2-Coloring Point Guards in a k-Guarded Polygon

Stephane Durocher, Myroslav Kryven Fengyi Liu, Amirhossein Mashghdoust, Ikaro Penha Costa,

March, 2024

Preliminaries

The k-Guarding Art Gallery problem:

- given a simple polygon P in the plane,
\square find a set G of points in P that guard P, so that each point in P is visible to at least k guards.

Preliminaries

The k-Guarding Art Gallery problem:

- given a simple polygon P in the plane,
\square find a set G of points in P that guard P, so that each point in P is visible to at least k guards.

Some results for a variant where guards are on the vertices:
[Chvátal, '73]
■ $\lfloor n / 3\rfloor$ guards are enough and sometimes necessary for $k=1$, [Fisk, '78]
$\lfloor 2 n / 3\rfloor$ guards are sometimes necessary for $k=2$,
$\lfloor 3 n / 4\rfloor$ guards are sometimes necessary for $k=3$;

Preliminaries

The k-Guarding Art Gallery problem:

- given a simple polygon P in the plane,
- find a set G of points in P that guard P, so that each point in P is visible to at least k guards.

Some results for a variant where guards are on the vertices:
■ $\lfloor n / 3\rfloor$ guards are enough and sometimes necessary for $k=1$, [Fisk, '78]
$\lfloor 2 n / 3\rfloor$ guards are sometimes necessary for $k=2$, $\lfloor 3 n / 4\rfloor$ guards are sometimes necessary for $k=3$;

■ $O\left(k \log \log O P T_{k}(P)\right)$-approximation algorithm.

Preliminaries

Example:
■ need 2 gaurds to 1-guard the polygon,

Preliminaries

Example:
■ need 2 gaurds to 1-guard the polygon,

Preliminaries

Example:
■ need 2 gaurds to 1-guard the polygon,

Preliminaries

Example:
■ need 2 gaurds to 1-guard the polygon,
■ need 3 gaurds to 2-guard the polygon.

Preliminaries

Example:
■ need 2 gaurds to 1-guard the polygon,
■ need 3 gaurds to 2-guard the polygon.

The set of guards G is 2-colorable if there exists a bipartition of G into two sets such that each 1 -guards P.

k-guardability vs. 2-colorability of a guard set G

Question: Does there exist k such that for each polygon P and each guard set G that k-guards P, there exists a 2 -coloring of G ?
[Morin, Bose,
Carmi, WADS 2023]

k-guardability vs. 2-colorability of a guard set G

Question: Does there exist k such that for each polygon P and each guard set G that k-guards P, there exists a 2 -coloring of G ?
[Morin, Bose,
Carmi, WADS 2023]
counterexample for $k=2$

k-guardability vs. 2-colorability of a guard set G

Question: Does there exist k such that for each polygon P and each guard set G that k-guards P, there exists a 2 -coloring of G ? [Morin, Bose, Carmi, WADS 2023]

counterexample for $k=3$

Counterexample for any k

Thm. For any $k \geq 2$ there exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2 -coloring of G.

Counterexample for any k

Thm. For any $k \geq 2$ there exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2 -coloring of G.
Def. A region $Q \subseteq P$ is uniquely guarded by $G^{\prime} \subseteq G$, if every point in Q is visible to G^{\prime} an Q has a point p that is not visible to any guard in $G \backslash G^{\prime}$. Call p a witness point, and a region composed of witness points a witness region.

Counterexample for any k

Thm. For any $k \geq 2$ there exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2 -coloring of G.
Def. A region $Q \subseteq P$ is uniquely guarded by $G^{\prime} \subseteq G$, if every point in Q is visible to G^{\prime} an Q has a point p that is not visible to any guard in $G \backslash G^{\prime}$. Call p a witness point, and a region composed of witness points a witness region.

Counterexample for any k

Thm. For any $k \geq 2$ there exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2-coloring of G. Def. A region $Q \subseteq P$ is uniquely guarded by $G^{\prime} \subseteq G$, if every point in Q is visible to G^{\prime} an Q has a point p that is not visible to any guard in $G \backslash G^{\prime}$. Call p a witness point, and a region composed of witness points a witness region. Proof sketch:

Counterexample for any k

Thm. For any $k \geq 2$ there exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2-coloring of G.
Def. A region $Q \subseteq P$ is uniquely guarded by $G^{\prime} \subseteq G$, if every point in Q is visible to G^{\prime} an Q has a point p that is not visible to any guard in $G \backslash G^{\prime}$. Call p a witness point, and a region composed of witness points a witness region. Proof sketch:

Counterexample for any k

Thm. For any $k \geq 2$ there exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2-coloring of G. Def. A region $Q \subseteq P$ is uniquely guarded by $G^{\prime} \subseteq G$, if every point in Q is visible to G^{\prime} an Q has a point p that is not visible to any guard in $G \backslash G^{\prime}$. Call p a witness point, and a region composed of witness points a witness region. Proof sketch:

Counterexample for any k

Thm. For any $k \geq 2$ there exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2-coloring of G. Def. A region $Q \subseteq P$ is uniquely guarded by $G^{\prime} \subseteq G$, if every point in Q is visible to G^{\prime} an Q has a point p that is not visible to any guard in $G \backslash G^{\prime}$. Call p a witness point, and a region composed of witness points a witness region. Proof sketch:

Counterexample for any k

Thm. For any $k \geq 2$ there exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2 -coloring of G. Def. A region $Q \subseteq P$ is uniquely guarded by $G^{\prime} \subseteq G$, if every point in Q is visible to G^{\prime} an Q has a point p that is not visible to any guard in $G \backslash G^{\prime}$. Call p a witness point, and a region composed of witness points a witness region. Proof sketch:

example of P for $k=3$

Theorem proof sketch

Thm. There exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2 -coloring of G.
Proof sketch: (by induction)

Invariants:
$\square \forall$ root-to-leaf path $g_{v_{r}} g_{v}$ uniquely guards a convex region Q_{v} with witness Δ_{v};
■ \forall internal node u the children of g_{u} uniquely guard a trapezoidal region R_{u}.

Theorem proof sketch

Thm. There exists a polygon P and a set of guards by G but there is no 2 -coloring of G. Proof sketch: (by induction)

Invariants:
$\square \forall$ root-to-leaf path $g_{v_{r}} g_{v}$ uniquely guards a convex region Q_{v} with witness Δ_{v};
■ \forall internal node u the children of g_{u} uniquely guard a trapezoidal region R_{u}.

Theorem proof sketch

Proof sketch: (by induction)

- g_{v}

Theorem proof sketch

Proof sketch: (by induction)

- g_{v}

Theorem proof sketch

Proof sketch: (by induction)

Theorem proof sketch

Proof sketch: (by induction)

- \forall root-to-leaf path $g_{v_{r}} g_{v^{\prime}}$ uniquely guards a convex region $Q_{v^{\prime}}$ with witness $\Delta_{v^{\prime}}$;
\square the set of children of g_{v} uniquely guards a trapezoidal region R_{v}.

Open questions

Our construction has exponential ratio of the lengths of the longest edge and the shortest edge.
Question 1 Is there a polygon P that is k-guarded by a set of guards G that is not 2-colorable for which the ratio of the lengths of the longest edge and the shortest edge is polynomial in k ?

Open questions

Our construction has exponential ratio of the lengths of the longest edge and the shortest edge.
Question 1 Is there a polygon P that is k-guarded by a set of guards G that is not 2-colorable for which the ratio of the lengths of the longest edge and the shortest edge is polynomial in k ?

Our construction for P_{k} has $\Theta\left(k^{k}\right)$ vertices.
Question 2 Can we show that P_{k} always needs $\omega(k)$ vertices?

