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Flip Graph GF

Is the flip graph connected?

True for:
- Triangulations
- Plane spanning trees
- Plane spanning paths (on certain point sets)

• Every vertex corresponds to a member of F
• Every edge between two vertices corresponds

to an edge flip between two drawings

How about plane perfect matchings?
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Our Setting

• Point set P with 2m+ 1 points

• Plane almost perfect matching:
all except one point matched

• Edge flips for almost
perfect matchings
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Problem

Given a point set and two plane almost perfect
matchings M1, M2 on it. Is it always possible to
transform M1 into M2 by a series of flips?
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Problem

Given a point set and two plane almost perfect
matchings M1, M2 on it. Is it always possible to
transform M1 into M2 by a series of flips?

In other words: Is the flip graph connected?

Theorem. For any set P of n = 2m+ 1 points in general
position in the plane the flip graph is connected.
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Flip to Canonical Matching Mc

• Sort the points by increasing x-coordinates

p1

p2

p3

p4

p2m+1

We want to flip any matching M to the canonical
matching Mc =

⋃m
i=1{p2i−1, p2i}.

p5

p2m

p2m−1

• Let the leftmost point be unmatched

find flip sequence
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Flip Sequence

Observation: A plane alternating path gives rise to a
flip sequence.

→ Find a plane alternating path between the
unmatched point and the leftmost point
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Flips in Odd Matchings EuroCG ’249 i

Finding a Plane Alternating Path



Flips in Odd Matchings EuroCG ’249 ii

Finding a Plane Alternating Path

G = C ∪M



Flips in Odd Matchings EuroCG ’249 iii

Finding a Plane Alternating Path

G = C ∪M

Hamiltonian cycle



Flips in Odd Matchings EuroCG ’249 iv

Finding a Plane Alternating Path

G = C ∪M

Hamiltonian cycle
perfect matching



Flips in Odd Matchings EuroCG ’249 v

Finding a Plane Alternating Path

G = C ∪M

Hamiltonian cycle
perfect matching

a

b

c
d

e1

e2

fix two matching edges
e1 = (a, b), e2 = (c, d)
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Finding a Plane Alternating Path

G = C ∪M

Hamiltonian cycle
perfect matching

a

b

c
d

e1

e2

fix two matching edges
e1 = (a, b), e2 = (c, d)

Lemma 1: There exists
an alternating path P that
starts at vertex a and edge
e1 and ends at vertex c.
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Finding a Plane Alternating Path

Planarity?

• M . . . plane perfect matching

⇒ no intersection between edges in C ∪M

• C . . . plane Hamiltonian cycle on segment endpoint
visibility graph of M

⇒ P is plane
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We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is
unmatched.

t
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p′
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Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is
unmatched. • Consider segment

endpoint visibility graph

p

p′

t
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Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is
unmatched.

• C . . . plane Hamiltonian
cycle

• Consider segment
endpoint visibility graph

p

p′

t
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Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is
unmatched.

• C . . . plane Hamiltonian
cycle

• Consider segment
endpoint visibility graph

p

p′

t

M ∪ C
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Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is
unmatched.

• C . . . plane Hamiltonian
cycle

• Consider segment
endpoint visibility graph

p

p′ Lemma 1 ⇒ ∃ alternating
path P from t to pt

M ∪ C
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Back to Our Setting

We have an odd number of points!
Lemma 2: Let t be a point on the convex hull of P.
There exists a sequence of flips to a matching where t is
unmatched.

• C . . . plane Hamiltonian
cycle

• Consider segment
endpoint visibility graph

p

p′ Lemma 1 ⇒ ∃ alternating
path P from t to pt

plane alternating path
=̂

sequence of flips

M ∪ C
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→ flip sequence to a point on ∂P



Flips in Odd Matchings EuroCG ’2412 v

Proof of Theorem 1

• We can flip any matching to the canonical matching Mc

• Duplicate unmatched point p, add pp′ to the matching M,
and find a plane Hamiltonian cycle C on P ∪ {p′} that
does not intersect M

• Find a plane alternating path on C ∪M that starts at
a point on ∂P and ends at the duplicated point

→ flip sequence to a point on ∂P
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⇒ We can flip any two matchings M1 and M2 to Mc

• Duplicate unmatched point p, add pp′ to the matching M,
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does not intersect M

• Find a plane alternating path on C ∪M that starts at
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→ flip sequence to a point on ∂P
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Proof of Theorem 1

• We can flip any matching to the canonical matching Mc

⇒ We can flip any two matchings M1 and M2 to Mc

• We can flip any matching M1 to any matching M2

• Duplicate unmatched point p, add pp′ to the matching M,
and find a plane Hamiltonian cycle C on P ∪ {p′} that
does not intersect M

• Find a plane alternating path on C ∪M that starts at
a point on ∂P and ends at the duplicated point

→ flip sequence to a point on ∂P
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• What is the diameter of this flip graph?

• |P | = 2m: plane perfect matchings

• Given two point sets colored red and blue, consider the
flip graph of plane perfect bicolored matchings.



Flips in Odd Matchings EuroCG ’2413 v

Open Problems

• What is the diameter of this flip graph?

• |P | = 2m: plane perfect matchings

• Given two point sets colored red and blue, consider the
flip graph of plane perfect bicolored matchings.

Thank you!
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Proof: w.l.o.g. C ∩M ⊆ {e1, e2}
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Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G
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Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G G′



Flips in Odd Matchings EuroCG ’2414 v

Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2
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Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2

a

b

a

b

e1
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Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2

a

b

a

b

e1
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Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2

a

b

a

b

e1

c
e2
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Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2

∀Gk :
a

b

a

b

e1



Flips in Odd Matchings EuroCG ’2414 x

Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2

(1) vertices v1, . . . , vk∀Gk :
a

b

a

b

e1

a = v1

vk
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Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2

(1) vertices v1, . . . , vk

(2) 2 vertices of degree 1: v1, vk

∀Gk :
a

b

a

b

e1

a = v1

vk
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Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2

(1) vertices v1, . . . , vk

(2) 2 vertices of degree 1: v1, vk

(3) ∀v ∈ V (Gk) \ {v1, vk} :
• deg(v) = 2
• incident to one edge in M ,

one edge in C \M

∀Gk :
a

b

a

b

e1

a = v1

vk
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Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2

(1) vertices v1, . . . , vk

(2) 2 vertices of degree 1: v1, vk

(3) ∀v ∈ V (Gk) \ {v1, vk} :
• deg(v) = 2
• incident to one edge in M ,

one edge in C \M
(4) v1 = a, v2 = b, vp = c

∀Gk :
a

b

a

b

e1

c
e2

a = v1

vk



Flips in Odd Matchings EuroCG ’2414 xiv

Finding a Plane Alternating Path

Proof: w.l.o.g. C ∩M ⊆ {e1, e2}

a

b

c

e1

e2

G2 = {e1}, G3, . . . , Gp

a

b

c

e1

e2

(1) vertices v1, . . . , vk

(2) 2 vertices of degree 1: v1, vk

(3) ∀v ∈ V (Gk) \ {v1, vk} :
• deg(v) = 2
• incident to one edge in M ,

one edge in C \M
(4) v1 = a, v2 = b, vp = c

∀Gk :
a

b

a

b

e1

c
e2

a = v1

vk

Gp =
⋃̇

{cycles} ∪̇ P



Flips in Odd Matchings EuroCG ’2415 i

Construction of Gk+1

a

c
d

e1

e2

Let e be incident to vk.

b



Flips in Odd Matchings EuroCG ’2415 ii

Construction of Gk+1

• Case 1: e ∈ C \M
a

c
d

e1

e2

Let e be incident to vk.
vk

e

a

b

e1

bbb



Flips in Odd Matchings EuroCG ’2415 iii

Construction of Gk+1

• Case 1: e ∈ C \M
a

c
d

e1

e2

Let e be incident to vk.
vk

e

a

b

e1

vk+1bbb



Flips in Odd Matchings EuroCG ’2415 iv

Construction of Gk+1

• Case 1: e ∈ C \M
a

c
d

e1

e2

Let e be incident to vk.
vk

e

(1) |V (Gk+1)| = k + 1

a

b

e1

vk+1bbb



Flips in Odd Matchings EuroCG ’2415 v

Construction of Gk+1

• Case 1: e ∈ C \M
a

c
d

e1

e2

Let e be incident to vk.
vk

e

(2) deg(v1) = deg(vk+1) = 1

(1) |V (Gk+1)| = k + 1

a

b

e1

vk+1bbb



Flips in Odd Matchings EuroCG ’2415 vi

Construction of Gk+1

• Case 1: e ∈ C \M
a

c
d

e1

e2

Let e be incident to vk.
vk

e

(2) deg(v1) = deg(vk+1) = 1

(3) deg(vi) = 2 ∀1 < i ≤ k, edges are alternating

(1) |V (Gk+1)| = k + 1

a

b

e1

vk+1bbb



Flips in Odd Matchings EuroCG ’2415 vii

Construction of Gk+1

vk

• Case 1: e ∈ C \M
a

c
d

e1

e2

Let e be incident to vk.

• Case 2: e ∈ M

e

a

e1

bb



Flips in Odd Matchings EuroCG ’2415 viii

Construction of Gk+1

vk

• Case 1: e ∈ C \M
a

c
d

e1

e2

Let e be incident to vk.

• Case 2: e ∈ M

e

a

e1

bb



Flips in Odd Matchings EuroCG ’2415 ix

Construction of Gk+1

vk

• Case 1: e ∈ C \M
a

c
d

e1

e2
w

Let e be incident to vk.

• Case 2: e ∈ M

e

a

e1

bb



Flips in Odd Matchings EuroCG ’2415 x

Construction of Gk+1

vk

• Case 1: e ∈ C \M
a

c
d

e1

e2
w

Let e be incident to vk.

• Case 2: e ∈ M

e

a

e1

w = vk+1

bb



Flips in Odd Matchings EuroCG ’2415 xi

Construction of Gk+1

vk

• Case 1: e ∈ C \M
a

c
d

e1

e2
w

Let e be incident to vk.

• Case 2: e ∈ M

e

a

e1

w = vk+1

alternate edges
along the path bb



Flips in Odd Matchings EuroCG ’2415 xii

Construction of Gk+1

vk

• Case 1: e ∈ C \M
a

c
d

e1

e2
w

Let e be incident to vk.

• Case 2: e ∈ M

e

a

e1

w = vk+1

alternate edges
along the path bb



Flips in Odd Matchings EuroCG ’2415 xiii

Construction of Gk+1

vk

• Case 1: e ∈ C \M
a

c
d

e1

e2
w

Let e be incident to vk.

(1) |V (Gk+1)| = k + 1

• Case 2: e ∈ M

e

a

e1

w = vk+1

alternate edges
along the path bb



Flips in Odd Matchings EuroCG ’2415 xiv

Construction of Gk+1

vk

• Case 1: e ∈ C \M
a

c
d

e1

e2
w

Let e be incident to vk.

(2) deg(v1) = deg(vk+1) = 1

(1) |V (Gk+1)| = k + 1

• Case 2: e ∈ M

e

a

e1

w = vk+1

alternate edges
along the path bb
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Construction of Gk+1

vk

• Case 1: e ∈ C \M
a

c
d

e1

e2
w

Let e be incident to vk.

(2) deg(v1) = deg(vk+1) = 1

(3) deg(vi) = 2 ∀1 < i ≤ k, edges are alternating

(1) |V (Gk+1)| = k + 1

• Case 2: e ∈ M

e

a

e1

w = vk+1

alternate edges
along the path bb


