

2-Coloring Point Guards in a *k*-Guarded Polygon

Stephane Durocher, Myroslav Kryven, Fengyi Liu, Amirhossein Mashghdoust, Ikaro Penha Costa,

March, 2024

The *k*-Guarding Art Gallery problem:

- given a simple polygon *P* in the plane,
- find a set *G* of points in *P* that *guard P*, so that each point in *P* is visible to at least *k* guards.

The *k*-Guarding Art Gallery problem:

- given a simple polygon *P* in the plane,
- find a set *G* of points in *P* that *guard P*, so that each point in *P* is visible to at least *k* guards.

Chvátal, '73

Some results for a variant where guards are on the vertices:

The *k*-Guarding Art Gallery problem:

- given a simple polygon *P* in the plane,
- find a set *G* of points in *P* that *guard P*, so that each point in *P* is visible to at least *k* guards.

Some results for a variant where guards are on the vertices:

 $\lfloor n/3 \rfloor$ guards are enough and sometimes necessary for k = 1, [Fisk, '78] $\lfloor 2n/3 \rfloor$ guards are sometimes necessary for k = 2, $\lfloor 3n/4 \rfloor$ guards are sometimes necessary for k = 3; [Salleh, 2009]

• $O(k \log \log OPT_k(P))$ -approximation algorithm.

[Busto, 2013]

Chvátal, '73

Example:

need 2 gaurds to 1-guard the polygon,

Example:

need 2 gaurds to 1-guard the polygon,

Example:

need 2 gaurds to 1-guard the polygon,

Example:

- need 2 gaurds to 1-guard the polygon,
- need 3 gaurds to 2-guard the polygon.

Example:

- need 2 gaurds to 1-guard the polygon,
- need 3 gaurds to 2-guard the polygon.

The set of guards *G* is **2-colorable** if there exists a bipartition of *G* into two sets such that each 1-guards *P*.

k-guardability vs. 2-colorability of a guard set *G*

Question: Does there exist *k* such that for each polygon *P* and each guard set *G* that *k*-guards *P*, there exists a 2-coloring of *G*?

[Morin, Bose, Carmi, WADS 2023] *k*-guardability vs. 2-colorability of a guard set *G*

Question: Does there exist *k* such that for each polygon *P* and each guard set *G* that *k*-guards *P*, there exists a 2-coloring of *G*?

[Morin, Bose, Carmi, WADS 2023]

counterexample for k = 2

k-guardability vs. 2-colorability of a guard set *G*

Question: Does there exist *k* such that for each polygon *P* and each guard set *G* that *k*-guards *P*, there exists a 2-coloring of *G*? $_{77}$

[Morin, Bose, Carmi, WADS 2023]

counterexample for k = 2

counterexample for k = 3

Thm. For any $k \ge 2$ there exists a polygon *P* and a set of guards *G* such that *P* is *k*-guarded by *G* but there is no 2-coloring of *G*.

Thm. For any $k \ge 2$ there exists a polygon *P* and a set of guards *G* such that *P* is *k*-guarded by *G* but there is no 2-coloring of *G*.

Def. A region $Q \subseteq P$ is **uniquely guarded** by $G' \subseteq G$, if every point in Q is visible to G' an Q has a point p that is not visible to any guard in $G \setminus G'$. Call p a **witness point**, and a region composed of witness points a **witness region**.

Thm. For any $k \ge 2$ there exists a polygon *P* and a set of guards *G* such that *P* is *k*-guarded by *G* but there is no 2-coloring of *G*.

Def. A region $Q \subseteq P$ is **uniquely guarded** by $G' \subseteq G$, if every point in Q is visible to G' an Q has a point p that is not visible to any guard in $G \setminus G'$. Call p a **witness point**, and a region composed of witness points a **witness region**.

Thm. For any $k \ge 2$ there exists a polygon *P* and a set of guards *G* such that *P* is *k*-guarded by *G* but there is no 2-coloring of *G*.

Def. A region $Q \subseteq P$ is **uniquely guarded** by $G' \subseteq G$, if every point in Q is visible to G' an Q has a point p that is not visible to any guard in $G \setminus G'$. Call p a **witness point**, and a region composed of witness points a **witness region**.

Thm. For any $k \ge 2$ there exists a polygon *P* and a set of guards *G* such that *P* is *k*-guarded by *G* but there is no 2-coloring of *G*.

Def. A region $Q \subseteq P$ is **uniquely guarded** by $G' \subseteq G$, if every point in Q is visible to G' an Q has a point p that is not visible to any guard in $G \setminus G'$. Call p a **witness point**, and a region composed of witness points a **witness region**.

Thm. For any $k \ge 2$ there exists a polygon *P* and a set of guards *G* such that *P* is *k*-guarded by *G* but there is no 2-coloring of *G*.

Def. A region $Q \subseteq P$ is **uniquely guarded** by $G' \subseteq G$, if every point in Q is visible to G' an Q has a point p that is not visible to any guard in $G \setminus G'$. Call p a **witness point**, and a region composed of witness points a **witness region**.

Thm. For any $k \ge 2$ there exists a polygon *P* and a set of guards *G* such that *P* is *k*-guarded by *G* but there is no 2-coloring of *G*.

Def. A region $Q \subseteq P$ is **uniquely guarded** by $G' \subseteq G$, if every point in Q is visible to G' an Q has a point p that is not visible to any guard in $G \setminus G'$. Call p a **witness point**, and a region composed of witness points a **witness region**.

Thm. For any $k \ge 2$ there exists a polygon *P* and a set of guards *G* such that *P* is *k*-guarded by *G* but there is no 2-coloring of *G*.

Def. A region $Q \subseteq P$ is **uniquely guarded** by $G' \subseteq G$, if every point in Q is visible to G' an Q has a point p that is not visible to any guard in $G \setminus G'$. Call p a **witness point**, and a region composed of witness points a **witness region**. **Proof sketch:**

example of *P* for k = 3

Thm. There exists a polygon *P* and a set of guards *G* such that *P* is *k*-guarded by *G* but there is no 2-coloring of *G*.

Proof sketch: (by induction)

Invariants:

∀ root-to-leaf path g_{v_r}g_v uniquely guards a convex region Q_v with witness Δ_v;
∀ internal node u the children of g_u uniquely guard a trapezoidal region R_u.

Thm. There exists a polygon *P* and a set of guards by *G* but there is no 2-coloring of *G*. **Proof sketch:** (by induction)

 g_{v_r}

 A_v

Invariants:

∀ root-to-leaf path g_{v_r}g_v uniquely guards a convex region Q_v with witness Δ_v;
∀ internal node *u* the children of g_u uniquely guard a trapezoidal region R_u.

gu

 g_v

gu

 g_v

 P_h

Proof sketch: (by induction)

∀ root-to-leaf path g_{v_r}g_{v'} uniquely guards a convex region Q_{v'} with witness Δ_{v'};
 the set of children of g_v uniquely guards a trapezoidal region R_v.

Open questions

Our construction has exponential ratio of the lengths of the longest edge and the shortest edge.

Question 1 Is there a polygon *P* that is *k*-guarded by a set of guards *G* that is not 2-colorable for which the ratio of the lengths of the longest edge and the shortest edge is polynomial in *k*?

Open questions

Our construction has exponential ratio of the lengths of the longest edge and the shortest edge.

Question 1 Is there a polygon *P* that is *k*-guarded by a set of guards *G* that is not 2-colorable for which the ratio of the lengths of the longest edge and the shortest edge is polynomial in *k*?

Our construction for P_k has $\Theta(k^k)$ vertices.

Question 2 Can we show that P_k always needs $\omega(k)$ vertices?