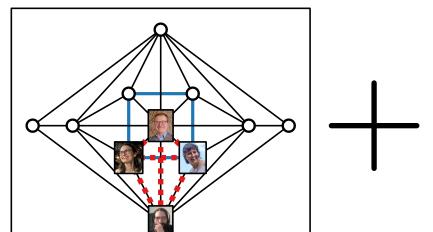


1-planar graph *G* (can be drawn s.t. every edge is crossed at most once)

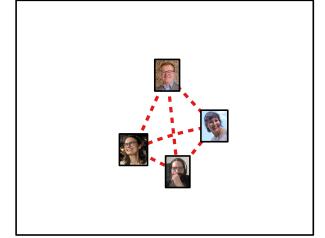


1-planar graph *G* (can be drawn s.t. every edge is crossed at most once)

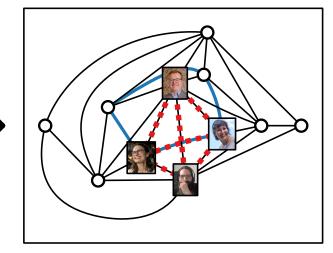
1-planar drawing of a subgraph $H \subseteq G$



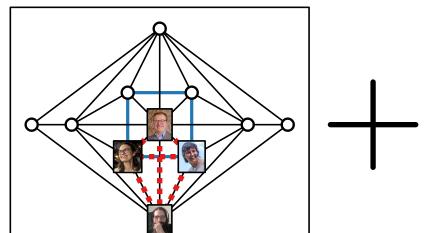
1-planar graph *G* (can be drawn s.t. every edge is crossed at most once)



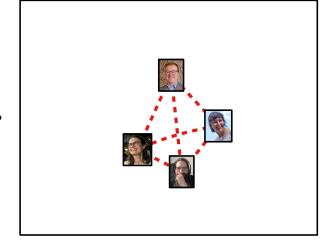
1-planar drawing of a subgraph $H \subseteq G$



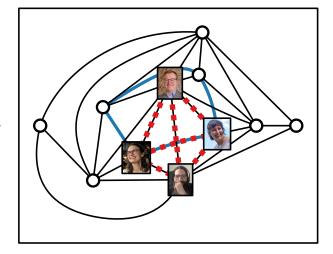
1-planar drawing of *G* s.t. *H* keeps its drawing



1-planar graph *G* (can be drawn s.t. every edge is crossed at most once)



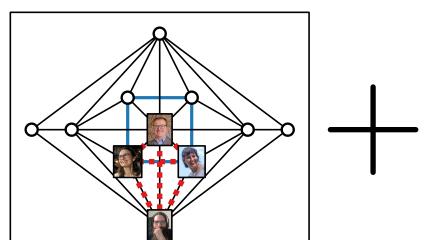
1-planar drawing of a subgraph $H \subseteq G$



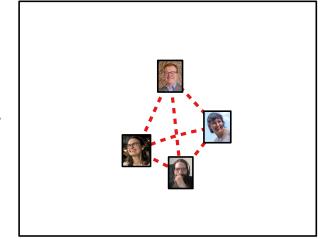
1-planar drawing of *G* s.t. *H* keeps its drawing

This problem is NP-hard even if $H = \emptyset$.

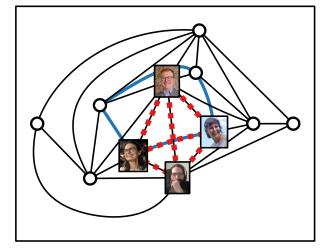
[Grigoriev & Bodlaender '07]



1-planar graph *G* (can be drawn s.t. every edge is crossed at most once)



1-planar drawing of a subgraph $H \subseteq G$

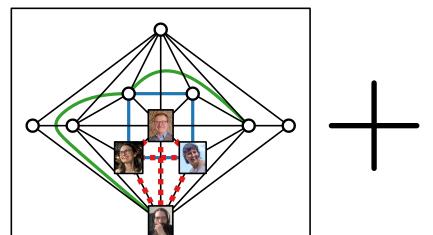


1-planar drawing of *G* s.t. *H* keeps its drawing

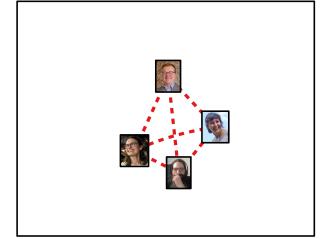
This problem is NP-hard even if $H = \emptyset$.

[Grigoriev & Bodlaender '07]

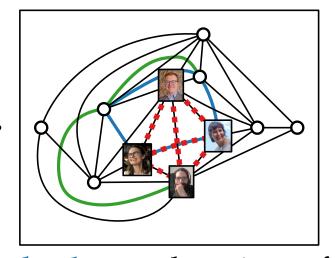
This problem is in FPT parameterized by the vertex+edge deletion distance between *G* and *H*. [Eiben, Ganian, Hamm, Klute & Nöllenburg '20]



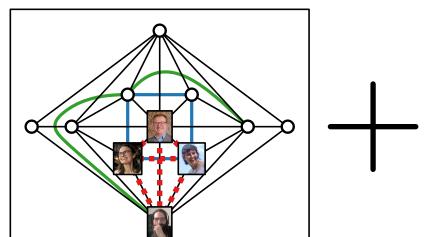
k-planar graph G (can be drawn s.t. every edge is crossed at most k times)



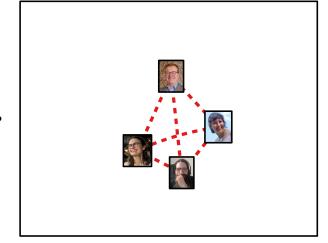
k-planar drawing of a subgraph $H \subseteq G$



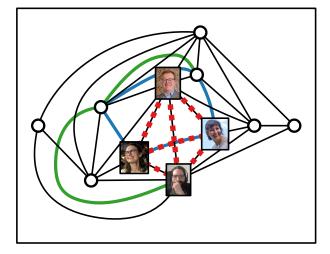
*k***-planar** drawing of *G* s.t. *H* keeps its drawing



k-planar graph *G* (can be drawn s.t. every edge is crossed at most *k* times)



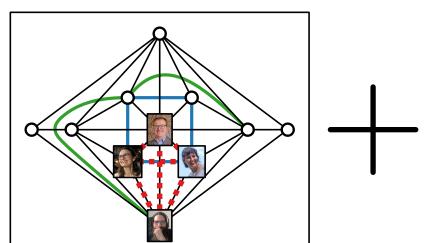
k-planar drawing of a subgraph $H \subseteq G$



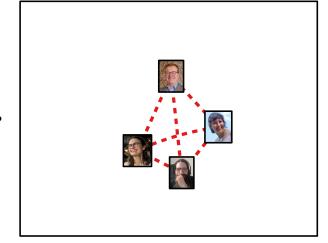
*k***-planar** drawing of *G* s.t. *H* keeps its drawing

This problem is NP-hard for any constant k even if $H = \emptyset$.

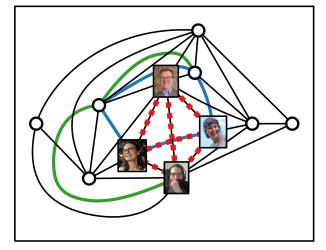
[Urschel & Wellens '21]



k-planar graph G(can be drawn s.t. every edge is crossed at most k times)



k-planar drawing of a subgraph $H \subseteq G$



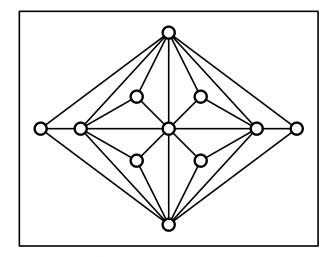
k-planar drawing of *G* s.t. *H* keeps its drawing

This problem is NP-hard for any constant k even if $H = \emptyset$. [Urschel & Wellens '21]

This problem is in FPT parameterized by k + #edges in G - H.

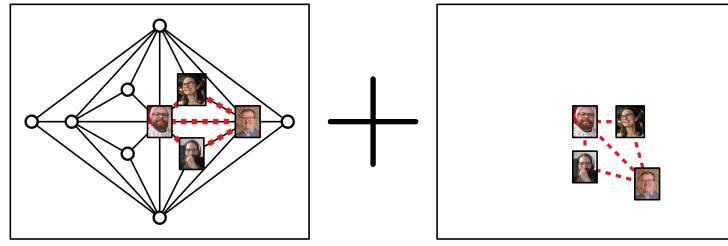
[Ganian, Hamm, Klute, Parada & Vogtenhuber '21]

Generalization of Partial Embedding



Graph G + drawing style Φ (e.g., planar)

Generalization of Partial Embedding



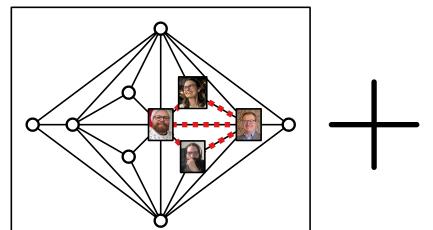
Graph G + drawing style Φ (e.g., planar)

Drawing with style

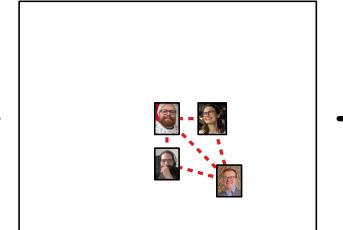
$$\Phi' \subset \Phi$$

(e.g., straight-line planar) of a subgraph $H \subseteq G$

Generalization of Partial Embedding

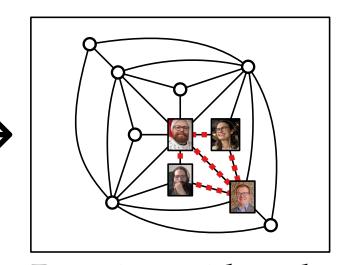


Graph G + drawing style Φ (e.g., planar)

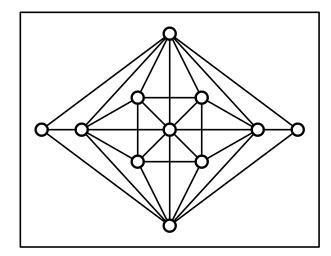


Drawing with style $\Phi' \subseteq \Phi$

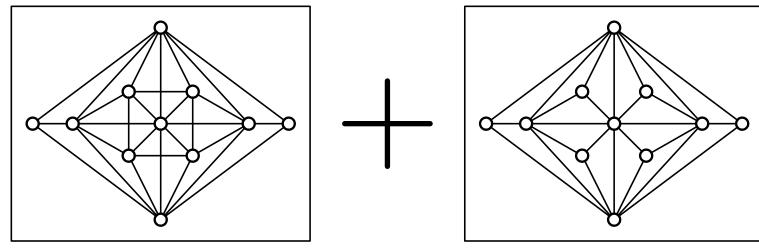
(e.g., straight-line planar) of a subgraph $H \subseteq G$



Drawing with style Φ of G s.t. H **keeps its drawing**

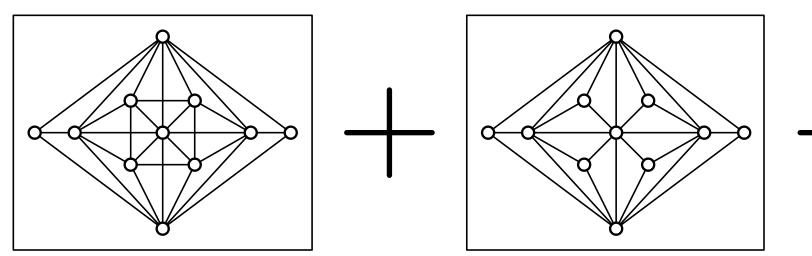


1-planar graph *G*



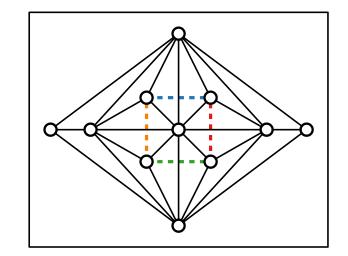
1-planar graph *G*

planar drawing of a **spanning** subgraph $H \subseteq G$

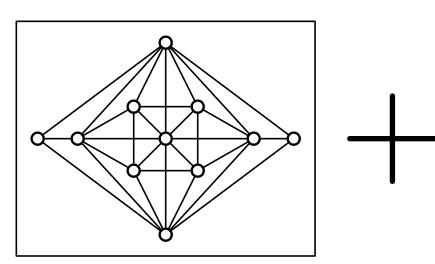


1-planar graph *G*

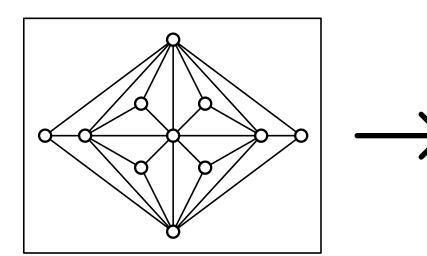
planar drawing of a **spanning** subgraph $H \subseteq G$



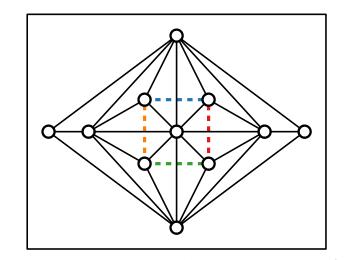
1-planar drawing of *G* that keeps the drawing of *H*



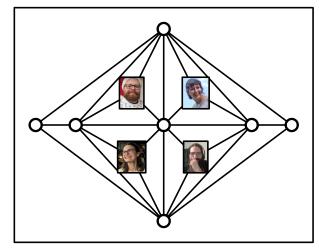
1-planar graph *G*



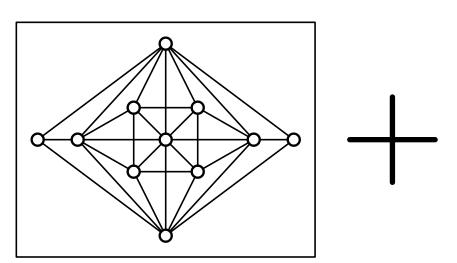
planar drawing of a **spanning** subgraph $H \subseteq G$



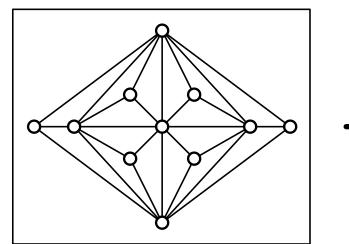
1-planar drawing of *G* that keeps the drawing of *H*



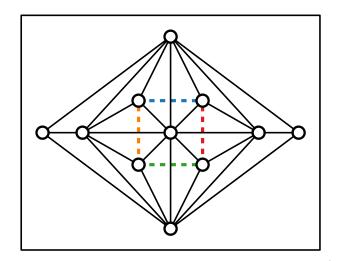
plane graph G



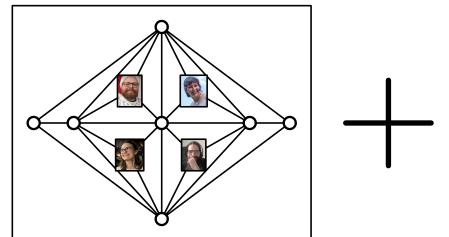
1-planar graph *G*



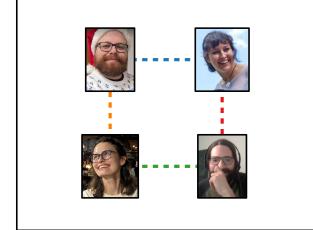
planar drawing of a **spanning** subgraph $H \subseteq G$



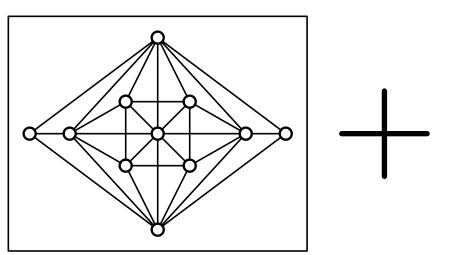
1-planar drawing of *G* that keeps the drawing of *H*



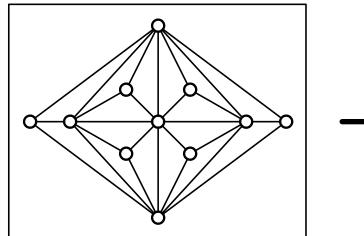
plane graph *G*



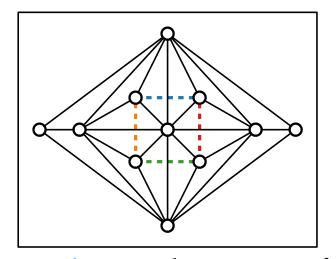
edges E' btw. vtcs in G



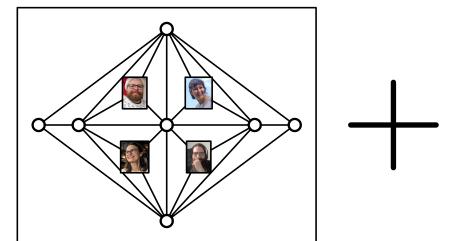
1-planar graph *G*



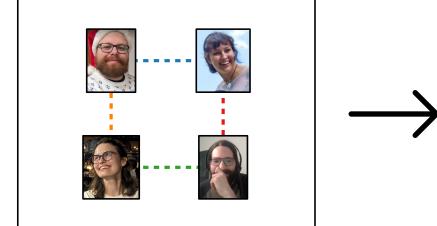
planar drawing of a **spanning** subgraph $H \subseteq G$



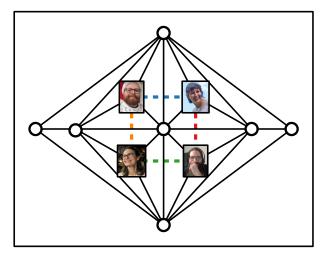
1-planar drawing of *G* that keeps the drawing of *H*



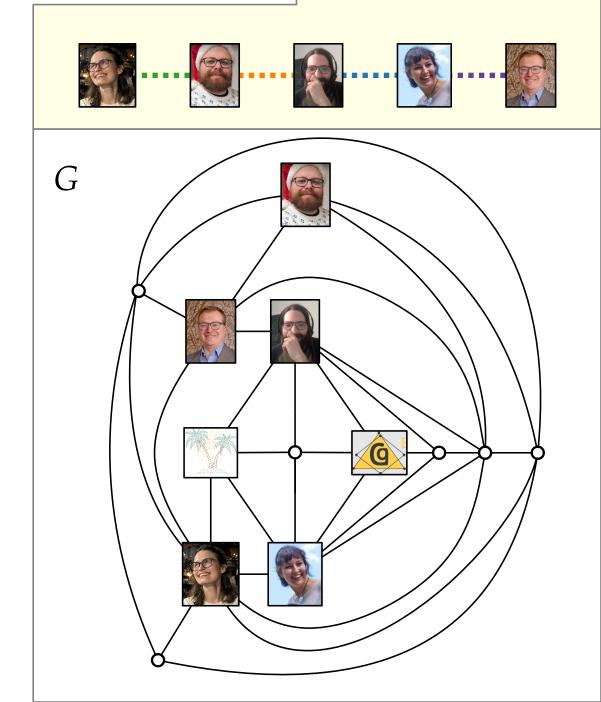
plane graph G

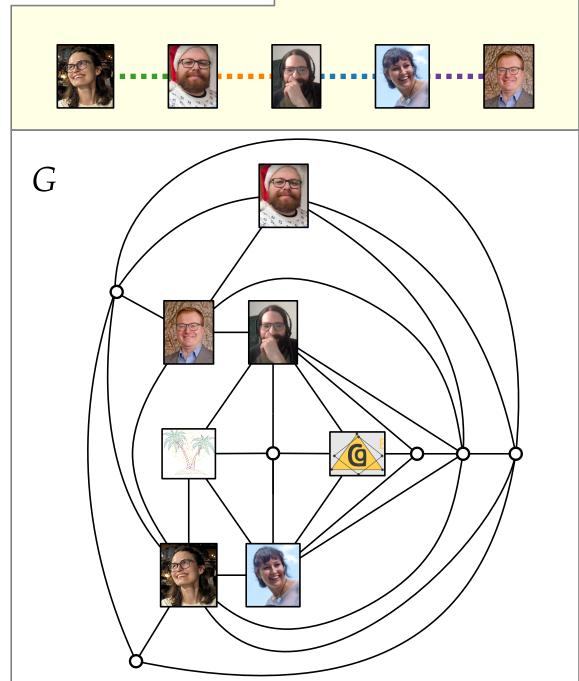


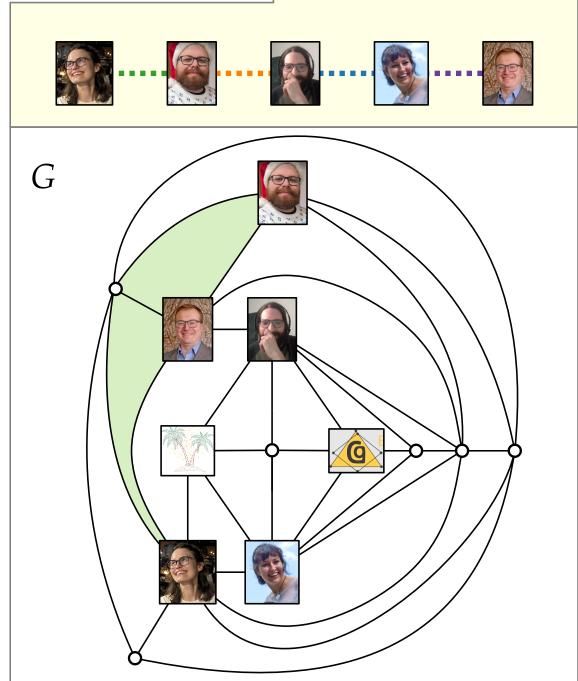
edges E' btw. vtcs in G

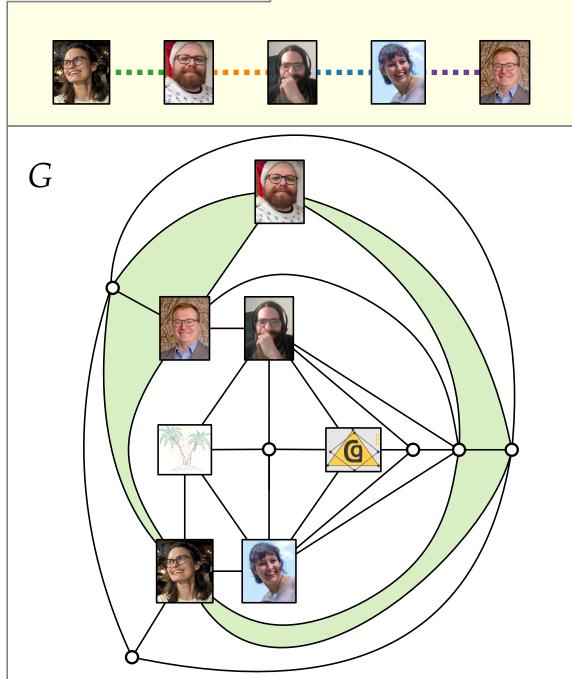


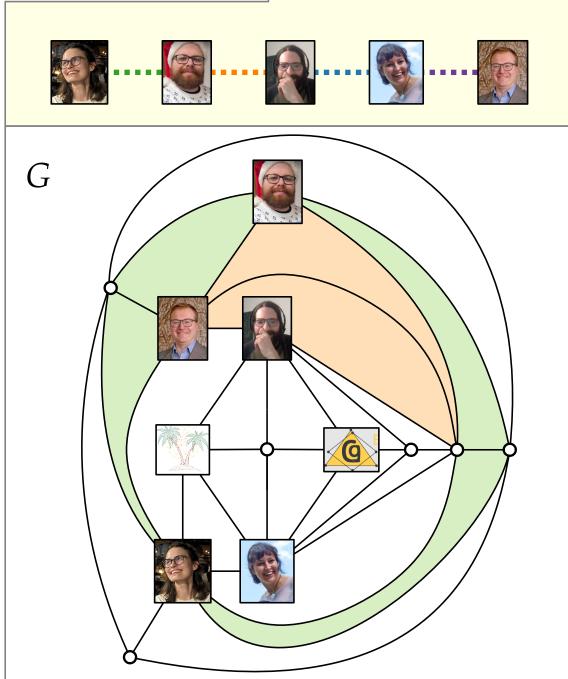
1-planar drawing of G + E' that keeps the embedding of G

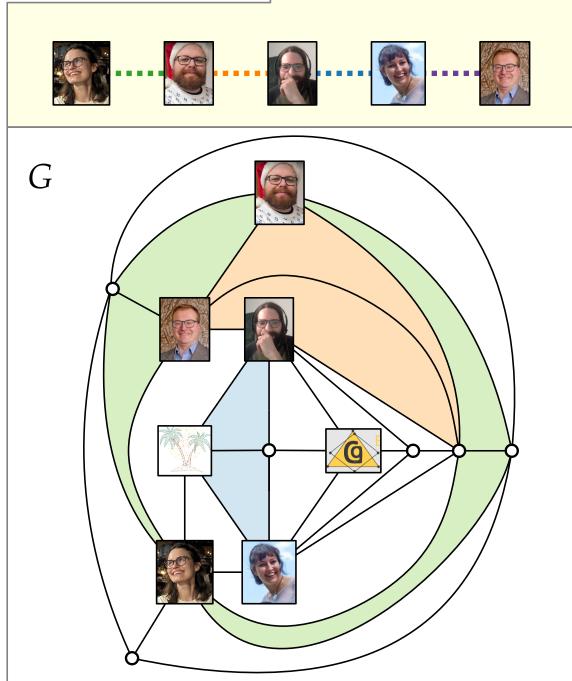


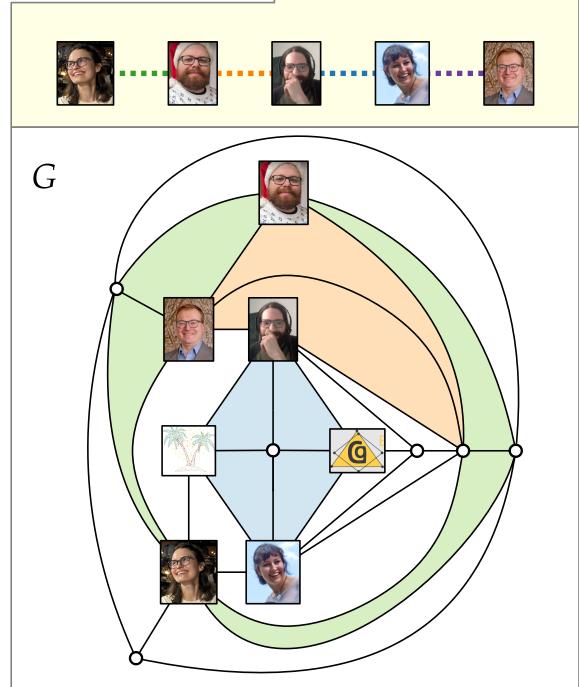


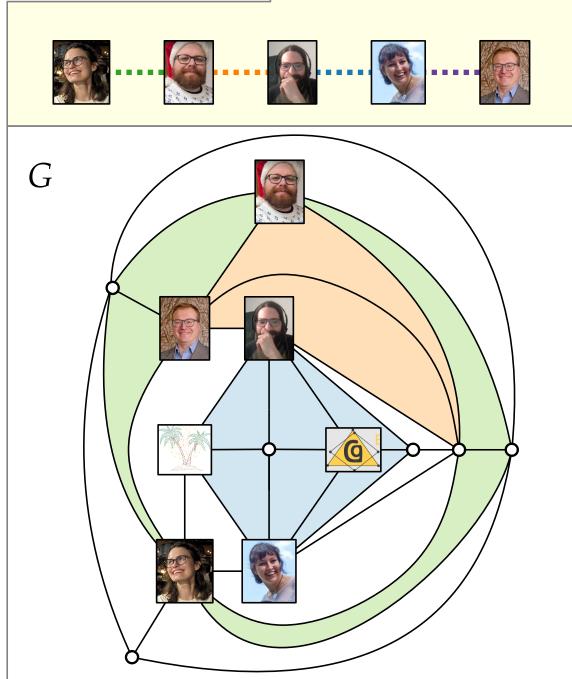


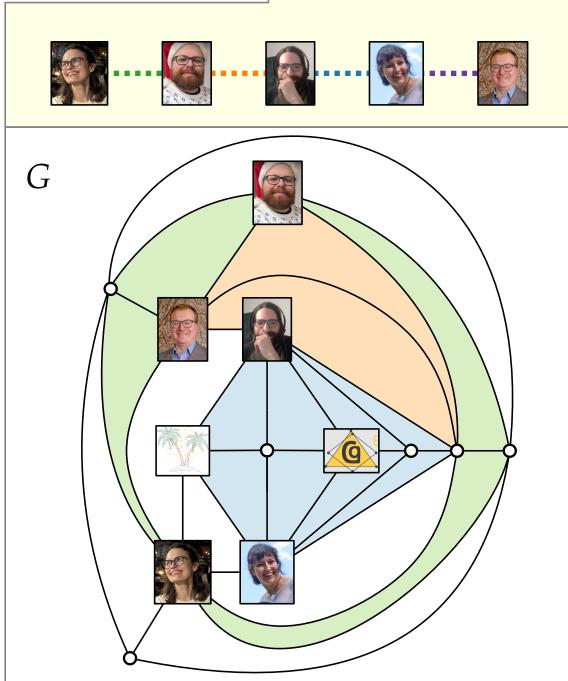


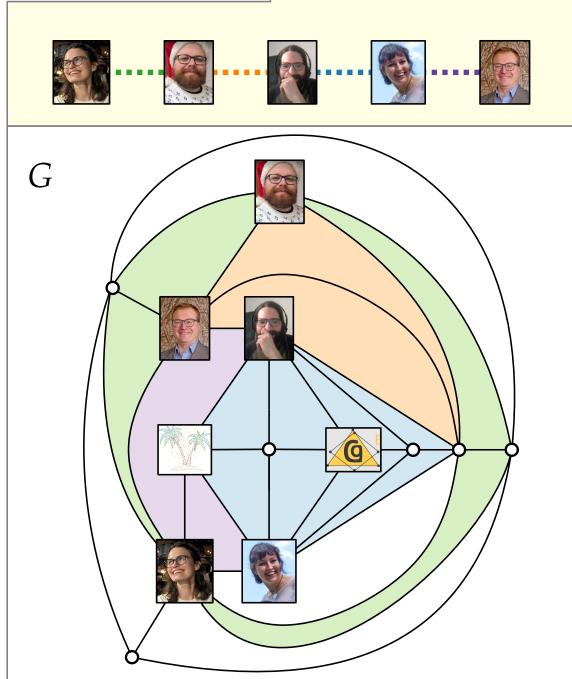


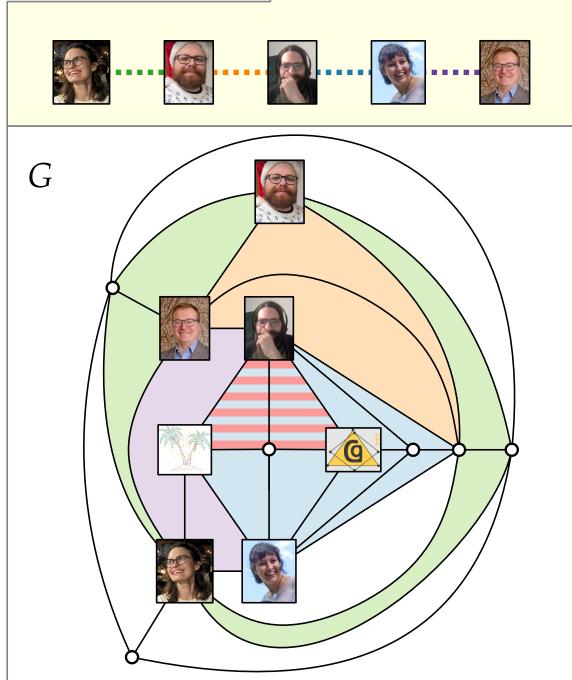


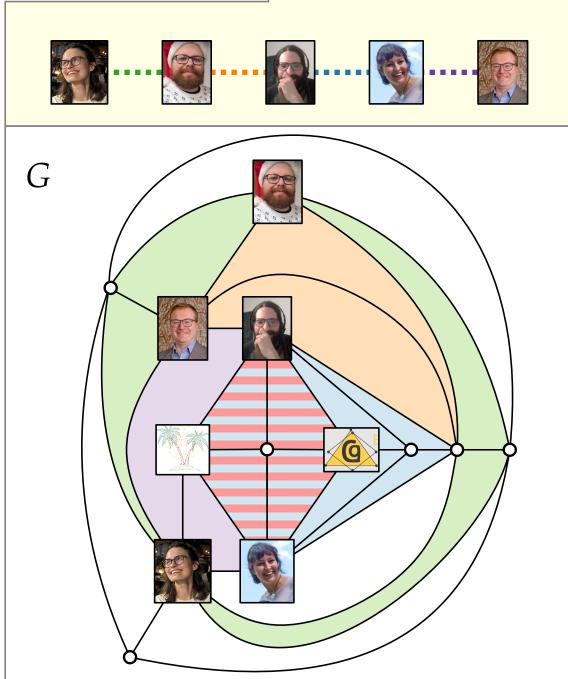




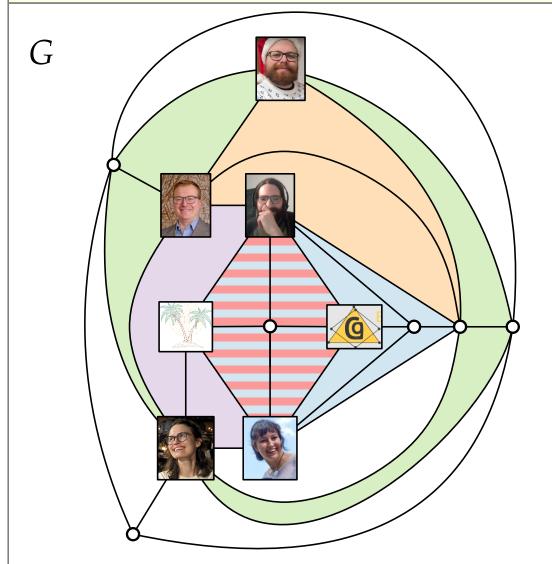




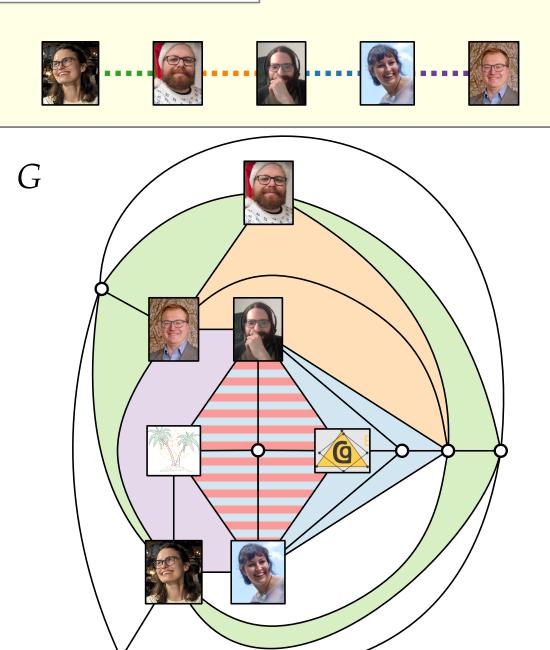




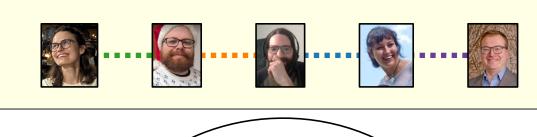
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance

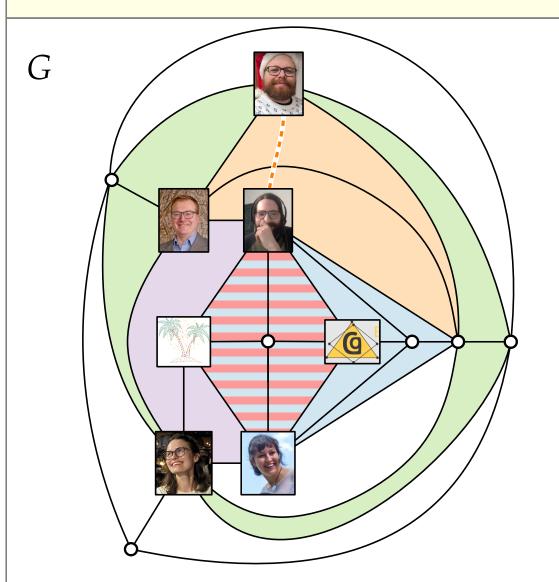


- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it

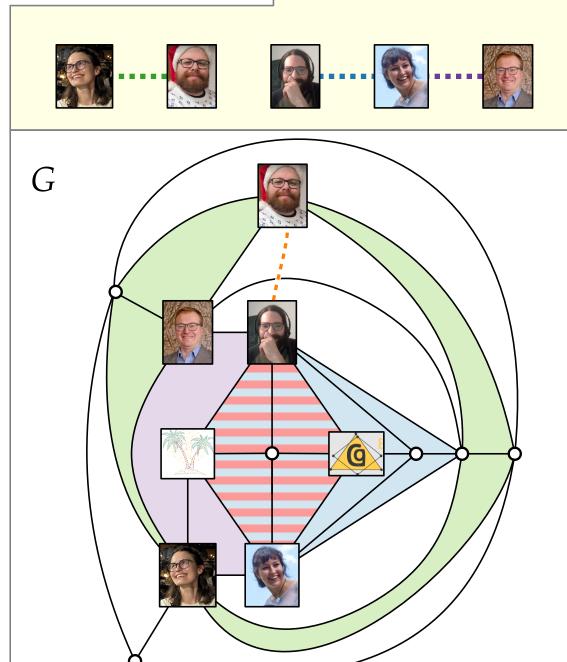


- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it

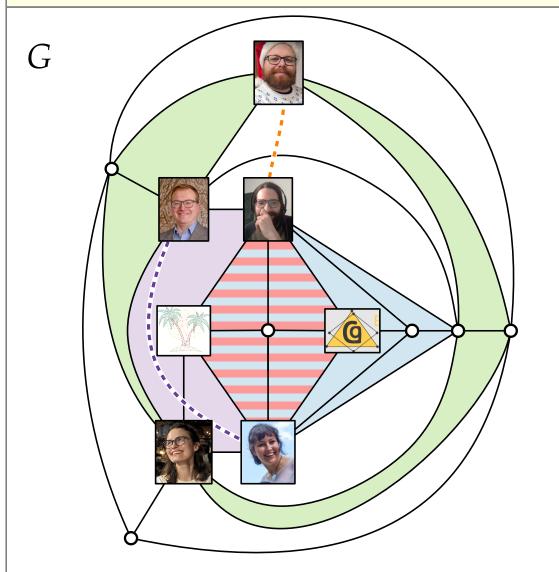




- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it

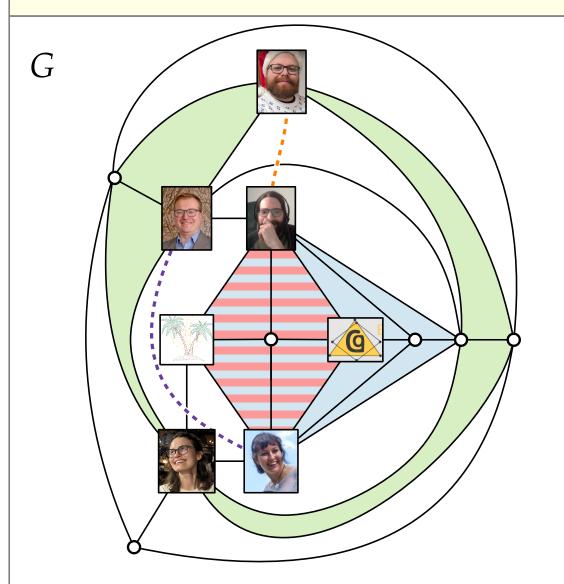


- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it

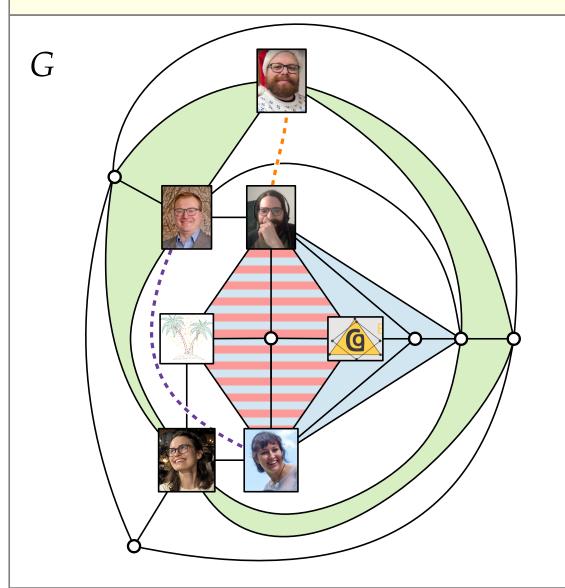


E'

- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it

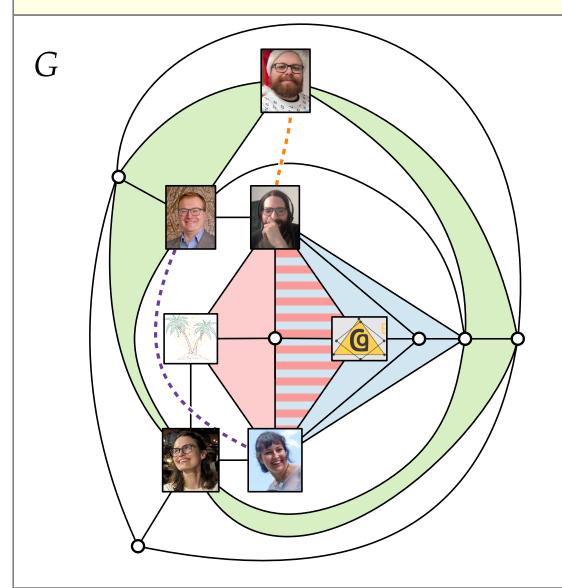


- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option

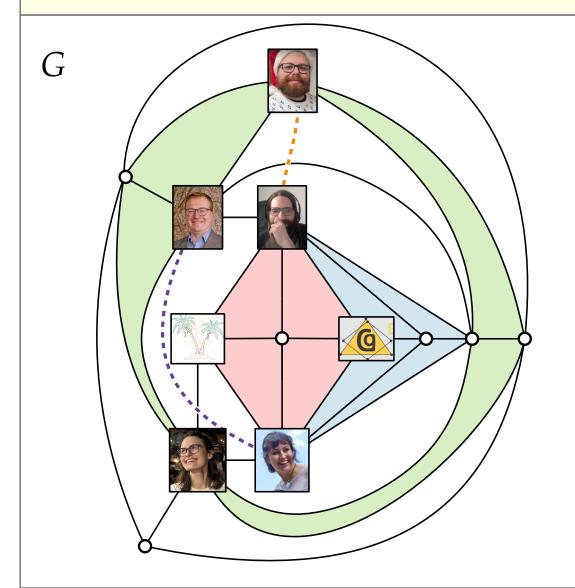


]/

- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option

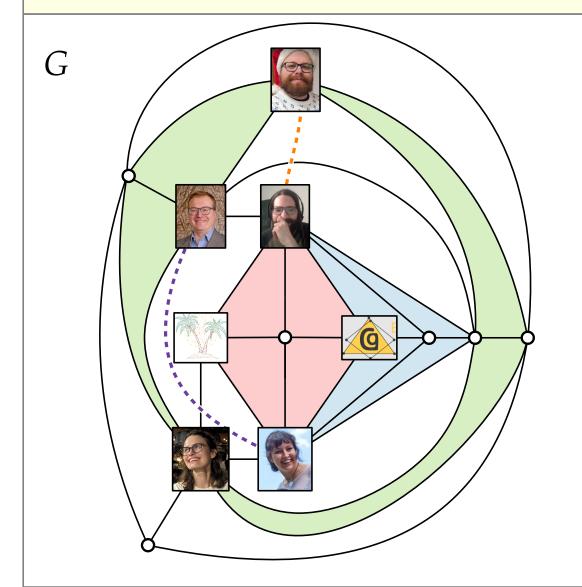


- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option



E'

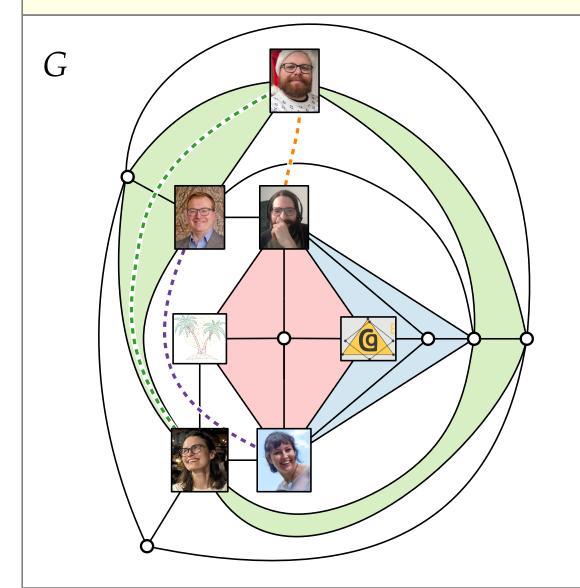
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



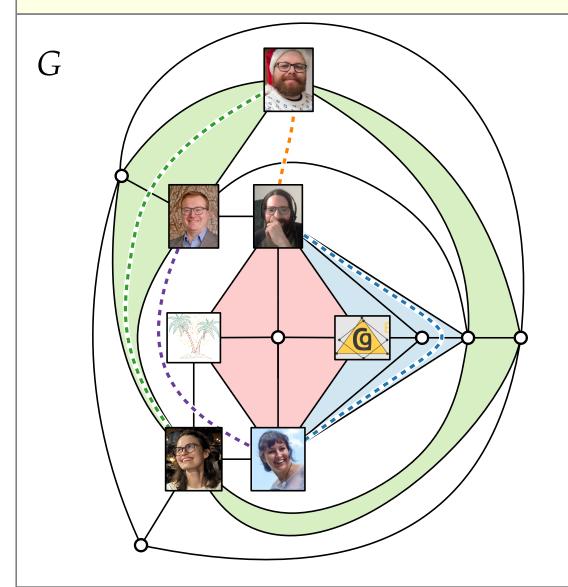
E'

- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



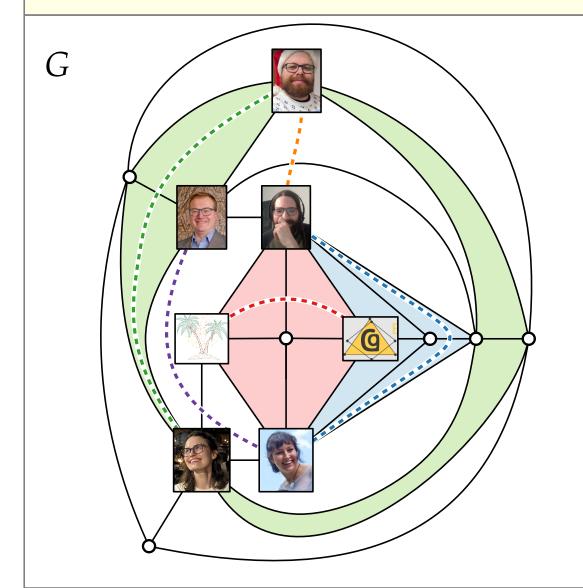


- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph

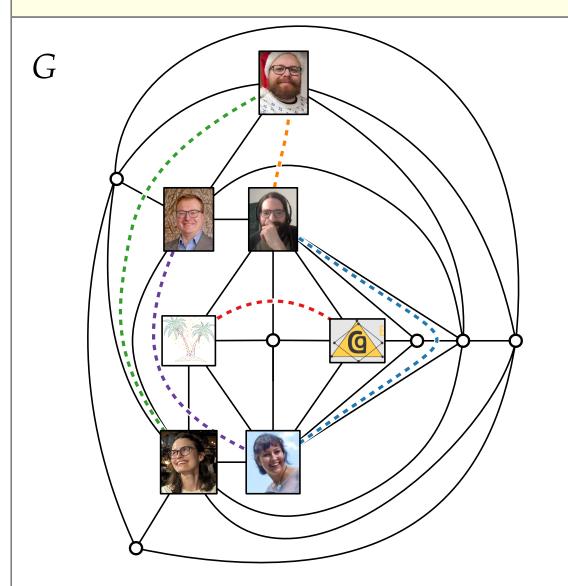


E'

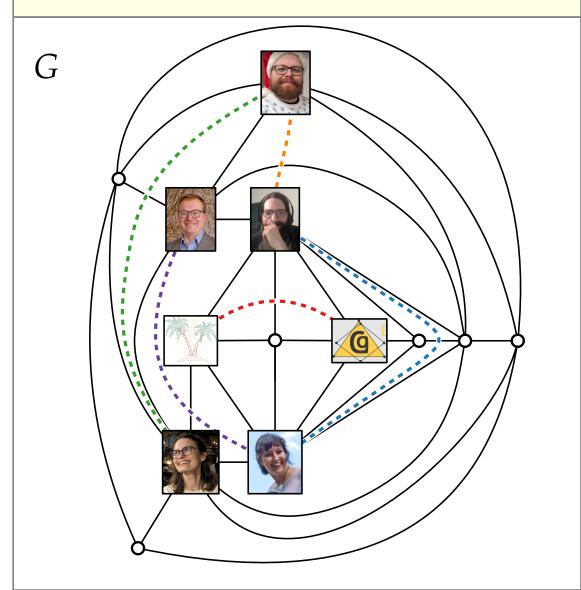
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph

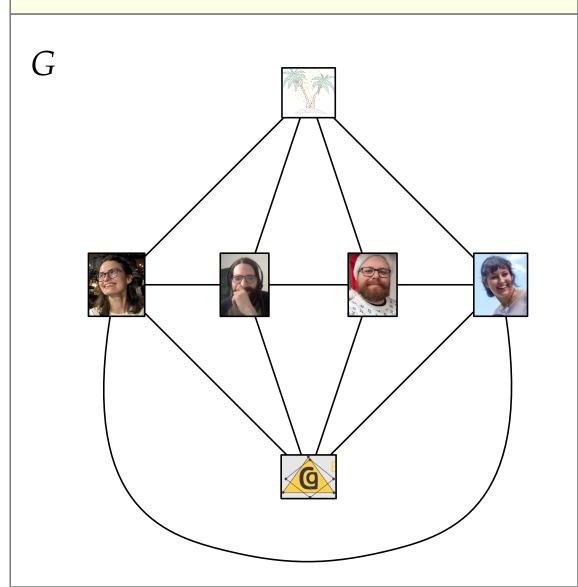


- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph

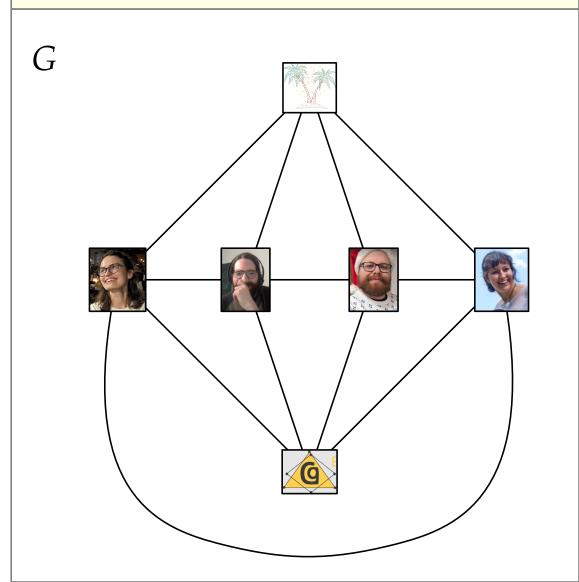


E'

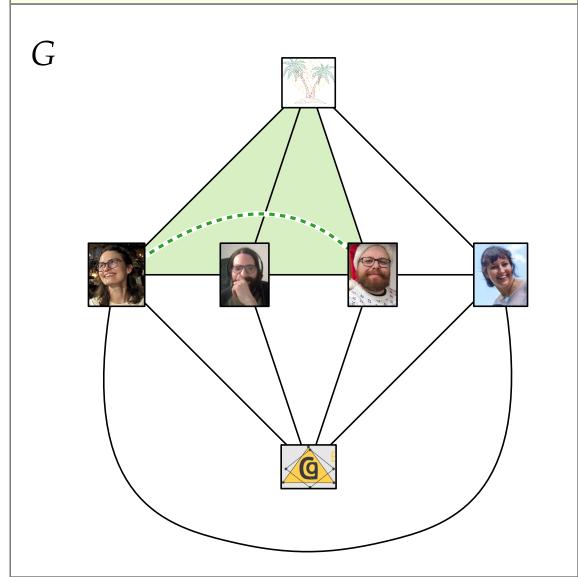
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



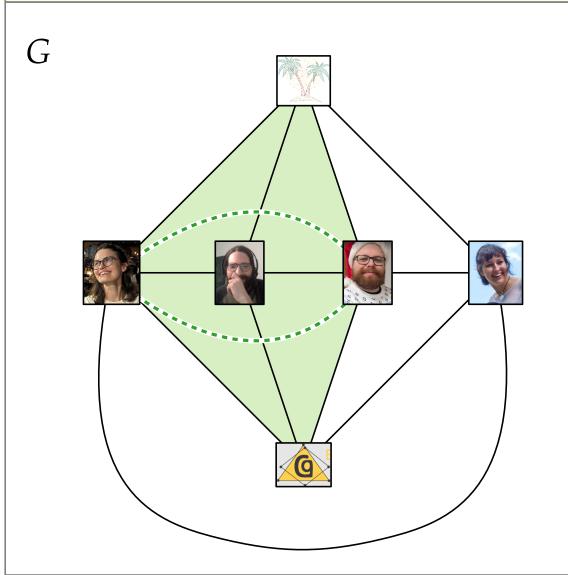
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



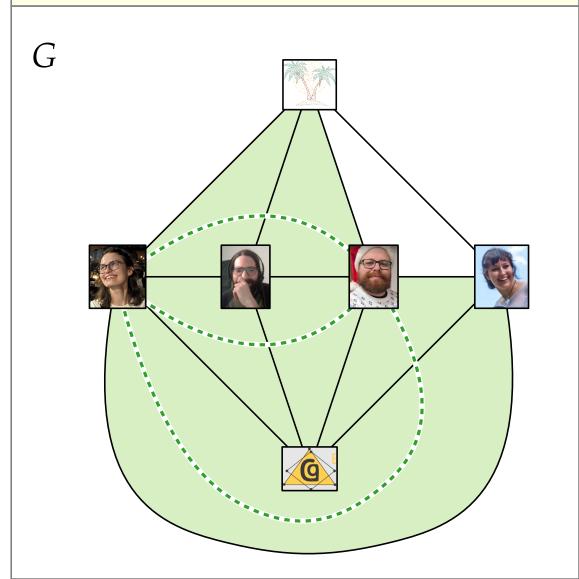
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



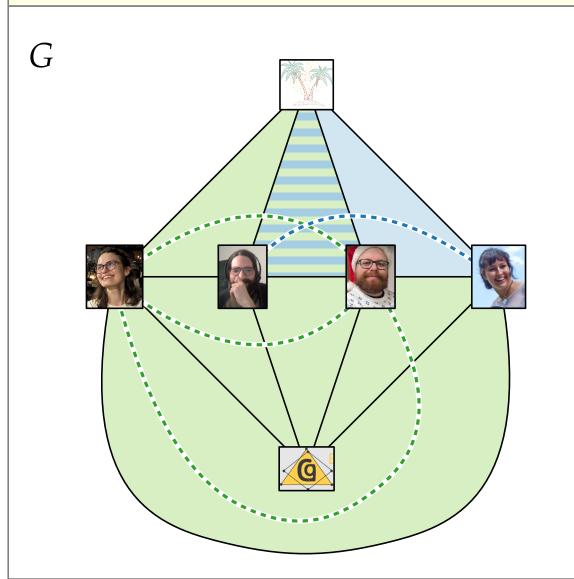
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



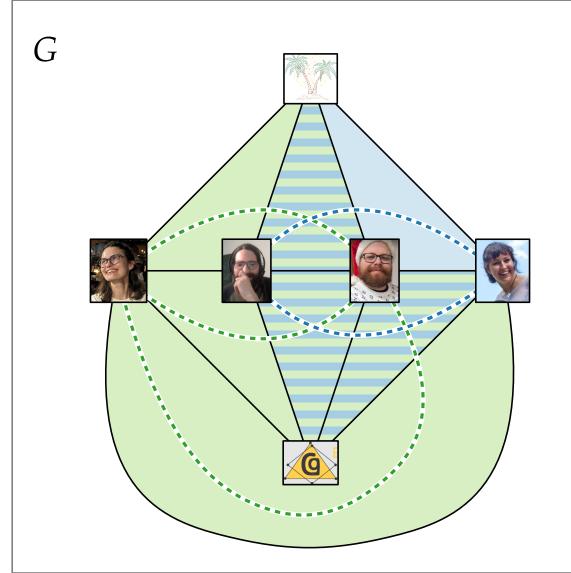
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



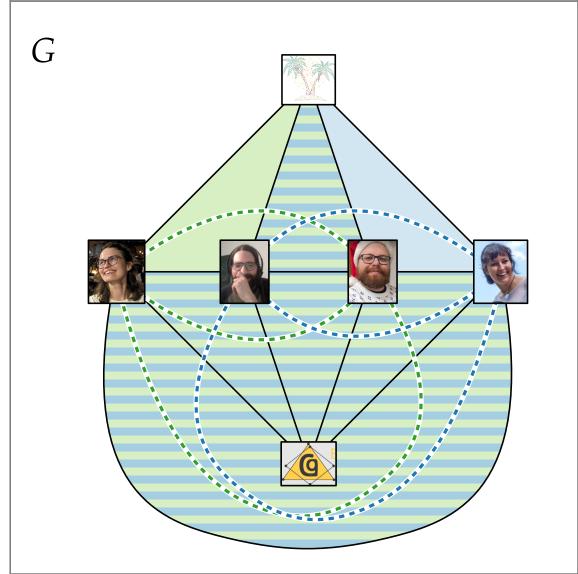
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



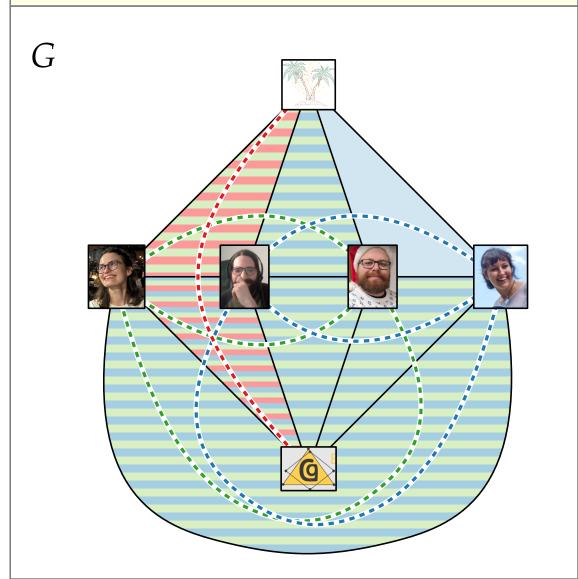
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



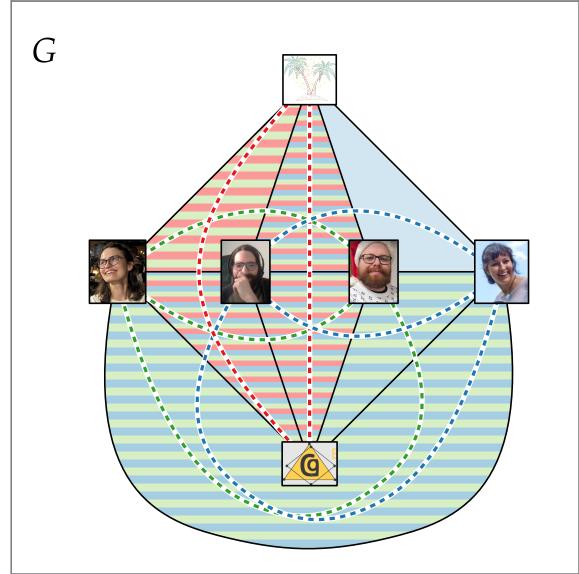
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



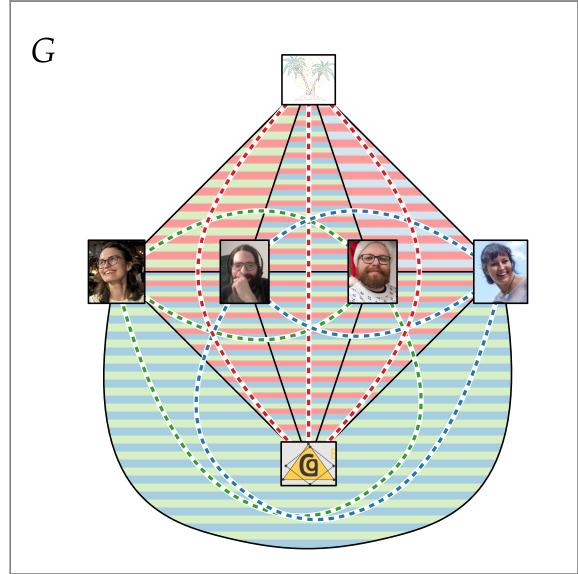
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



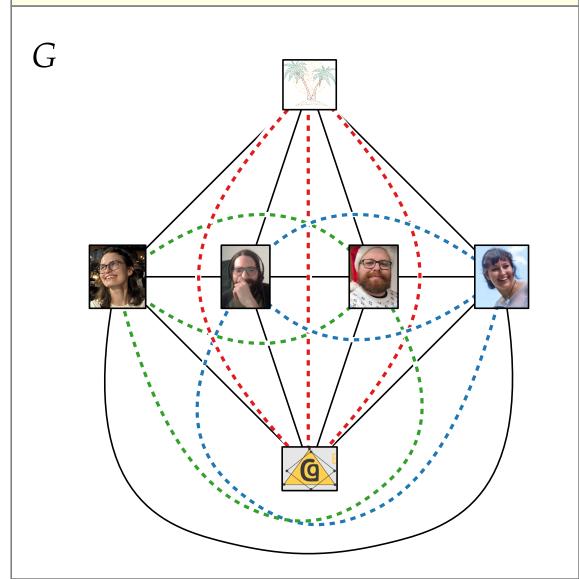
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph



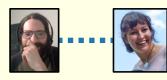
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph

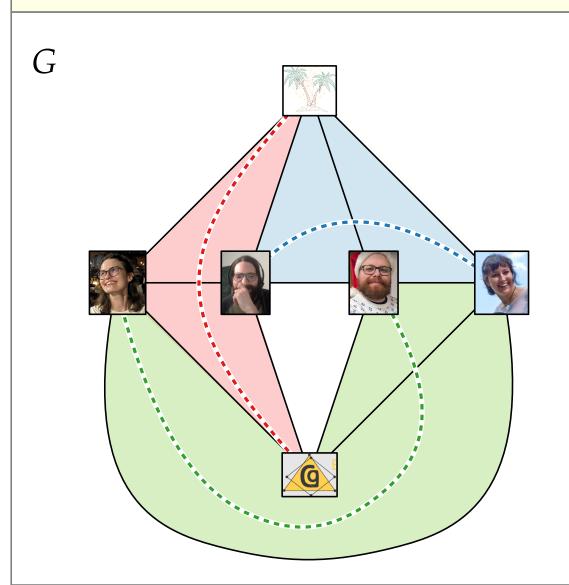


- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - → solve 2-SAT on conflict graph

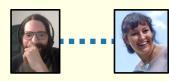


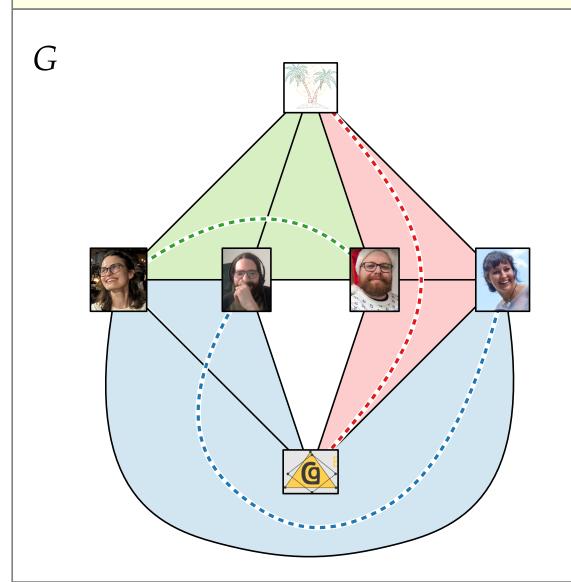
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - solve 2-SAT on conflict graph





- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - solve 2-SAT on conflict graph

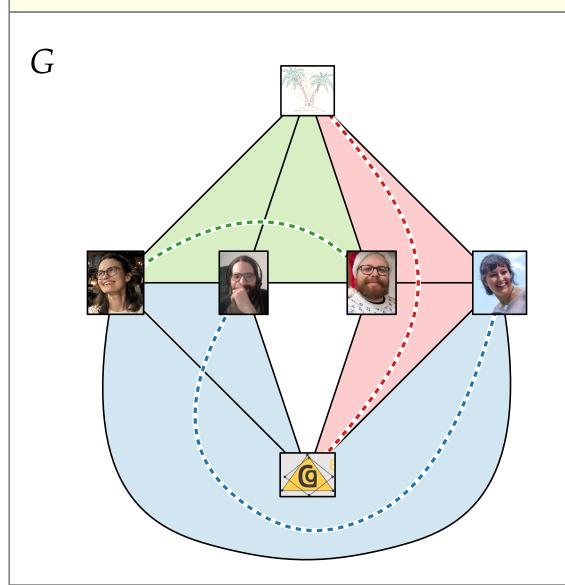


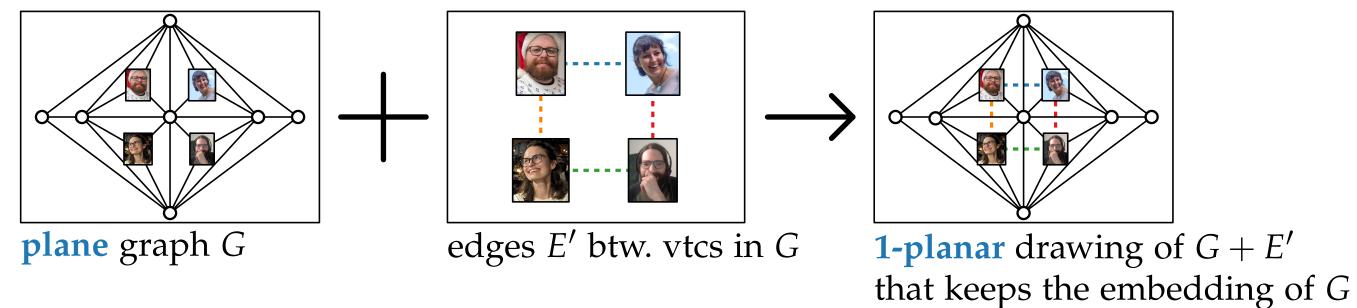


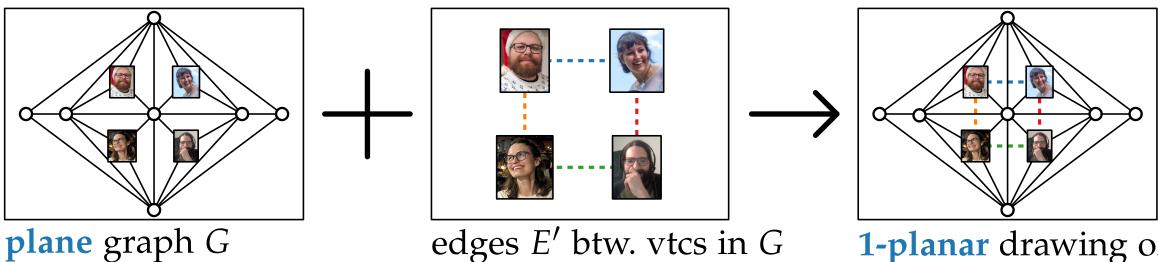
- 1. For each edge, find all possibilities to route it
- 2. Edge with 0 options → no-instance
- 3. Edge with 1 option → pick it
- 4. Edge with \geq 3 options
 - → there is always a **safe** or an **impossible** option
 - either pick or remove that option
- 5. All edges have 2 options
 - solve 2-SAT on conflict graph

Theorem.

1-plane insertion into a plane triangulation can be solved in O(n) time.

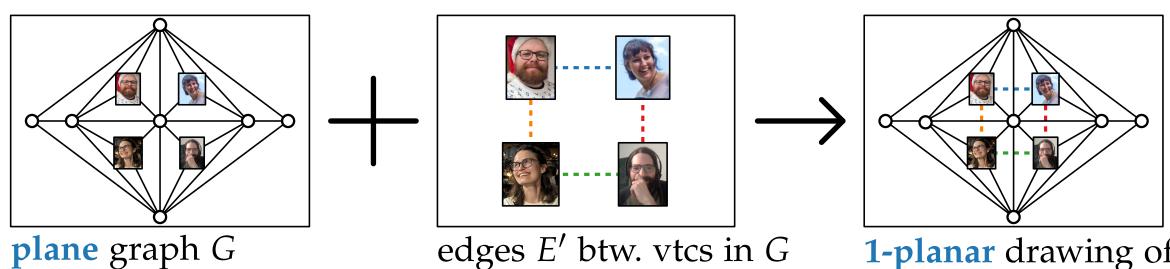






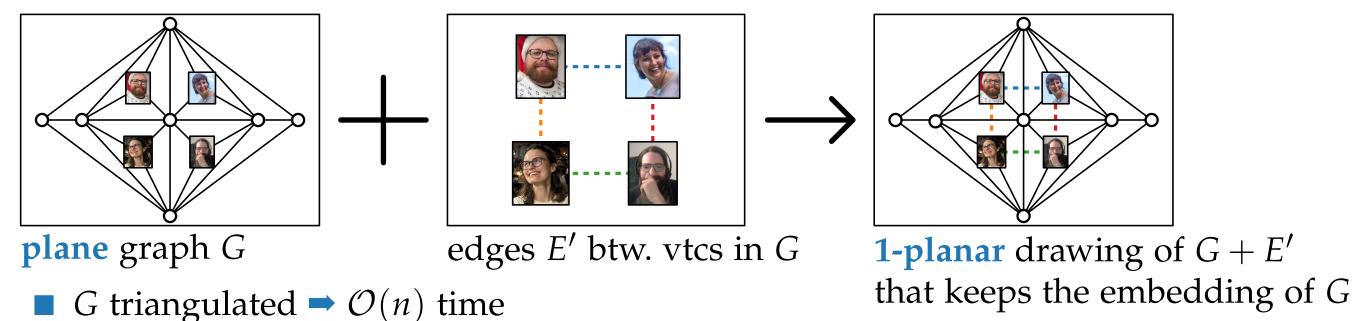
■ G triangulated $\rightarrow \mathcal{O}(n)$ time

1-planar drawing of G + E' that keeps the embedding of G



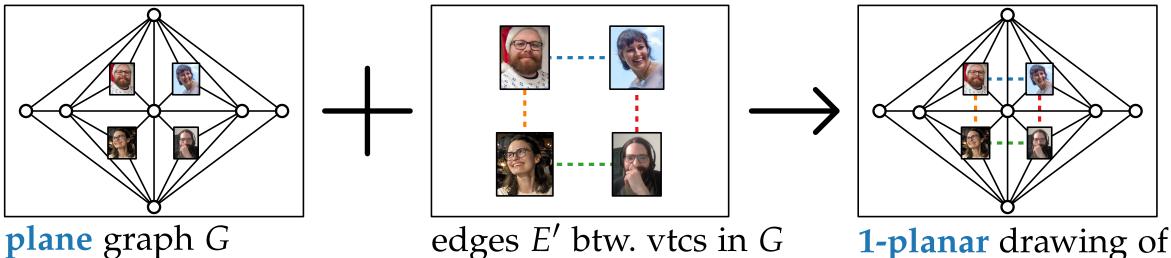
- G triangulated $\rightarrow \mathcal{O}(n)$ time
- *G* biconnected → NP-complete

1-planar drawing of G + E' that keeps the embedding of G



G biconnected → NP-complete

Open Problems

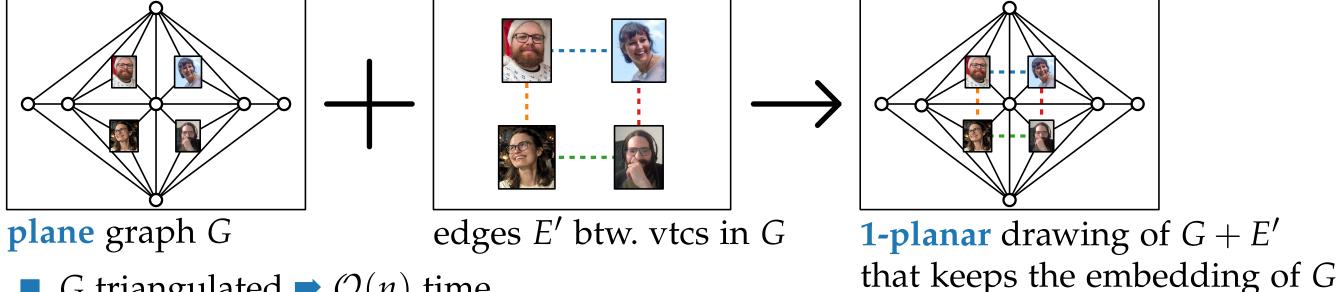


- G triangulated $\rightarrow \mathcal{O}(n)$ time
- *G* biconnected → NP-complete

1-planar drawing of G + E' that keeps the embedding of G

Open Problems

■ *G* triconnected?

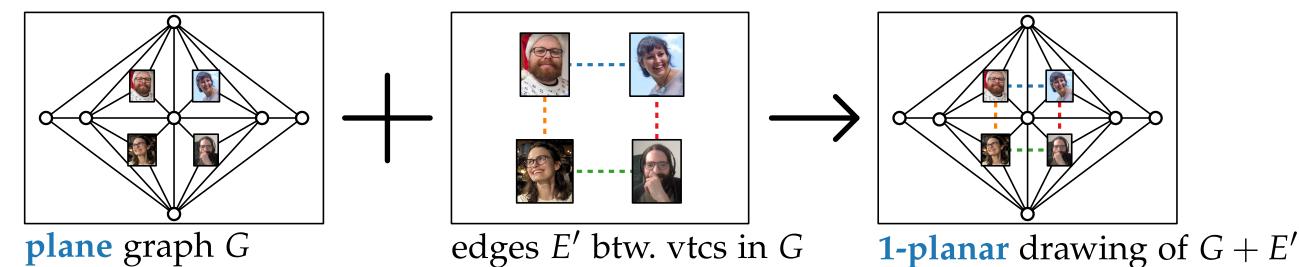


- G triangulated $\rightarrow \mathcal{O}(n)$ time
- *G* biconnected → NP-complete

Open Problems

G triconnected?

Other drawing styles? For example



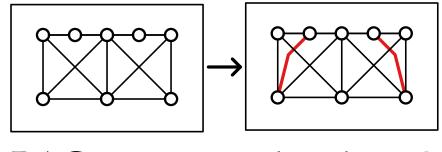
- G triangulated $\rightarrow \mathcal{O}(n)$ time
- *G* biconnected → NP-complete

Open Problems

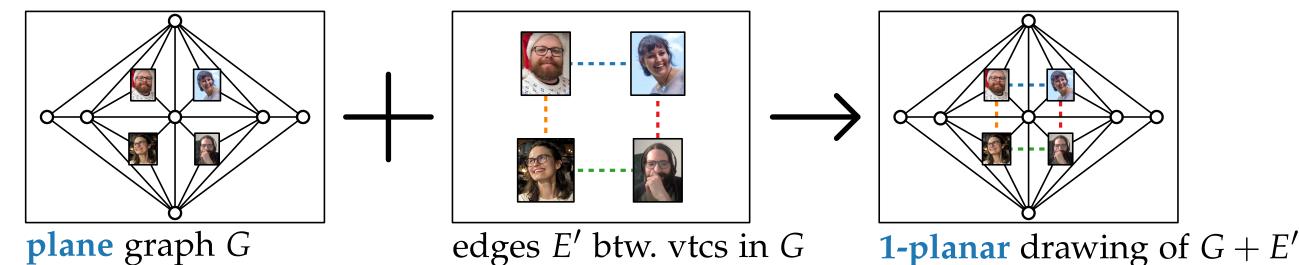
■ *G* triconnected?

Other drawing styles? For example

that keeps the embedding of *G*



RAC 1-bend RAC



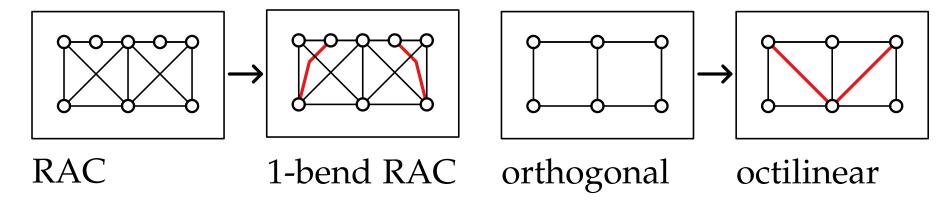
- G triangulated $\rightarrow \mathcal{O}(n)$ time
- *G* biconnected → NP-complete

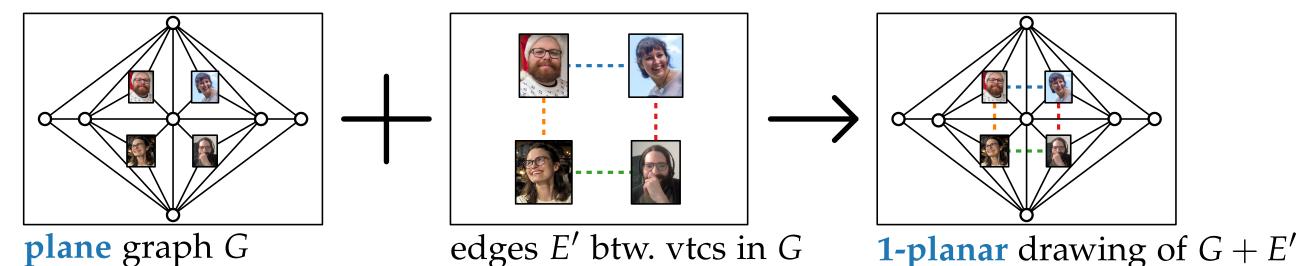
Open Problems

■ *G* triconnected?

Other drawing styles? For example

that keeps the embedding of *G*





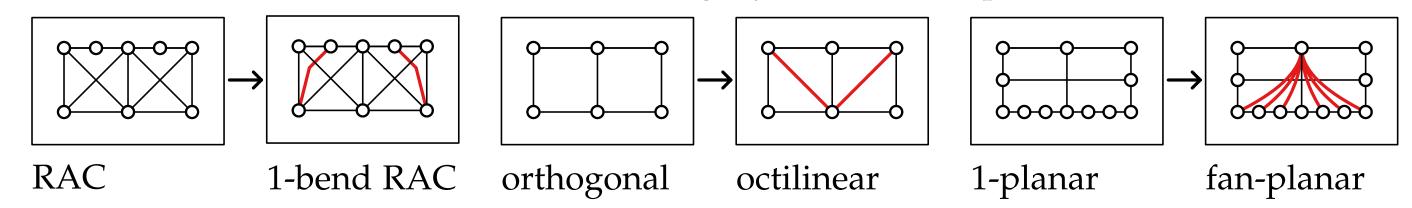
- G triangulated $\rightarrow \mathcal{O}(n)$ time
- *G* biconnected → NP-complete

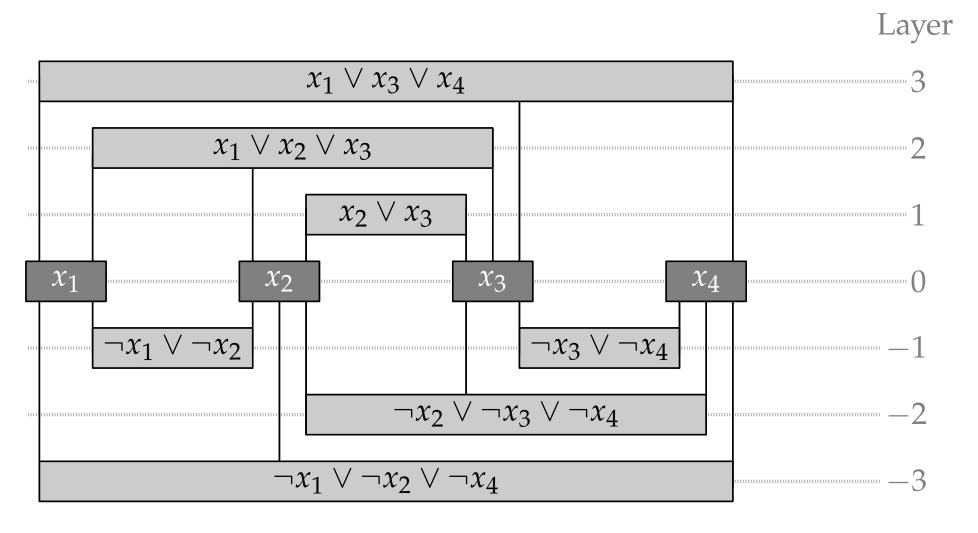
Open Problems

■ *G* triconnected?

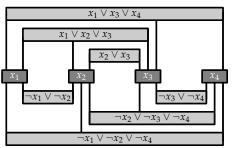
Other drawing styles? For example

that keeps the embedding of *G*



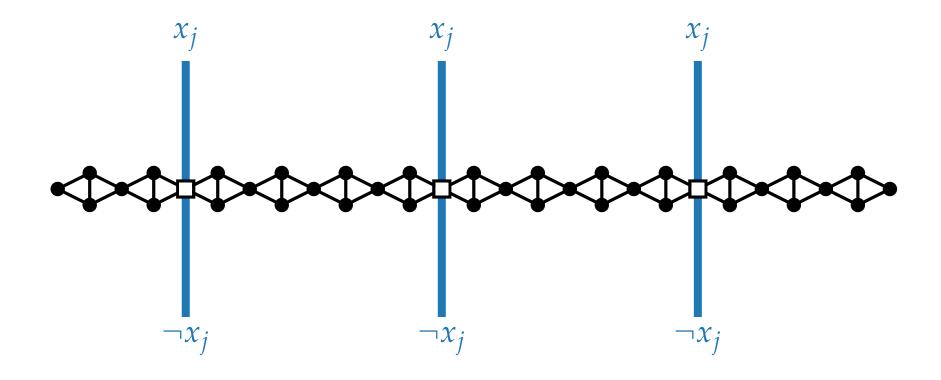


Planar Monotone 3-SAT



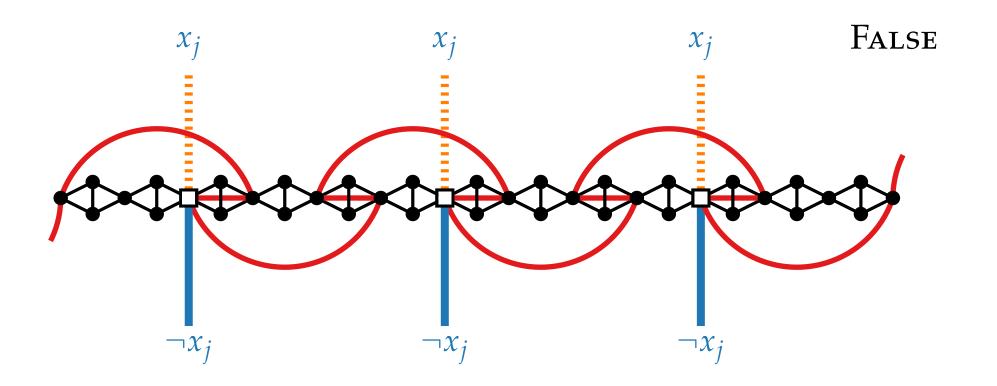
 $x_1 \lor x_3 \lor x_4$

Variable Gadget.

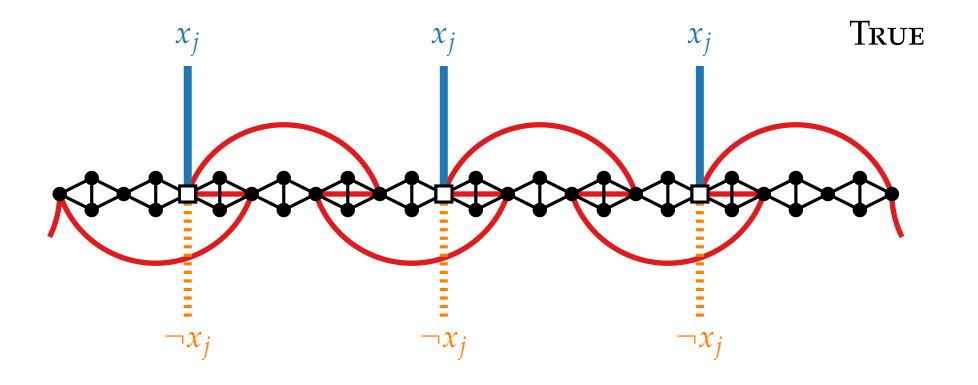


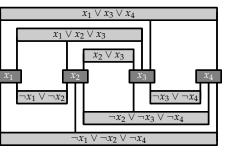
 $x_1 \lor x_3 \lor x_4$

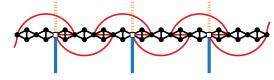
Variable Gadget.



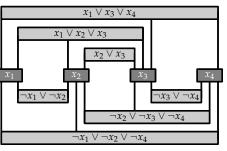
 $x_1 \lor x_3 \lor x_4$

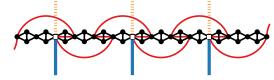




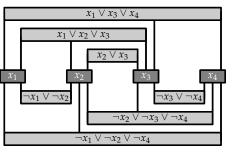


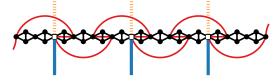
Clause Gadget.

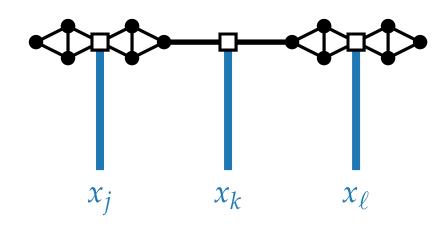




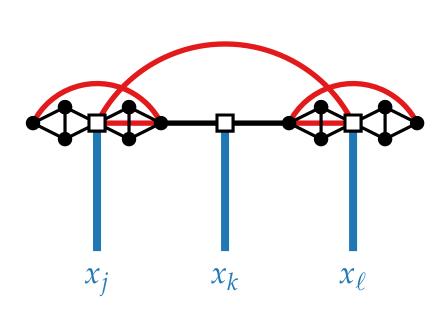
Clause Gadget.

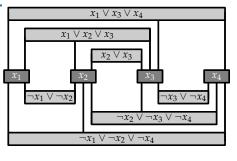


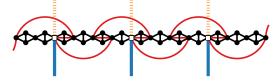




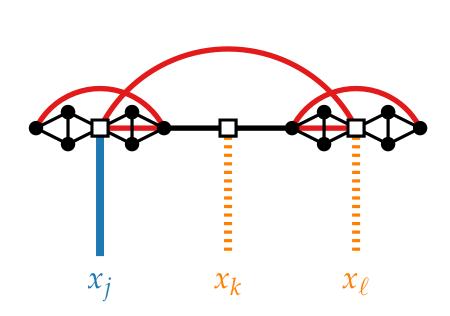
Clause Gadget.

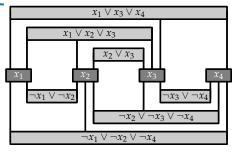


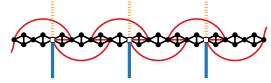




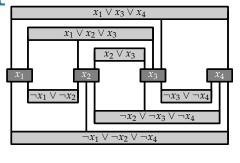
Clause Gadget.

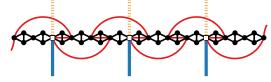


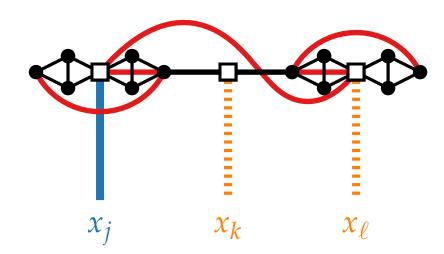




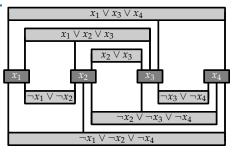
Clause Gadget.

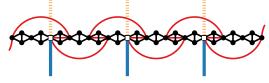


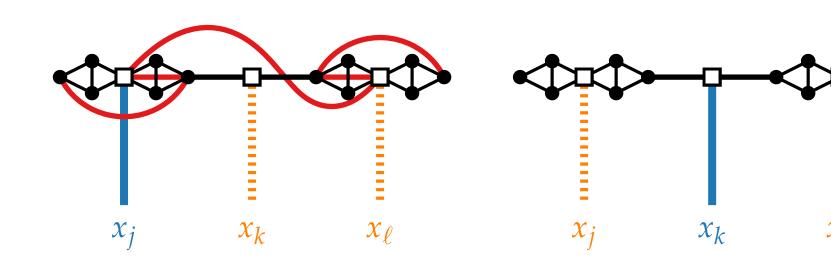




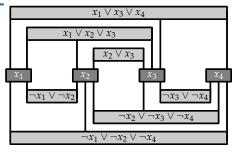
Clause Gadget.

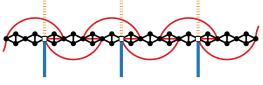


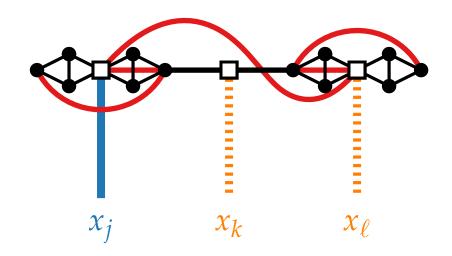


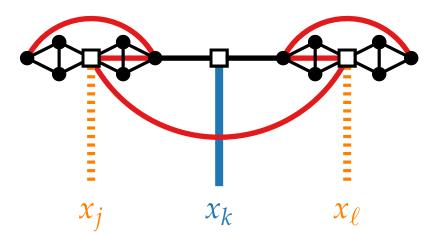


Clause Gadget.

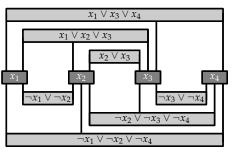


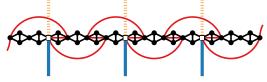


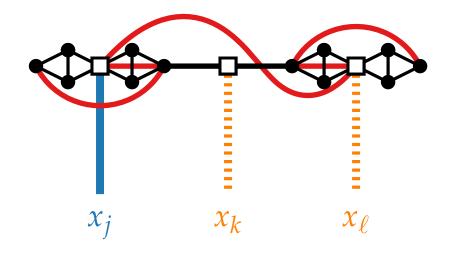


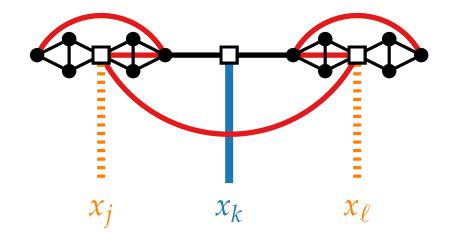


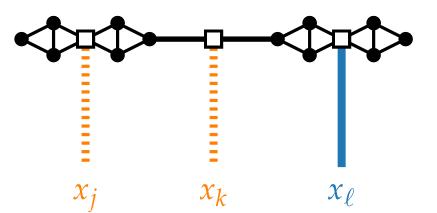
Clause Gadget.



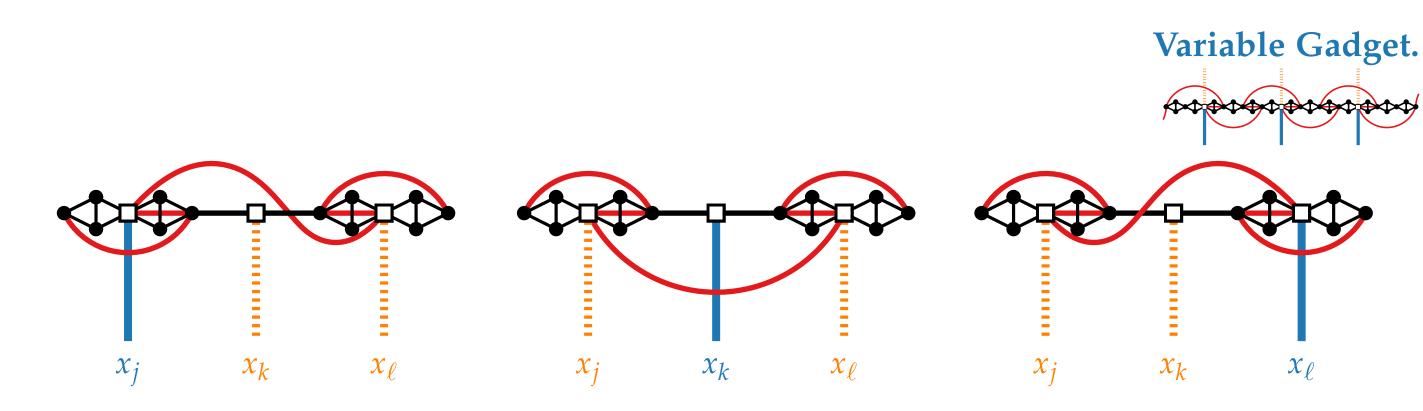




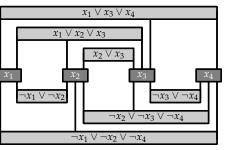




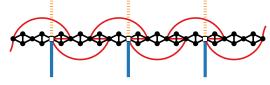
Clause Gadget.



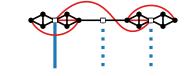
 $x_1 \lor x_3 \lor x_4$

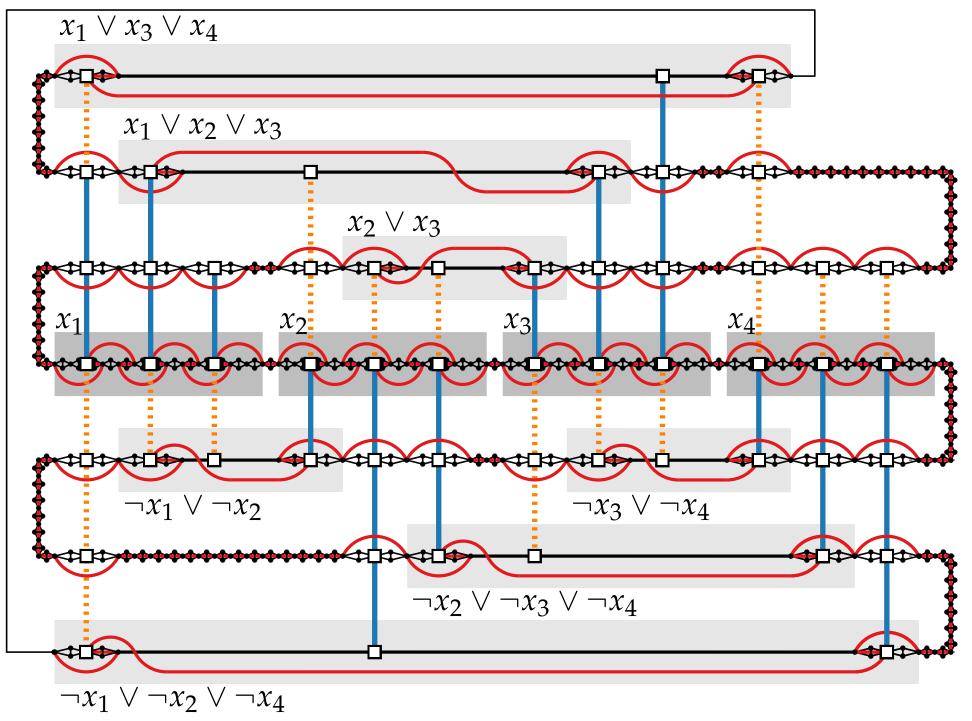


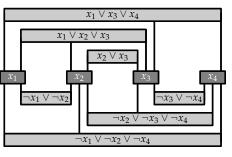
Variable Gadget.



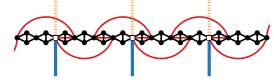
Clause Gadget.







Variable Gadget.



Clause Gadget.

