On k-Plane Insertion into Plane Drawings

Julia Katheder
Philipp Kindermann
Fabian Klute
Irene Parada
Ignaz Rutter

SWGD 2023
Summer Workshop on Graph Drawing

Inserting an Edge Into a Planar Graph

Inserting an Edge Into a Planar Graph

Inserting an Edge Into a Planar Graph

planar graph G

an edge e btw. 2 vertices of G

crossing-min. drawing of $G+e$

Inserting an Edge Into a Planar Graph

planar graph G

Inserting an Edge Into a Planar Graph

planar graph G

an edge e btw. 2 vertices of G

crossing-min. drawing of $G+e$

Inserting an Edge Into a Planar Graph

planar graph G

an edge e btw. 2 vertices of G

Inserting an Edge Into a Planar Graph

planar graph G

an edge e btw.
2 vertices of G

Inserting an Edge Into a Planar Graph

planar graph G

an edge e btw.
2 vertices of G

crossing-min. drawing of $G+e$

Inserting an Edge Into a Planar Graph II

planar graph G

an edge e btw. 2 vertices of G

crossing-min. drawing of $G+e$ s.t. G is drawn planar

Inserting an Edge Into a Planar Graph II

planar graph G

an edge e btw. 2 vertices of G

crossing-min. drawing of $G+e$ s.t. G is drawn planar

Inserting an Edge Into a Planar Graph II

planar graph G

an edge e btw.
2 vertices of G

crossing-min. drawing of $G+e$ s.t. G is drawn planar

This problem can be solved in $\mathcal{O}(n)$ time.

Inserting a Vertex Into a Planar Graph

Inserting a Vertex Into a Planar Graph

Inserting a Vertex Into a Planar Graph

Inserting a Vertex Into a Planar Graph

planar graph G

a star S with its leaves in G

crossing-min. drawing of $G+S$ s.t. G is drawn planar

Inserting a Vertex Into a Planar Graph

planar graph G

a star S with its leaves in G

crossing-min. drawing of $G+S$ s.t. G is drawn planar

Inserting an Edge Into a Plane Graph

plane graph G
(planar graph

+ planar embedding)

Inserting an Edge Into a Plane Graph

Inserting an Edge Into a Plane Graph

plane graph G (planar graph + planar embedding)

an edge $e \mathrm{btw}$. 2 vertices of G

Inserting an Edge Into a Plane Graph

plane graph G (planar graph

+ planar embedding)

an edge e btw.
2 vertices of G

This problem can be solved in $\mathcal{O}(n)$ time.

Inserting Edges Into a Plane Graph

Inserting Edges Into a Plane Graph

7 crossings

edges E^{\prime} btw. vtcs in G

crossing-min. drawing of $G+E^{\prime}$ that keeps the embedding of G

Inserting Edges Into a Plane Graph

7 crossings

crossing-min. drawing of $G+E^{\prime}$ that keeps the embedding of G
This problem is NP-hard.
[Ziegler '01]

Inserting Edges Into a Plane Graph

plane graph G
ber
edges E^{\prime} btw. vtcs in G

crossing-min. drawing of $G+E^{\prime}$ that keeps the embedding of G

This problem is NP-hard.
[Ziegler '01] ... even if G is biconnected.

Inserting Edges Into a Plane Graph

edges E^{\prime} btw. vtcs in G

plane graph G

crossing-min. drawing of $G+E^{\prime}$ that keeps the embedding of G

This problem is NP-hard.

This problem is in FPT parameterized by \#crossings.

Inserting Edges Into a Plane Graph

edges E^{\prime} btw. vtcs in G

plane graph G

crossing-min. drawing of $G+E^{\prime}$ that keeps the embedding of G

This problem is NP-hard.

This problem is in FPT parameterized by \#crossings.

Inserting Edges Into a Plane Graph

plane graph G

edges E^{\prime} btw. vtcs in G

crossing-min. drawing of $G+E^{\prime}$ that keeps the embedding of G

This problem is NP-hard.

This problem is in FPT parameterized by \#crossings. ... even if G is non-planar (or drawn with crossings)

This problem is in FPT parameterized by $\left|E^{\prime}\right|$ if G is biconnected or all cutvertices have constant degree.

Partial Embedding - General Definition

graph $G+$
drawing style Φ
(e.g., straight-line planar)

Partial Embedding - General Definition

Partial Embedding - General Definition

Partial Embedding of Planar Graphs

Partial Embedding of Planar Graphs

Partial Embedding of Planar Graphs

planar graph G

planar drawing of a subgraph $H \subseteq G$

planar drawing of G s.t. H keeps its drawing

Partial Embedding of Planar Graphs

planar graph G

planar drawing of a subgraph $H \subseteq G$

planar drawing of G s.t. H keeps its drawing

This problem can be solved in $\mathcal{O}(n)$ time.
[Angelini, Di Battista, Frati, Jelínek, Kratochvíl, Patrignani, Rutter '10]

Partial Embedding of 1-Planar Graphs

1-planar graph G (can be drawn s.t. every edge is crossed at most once)

Partial Embedding of 1-Planar Graphs

Partial Embedding of 1-Planar Graphs

Partial Embedding of 1-Planar Graphs

1-planar graph G (can be drawn s.t. every edge is crossed at most once)

1-planar drawing of a subgraph $H \subseteq G$

1-planar drawing of G s.t. H keeps its drawing

Partial Embedding of 1-Planar Graphs

1-planar graph G (can be drawn s.t. every edge is crossed at most once)

1-planar drawing of a subgraph $H \subseteq G$

1-planar drawing of G s.t. H keeps its drawing

This problem is NP-hard even if $H=\varnothing$. [Grigoriev \& Bodlaender '07]

This problem is in FPT parameterized by the vertex+edge deletion distance between G and H.
[Eiben, Ganian, Hamm, Klute \& Nöllenburg '20]

Partial Embedding of k-Planar Graphs

k-planar graph G (can be drawn s.t. every edge is crossed at most k times)

k-planar drawing of a subgraph $H \subseteq G$

k-planar drawing of G s.t. H keeps its drawing

Partial Embedding of k-Planar Graphs

k-planar graph G (can be drawn s.t. every edge is crossed at most k times)

k-planar drawing of a subgraph $H \subseteq G$

k-planar drawing of G s.t. H keeps its drawing

Partial Embedding of k-Planar Graphs

k-planar graph G (can be drawn s.t. every edge is crossed at most k times)

k-planar drawing of a subgraph $H \subseteq G$

k-planar drawing of G s.t. H keeps its drawing

This problem is NP-hard for any constant k even if $H=\varnothing$. [Urschel \& Wellens '21]
This problem is in FPT parameterized by $k+$ \#edges in $G-H$.

Generalization of Partial Embedding

Graph G +
drawing style Φ (e.g., planar)

Generalization of Partial Embedding

Generalization of Partial Embedding

1-Plane Insertion Into a Plane Graph

1-planar graph G

1-Plane Insertion Into a Plane Graph

1-planar graph G
 spanning subgraph $H \subseteq G$

1-Plane Insertion Into a Plane Graph

1-planar graph G

planar drawing of a spanning subgraph $H \subseteq G$

1-planar drawing of G that keeps the drawing of H

1-Plane Insertion Into a Plane Graph

1-planar graph G

plane graph G

planar drawing of a spanning subgraph $H \subseteq G$

1-planar drawing of G that keeps the drawing of H

1-Plane Insertion Into a Plane Graph

1-planar graph G

plane graph G

planar drawing of a spanning subgraph $H \subseteq G$

1-planar drawing of G that keeps the drawing of H

edges E^{\prime} btw. vtcs in G

1-Plane Insertion Into a Plane Graph

1-planar graph G

plane graph G

planar drawing of a spanning subgraph $H \subseteq G$

1-planar drawing of G that keeps the drawing of H

1-planar drawing of $G+E^{\prime}$ that keeps the embedding of G

1-Plane Insertion Into a Plane Triangulation

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation
 \square

1. For each edge, find all possibilities to route it

1-Plane Insertion Into a Plane Triangulation
 \square

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance

1-Plane Insertion Into a Plane Triangulation
 \square

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

1-Plane Insertion Into a Plane Triangulation
 \square

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

1-Plane Insertion Into a Plane Triangulation
 \square

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

1-Plane Insertion Into a Plane Triangulation
 \square

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad$ 王.... 6

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad$ 囫.... 6

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad$ 囫.... 6

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad$ 囫.... 6

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad 06$

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad 06$

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad 06$

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad$ 囫.... 6

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

\section*{1-Plane Insertion Into a Plane Triangulation E^{\prime} 国
 1. For each edge, find all possibilities to route it

2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

\section*{1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad$ ف
 1. For each edge, find all possibilities to route it

2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

1-Plane Insertion Into a Plane Triangulation
 1. For each edge, find all possibilities to route it

2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph
G

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad 06$

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad 06$

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad$ 王.... 6

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation E^{\prime} 回…
 1. For each edge, find all possibilities to route it

2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation E^{\prime} 回…
 1. For each edge, find all possibilities to route it

2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation E^{\prime} 回…
 1. For each edge, find all possibilities to route it

2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad 06$

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it

4 . Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G
G

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad 06$

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad 00$

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

G

1-Plane Insertion Into a Plane Triangulation $E^{\prime} \quad 00$

1. For each edge, find all possibilities to route it
2. Edge with 0 options \Rightarrow no-instance
3. Edge with 1 option \Rightarrow pick it
4. Edge with ≥ 3 options
\Rightarrow there is always a safe or an impossible option
\Rightarrow either pick or remove that option
5. All edges have 2 options
\Rightarrow solve 2-SAT on conflict graph

Theorem.

1-plane insertion into a plane triangulation can be solved in $O(n)$ time.

G

Conclusion

that keeps the embedding of G

Conclusion

■ G triangulated $\Rightarrow \mathcal{O}(n)$ time

Conclusion

- G triangulated $\Rightarrow \mathcal{O}(n)$ time
- G biconnected \Rightarrow NP-complete

Conclusion

■ G triangulated $\Rightarrow \mathcal{O}(n)$ time that keeps the embedding of G
$\square G$ biconnected \Rightarrow NP-complete

Open Problems

Conclusion

■ G triangulated $\Rightarrow \mathcal{O}(n)$ time that keeps the embedding of G
$\square G$ biconnected \Rightarrow NP-complete

Open Problems

$\square G$ triconnected?

Conclusion

■ G triangulated $\Rightarrow \mathcal{O}(n)$ time that keeps the embedding of G
$\square G$ biconnected \Rightarrow NP-complete

Open Problems

$\square G$ triconnected?
■ Other drawing styles? For example

Conclusion

■ G triangulated $\Rightarrow \mathcal{O}(n)$ time
■ G biconnected \Rightarrow NP-complete

Open Problems

$\square G$ triconnected?
■ Other drawing styles? For example

Conclusion

■ G triangulated $\Rightarrow \mathcal{O}(n)$ time
$\square G$ biconnected \Rightarrow NP-complete

Open Problems

$\square G$ triconnected?

RAC

1-bend RAC

- Other drawing styles? For example

orthogonal
octilinear

Conclusion

■ G triangulated $\Rightarrow \mathcal{O}(n)$ time
$\square G$ biconnected \Rightarrow NP-complete

Open Problems

■ G triconnected?

RAC

1-bend RAC

orthogonal

octilinear

1-planar

1-Plane Insertion Into a Plane Biconnected Graph

1-Plane Insertion Into a Plane Biconnected Graph

Layer

Planar Monotone 3-SAT

1-Plane Insertion Into a Plane Biconnected Graph

1-Plane Insertion Into a Plane Biconnected Graph

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Clause Gadget.

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Clause Gadget.

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Clause Gadget.

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Clause Gadget.

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Clause Gadget.

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Variable Gadget.

1-Plane Insertion Into a Plane Biconnected Graph

Variable Gadget.

Clause Gadget. 4

1-Plane Insertion Into a Plane Biconnected Graph

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}
$$

Variable Gadget.少

Clause Gadget.为

1-Plane Insertion Into a Plane Biconnected Graph

Theorem.
1-plane insertion into a plane biconnected graph is NP-complete, even if E^{\prime} forms a path or a matching.

