Flips in Odd Matchings

Oswin Aichholzer, Anna Brötzner, Daniel Perz, Patrick Schnider

ETHzürich

Edge Flips

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.

Edge Flips

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.

Triangulations

Edge Flips

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.

Plane spanning paths

Edge Flips

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.

Triangulations
Plane spanning paths

Edge Flips

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.
Edge flip: replace a constant number of edges with other edges

Plane spanning paths

Edge Flips

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.
Edge flip: replace a constant number of edges with other edges

Triangulations

Plane spanning paths

Edge Flips

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.
Edge flip: replace a constant number of edges with other edges

Triangulations

Plane spanning paths

Edge Flips

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.
Edge flip: replace a constant number of edges with other edges

Triangulations

Plane spanning paths

Flip Graph $G_{\mathcal{F}}$

Flip Graph $G_{\mathcal{F}}$

- Every vertex corresponds to a member of \mathcal{F}

Flip Graph $G_{\mathcal{F}}$

- Every vertex corresponds to a member of \mathcal{F}
- Every edge between two vertices corresponds to an edge flip between two drawings

Flip Graph $G_{\mathcal{F}}$

- Every vertex corresponds to a member of \mathcal{F}
- Every edge between two vertices corresponds to an edge flip between two drawings
Is the flip graph connected?

Flip Graph $G_{\mathcal{F}}$

- Every vertex corresponds to a member of \mathcal{F}
- Every edge between two vertices corresponds to an edge flip between two drawings

Is the flip graph connected?

True for:

- Triangulations
- Plane spanning trees
- Plane spanning paths (on certain point sets)

Flip Graph $G_{\mathcal{F}}$

- Every vertex corresponds to a member of \mathcal{F}
- Every edge between two vertices corresponds to an edge flip between two drawings

Is the flip graph connected?

True for:

- Triangulations
- Plane spanning trees
- Plane spanning paths (on certain point sets)

How about plane perfect matchings?

Our Setting

Our Setting

- Point set P with $2 m+1$ points

Our Setting

- Point set P with $2 m+1$ points
- Plane almost perfect matching: all except one point matched

Our Setting

- Point set P with $2 m+1$ points
- Plane almost perfect matching: all except one point matched

- Edge flips for almost perfect matchings

Problem

Given a point set and two plane almost perfect matchings M_{1}, M_{2} on it. Is it always possible to transform M_{1} into M_{2} by a series of flips?

Problem

Given a point set and two plane almost perfect matchings M_{1}, M_{2} on it. Is it always possible to transform M_{1} into M_{2} by a series of flips?

Problem

Given a point set and two plane almost perfect matchings M_{1}, M_{2} on it. Is it always possible to transform M_{1} into M_{2} by a series of flips?

Problem

Given a point set and two plane almost perfect matchings M_{1}, M_{2} on it. Is it always possible to transform M_{1} into M_{2} by a series of flips?

Problem

Given a point set and two plane almost perfect matchings M_{1}, M_{2} on it. Is it always possible to transform M_{1} into M_{2} by a series of flips?

In other words: Is the flip graph connected?

Problem

Given a point set and two plane almost perfect matchings M_{1}, M_{2} on it. Is it always possible to transform M_{1} into M_{2} by a series of flips?

Theorem. For any set P of $n=2 m+1$ points in general position in the plane the flip graph is connected.

In other words: Is the flip graph connected?

Flip to Canonical Matching M_{c}

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates

- $p_{2 m+1}$

p_{4} 。

$$
{ }^{\bullet} p_{2 m-1}
$$

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates

- $p_{2 m+1}$

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip to Canonical Matching M_{c}

- Sort the points by increasing x-coordinates
- Let the leftmost point be unmatched

We want to flip any matching M to the canonical matching $M_{c}=\bigcup_{i=1}^{m}\left\{p_{2 i-1}, p_{2 i}\right\}$.

Flip Sequence

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

Flip Sequence

Observation: A plane alternating path gives rise to a flip sequence.

\rightarrow Find a plane alternating path between the unmatched point and the leftmost point

Detour: Segment Endpoint Visibility Graphs

Plane perfect matching $\widehat{=}$ segments in the plane

Detour: Segment Endpoint Visibility Graphs

Plane perfect matching $\widehat{=}$ segments in the plane

Detour: Segment Endpoint Visibility Graphs

Plane perfect matching $\widehat{=}$ segments in the plane

Detour: Segment Endpoint Visibility Graphs

 Plane perfect matching $\widehat{=}$ segments in the plane

Theorem: Every segment endpoint visibility graph contains a plane Hamiltonian cycle. [Hoffmann, Tóth 2003]

Detour: Segment Endpoint Visibility Graphs

Plane perfect matching $\widehat{=}$ segments in the plane

Theorem: Every segment endpoint visibility graph contains a plane Hamiltonian cycle. [Hoffmann, Tóth 2003]

Finding a Plane Alternating Path

Finding a Plane Alternating Path

$$
G=C \cup M
$$

Finding a Plane Alternating Path

$G=\underset{A}{C} \cup M$

Hamiltonian cycle

Finding a Plane Alternating Path

$$
G=C \cup M_{\text {perfect matching }}
$$

Hamiltonian cycle

Finding a Plane Alternating Path

$$
G=C \cup M_{\text {perfect matching }}
$$

Hamiltonian cycle

fix two matching edges

$$
e_{1}=(a, b), e_{2}=(c, d)
$$

Finding a Plane Alternating Path

$$
G=C \cup M_{\text {perfect matching }}
$$

Hamiltonian cycle

fix two matching edges
$e_{1}=(a, b), e_{2}=(c, d)$

Lemma 1: There exists an alternating path P that starts at vertex a and edge e_{1} and ends at vertex c.

Finding a Plane Alternating Path

$$
G=C \cup M_{\text {perfect matching }}
$$

Hamiltonian cycle

fix two matching edges
$e_{1}=(a, b), e_{2}=(c, d)$

Lemma 1: There exists an alternating path P that starts at vertex a and edge e_{1} and ends at vertex c.

Finding a Plane Alternating Path

Finding a Plane Alternating Path

Planarity?

Finding a Plane Alternating Path

Planarity?

- M ... plane perfect matching

Finding a Plane Alternating Path

Planarity?

- M ... plane perfect matching
- C... plane Hamiltonian cycle on segment endpoint visibility graph of M

Finding a Plane Alternating Path

Planarity?

- M ... plane perfect matching
- C... plane Hamiltonian cycle on segment endpoint visibility graph of M

\Rightarrow no intersection between edges in $C \cup M$

Finding a Plane Alternating Path

Planarity?

- M ... plane perfect matching
- C... plane Hamiltonian cycle on segment endpoint visibility graph of M

\Rightarrow no intersection between edges in $C \cup M$ $\Rightarrow P$ is plane

Back to Our Setting

Back to Our Setting

We have an odd number of points!

Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is unmatched.

Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is unmatched.

Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is unmatched.

Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is unmatched.

Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is unmatched.

Back to Our Setting

We have an odd number of points! Lemma 2: Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

- Consider segment endpoint visibility graph

Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

- Consider segment endpoint visibility graph

- C ... plane Hamiltonian cycle

Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

- Consider segment endpoint visibility graph
- C ... plane Hamiltonian cycle

Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

- Consider segment
 endpoint visibility graph
- C ... plane Hamiltonian cycle
Lemma $1 \Rightarrow \exists$ alternating path P from t to p

Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

- Consider segment endpoint visibility graph
- C ... plane Hamiltonian cycle

Lemma $1 \Rightarrow \exists$ alternating path P from t to p
plane alternating path
sequence of flips

Proof of Theorem 1

Proof of Theorem 1

- Duplicate unmatched point p, add $p p^{\prime}$ to the matching M, and find a plane Hamiltonian cycle C on $P \cup\left\{p^{\prime}\right\}$ that does not intersect M

Proof of Theorem 1

- Duplicate unmatched point p, add $p p^{\prime}$ to the matching M, and find a plane Hamiltonian cycle C on $P \cup\left\{p^{\prime}\right\}$ that does not intersect M
- Find a plane alternating path on $C \cup M$ that starts at a point on ∂P and ends at the duplicated point

Proof of Theorem 1

- Duplicate unmatched point p, add $p p^{\prime}$ to the matching M, and find a plane Hamiltonian cycle C on $P \cup\left\{p^{\prime}\right\}$ that does not intersect M
- Find a plane alternating path on $C \cup M$ that starts at a point on ∂P and ends at the duplicated point
\rightarrow flip sequence to a point on ∂P

Proof of Theorem 1

- Duplicate unmatched point p, add $p p^{\prime}$ to the matching M, and find a plane Hamiltonian cycle C on $P \cup\left\{p^{\prime}\right\}$ that does not intersect M
- Find a plane alternating path on $C \cup M$ that starts at a point on ∂P and ends at the duplicated point
\rightarrow flip sequence to a point on ∂P
- We can flip any matching to the canonical matching M_{c}

Proof of Theorem 1

- Duplicate unmatched point p, add $p p^{\prime}$ to the matching M, and find a plane Hamiltonian cycle C on $P \cup\left\{p^{\prime}\right\}$ that does not intersect M
- Find a plane alternating path on $C \cup M$ that starts at a point on ∂P and ends at the duplicated point
\rightarrow flip sequence to a point on ∂P
- We can flip any matching to the canonical matching M_{c}
\Rightarrow We can flip any two matchings M_{1} and M_{2} to M_{c}

Proof of Theorem 1

- Duplicate unmatched point p, add $p p^{\prime}$ to the matching M, and find a plane Hamiltonian cycle C on $P \cup\left\{p^{\prime}\right\}$ that does not intersect M
- Find a plane alternating path on $C \cup M$ that starts at a point on ∂P and ends at the duplicated point
\rightarrow flip sequence to a point on ∂P
- We can flip any matching to the canonical matching M_{c} \Rightarrow We can flip any two matchings M_{1} and M_{2} to M_{c}
- We can flip any matching M_{1} to any matching M_{2}

Open Problems

Open Problems

- What is the diameter of this flip graph?

Open Problems

- What is the diameter of this flip graph?
- $|P|=2 m$: plane perfect matchings

Open Problems

- What is the diameter of this flip graph?
- $|P|=2 m$: plane perfect matchings
- Given two point sets colored red and blue, consider the flip graph of plane perfect bicolored matchings.

Open Problems

- What is the diameter of this flip graph?
- $|P|=2 m$: plane perfect matchings
- Given two point sets colored red and blue, consider the flip graph of plane perfect bicolored matchings.

Thank you!

Finding a Plane Alternating Path

Proof:

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

$$
G_{2}=\left\{e_{1}\right\}
$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

$$
G_{2}=\left\{e_{1}\right\}
$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

$$
G_{2}=\left\{e_{1}\right\}, G_{3}
$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

$$
G_{2}=\left\{e_{1}\right\}, G_{3}, \ldots, G_{p}
$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

$$
G_{2}=\left\{e_{1}\right\}, G_{3}, \ldots, G_{p}
$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

$$
G_{2}=\left\{e_{1}\right\}, \mathrm{G}_{3}, \bullet \bullet, \mathrm{G}_{p}
$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

(2) 2 vertices of degree 1: v_{1}, v_{k}

$$
G_{2}=\left\{e_{1}\right\}, G_{3}, \ldots, G_{p}
$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

(2) 2 vertices of degree $1: v_{1}, v_{k}$
(3) $\forall v \in V\left(G_{k}\right) \backslash\left\{v_{1}, v_{k}\right\}$:

- $\operatorname{deg}(v)=2$
- incident to one edge in M, one edge in $C \backslash M$

$$
G_{2}=\left\{e_{1}\right\}, G_{3}, \ldots, G_{p}
$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

(2) 2 vertices of degree $1: v_{1}, v_{k}$
(3) $\forall v \in V\left(G_{k}\right) \backslash\left\{v_{1}, v_{k}\right\}$:

- $\operatorname{deg}(v)=2$
- incident to one edge in M, one edge in $C \backslash M$
(4) $v_{1}=a, v_{2}=b, v_{p}=c$

$$
G_{2}=\left\{e_{1}\right\}, G_{3}, \ldots, G_{p}
$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq\left\{e_{1}, e_{2}\right\}$

(2) 2 vertices of degree $1: v_{1}, v_{k}$
(3) $\forall v \in V\left(G_{k}\right) \backslash\left\{v_{1}, v_{k}\right\}$:

- $\operatorname{deg}(v)=2$
- incident to one edge in M, one edge in $C \backslash M$
(4) $v_{1}=a, v_{2}=b, v_{p}=c$

$$
G_{2}=\left\{e_{1}\right\}, G_{3}, \ldots, G_{p}
$$

$G_{p}=\dot{U}\{$ cycles $\} \dot{U} P$

Construction of G_{k+1}

Let e be incident to v_{k}.

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
(1) $\left|V\left(G_{k+1}\right)\right|=k+1$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
(1) $\left|V\left(G_{k+1}\right)\right|=k+1$
(2) $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{k+1}\right)=1$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
(1) $\left|V\left(G_{k+1}\right)\right|=k+1$
(2) $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{k+1}\right)=1$
(3) $\operatorname{deg}\left(v_{i}\right)=2 \quad \forall 1<i \leq k$, edges are alternating

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
- Case 2: $e \in M$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
- Case 2: $e \in M$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
- Case 2: $e \in M$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
- Case 2: $e \in M$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
- Case 2: $e \in M$
alternate edges along the path

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
- Case 2: $e \in M$ alternate edges along the path

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
- Case 2: $e \in M$
alternate edges along the path
(1) $\left|V\left(G_{k+1}\right)\right|=k+1$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
- Case 2: $e \in M$ alternate edges along the path
(1) $\left|V\left(G_{k+1}\right)\right|=k+1$
(2) $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{k+1}\right)=1$

Construction of G_{k+1}

Let e be incident to v_{k}.

- Case 1: $e \in C \backslash M$
- Case 2: $e \in M$ alternate edges along the path
(1) $\left|V\left(G_{k+1}\right)\right|=k+1$
(2) $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{k+1}\right)=1 \quad w=v_{k+1}$
(3) $\operatorname{deg}\left(v_{i}\right)=2 \quad \forall 1<i \leq k$, edges are alternating

