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■ O(k log log OPTk(P))-approximation algorithm. [Busto, 2013]
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Example:

■ need 2 gaurds to 1-guard the polygon,

■ need 3 gaurds to 2-guard the polygon.

The set of guards G is 2-colorable if there exists a bipartition
of G into two sets such that each 1-guards P.



k-guardability vs. 2-colorability of a guard set G
Question: Does there exist k such that for each polygon P and each guard set G
that k-guards P, there exists a 2-coloring of G?
[Morin, Bose,
Carmi, WADS 2023]
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example of P for k = 3

Thm. For any k ≥ 2 there exists a polygon P and a set of guards G such that P is
k-guarded by G but there is no 2-coloring of G.

Proof sketch:

Def. A region Q ⊆ P is uniquely guarded by G′ ⊆ G, if every point in Q is
visible to G′ an Q has a point p that is not visible to any guard in G \ G′. Call p a
witness point, and a region composed of witness points a witness region.



Theorem proof sketch
Thm. There exists a polygon P and a set of guards G such that P is k-guarded
by G but there is no 2-coloring of G.
Proof sketch: (by induction)
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■ ∀ root-to-leaf path gvr gv uniquely guards a convex region Qv with witness ∆v;

■ ∀ internal node u the children of gu uniquely guard a trapezoidal region Ru.
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Proof sketch: (by induction)
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Invariants are maintained:
■ ∀ root-to-leaf path gvr gv′ uniquely guards a convex region Qv′ with witness ∆v′ ;

■ the set of children of gv uniquely guards a trapezoidal region Rv.



Open questions

Question 1 Is there a polygon P that is k-guarded by a set of guards G that is
not 2-colorable for which the ratio of the lengths of the longest edge and the
shortest edge is polynomial in k?

Our construction has exponential ratio of the lengths of the longest edge and the
shortest edge.
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Question 1 Is there a polygon P that is k-guarded by a set of guards G that is
not 2-colorable for which the ratio of the lengths of the longest edge and the
shortest edge is polynomial in k?

Our construction for Pk has Θ(kk) vertices.

Question 2 Can we show that Pk always needs ω(k) vertices?

Our construction has exponential ratio of the lengths of the longest edge and the
shortest edge.


