Flips in Odd Matchings

Oswin Aichholzer, **Anna Brötzner**, Daniel Perz, Patrick Schnider

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.

Given a point set P in general position, let \mathcal{F} be a family of plane straight-line drawings on P.

• Every vertex corresponds to a member of ${\mathcal F}$

- Every vertex corresponds to a member of ${\mathcal F}$
- Every edge between two vertices corresponds to an edge flip between two drawings

- Every vertex corresponds to a member of ${\mathcal F}$
- Every edge between two vertices corresponds to an edge flip between two drawings

Is the flip graph connected?

3 iv

- Every vertex corresponds to a member of ${\mathcal F}$
- Every edge between two vertices corresponds to an edge flip between two drawings

Is the flip graph connected?

True for:

- Triangulations
- Plane spanning trees
- Plane spanning paths (on certain point sets)

- Every vertex corresponds to a member of ${\mathcal F}$
- Every edge between two vertices corresponds to an edge flip between two drawings

Is the flip graph connected?

True for:

- Triangulations
- Plane spanning trees
- Plane spanning paths (on certain point sets)

How about plane perfect matchings?

Our Setting

• Point set P with 2m + 1 points

Our Setting

- Point set P with 2m + 1 points
- Plane almost perfect matching: all except one point matched

Our Setting

- Point set P with 2m + 1 points
- Plane almost perfect matching: all except one point matched
- Edge flips for almost perfect matchings

Given a point set and two plane almost perfect matchings M_1 , M_2 on it. Is it always possible to transform M_1 into M_2 by a series of flips?

In other words: Is the flip graph connected?

Given a point set and two plane almost perfect matchings M_1 , M_2 on it. Is it always possible to transform M_1 into M_2 by a series of flips?

Theorem. For any set P of n = 2m + 1 points in general position in the plane the flip graph is connected.

In other words: Is the flip graph connected?

• Sort the points by increasing *x*-coordinates

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

- Sort the points by increasing *x*-coordinates
- Let the leftmost point be unmatched

Observation: A plane alternating path gives rise to a flip sequence.

 \rightarrow Find a plane alternating path between the unmatched point and the leftmost point

Plane perfect matching $\widehat{=}$ segments in the plane

Plane perfect matching $\widehat{=}$ segments in the plane

Plane perfect matching $\widehat{=}$ segments in the plane

Plane perfect matching $\widehat{=}$ segments in the plane

Theorem: Every segment endpoint visibility graph contains a plane Hamiltonian cycle. [Hoffmann, Tóth 2003]

Plane perfect matching $\widehat{=}$ segments in the plane

Theorem: Every segment endpoint visibility graph contains a plane Hamiltonian cycle. [Hoffmann, Tóth 2003]

 $G = C \cup M$

$$G = C \cup M$$
Hamiltonian cycle

fix two matching edges $e_1 = (a, b)$, $e_2 = (c, d)$

fix two matching edges $e_1 = (a, b)$, $e_2 = (c, d)$

Lemma 1: There exists an alternating path P that starts at vertex a and edge e_1 and ends at vertex c.

fix two matching edges $e_1 = (a, b)$, $e_2 = (c, d)$

Lemma 1: There exists an alternating path P that starts at vertex a and edge e_1 and ends at vertex c.

Planarity?

Planarity?

• $M \ldots$ plane perfect matching

Planarity?

- $M \ldots$ plane perfect matching
- C ... plane Hamiltonian cycle on segment endpoint visibility graph of ${\cal M}$

Planarity?

- $M \ldots$ plane perfect matching
- C ... plane Hamiltonian cycle on segment endpoint visibility graph of ${\cal M}$

 \Rightarrow no intersection between edges in $C \cup M$

Planarity?

- $M \ldots$ plane perfect matching
- C ... plane Hamiltonian cycle on segment endpoint visibility graph of ${\cal M}$

 \Rightarrow no intersection between edges in $C \cup M$

 $\Rightarrow P$ is plane

We have an odd number of points!

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

 Consider segment endpoint visibility graph

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

- Consider segment endpoint visibility graph
- C ... plane Hamiltonian cycle

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

- Consider segment endpoint visibility graph
- C ... plane Hamiltonian cycle

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

- Consider segment endpoint visibility graph
- C ... plane Hamiltonian cycle

Lemma 1 $\Rightarrow \exists$ alternating path P from t to p

We have an odd number of points! **Lemma 2:** Let t be a point on the convex hull of P. There exists a sequence of flips to a matching where t is unmatched.

- Consider segment endpoint visibility graph
- C ... plane Hamiltonian cycle

Lemma 1 \Rightarrow \exists alternating path P from t to p

• Duplicate unmatched point p, add pp' to the matching M, and find a plane Hamiltonian cycle C on $P \cup \{p'\}$ that does not intersect M

- Duplicate unmatched point p, add pp' to the matching M, and find a plane Hamiltonian cycle C on $P\cup\{p'\}$ that does not intersect M
- Find a plane alternating path on $C\cup M$ that starts at a point on ∂P and ends at the duplicated point

- Duplicate unmatched point p, add pp' to the matching M, and find a plane Hamiltonian cycle C on $P\cup\{p'\}$ that does not intersect M
- Find a plane alternating path on $C\cup M$ that starts at a point on ∂P and ends at the duplicated point

 \rightarrow flip sequence to a point on ∂P

- Duplicate unmatched point p, add pp' to the matching M, and find a plane Hamiltonian cycle C on $P\cup\{p'\}$ that does not intersect M
- Find a plane alternating path on $C\cup M$ that starts at a point on ∂P and ends at the duplicated point

 \rightarrow flip sequence to a point on ∂P

• We can flip any matching to the canonical matching M_{c}

- Duplicate unmatched point p, add pp' to the matching M, and find a plane Hamiltonian cycle C on $P\cup\{p'\}$ that does not intersect M
- Find a plane alternating path on $C\cup M$ that starts at a point on ∂P and ends at the duplicated point

 \rightarrow flip sequence to a point on ∂P

• We can flip any matching to the canonical matching M_c \Rightarrow We can flip any two matchings M_1 and M_2 to M_c

- Duplicate unmatched point p, add pp' to the matching M, and find a plane Hamiltonian cycle C on $P\cup\{p'\}$ that does not intersect M
- Find a plane alternating path on $C\cup M$ that starts at a point on ∂P and ends at the duplicated point

 \rightarrow flip sequence to a point on ∂P

- We can flip any matching to the canonical matching M_c \Rightarrow We can flip any two matchings M_1 and M_2 to M_c
- We can flip any matching M_1 to any matching M_2

• What is the diameter of this flip graph?

Open Problems

- What is the diameter of this flip graph?
- |P| = 2m: plane perfect matchings

Open Problems

- What is the diameter of this flip graph?
- |P| = 2m: plane perfect matchings
- Given two point sets colored red and blue, consider the flip graph of plane perfect bicolored matchings.

Open Problems

- What is the diameter of this flip graph?
- |P| = 2m: plane perfect matchings
- Given two point sets colored red and blue, consider the flip graph of plane perfect bicolored matchings.

Thank you!

Proof:

Proof: w.l.o.g. $C \cap M \subseteq \{e_1, e_2\}$

$G_2 = \{e_1\}$

Proof: w.l.o.g. $C \cap M \subseteq \{e_1, e_2\}$

$G_2 = \{e_1\}$

$$G_2 = \{e_1\}, G_3$$

 $G_2 = \{e_1\}, G_3, \ldots, G_p$

 $G_2 = \{e_1\}, G_3, \ldots, G_p$

 $G_2 = \{e_1\}, G_3, \ldots, G_p$

Proof: w.l.o.g. $C \cap M \subseteq \{e_1, e_2\}$

 $\forall G_k$: (1) vertices v_1, \ldots, v_k (2) 2 vertices of degree 1: v_1 , v_k

$$G_2 = \{e_1\}, G_3, \ldots, G_p$$

Proof: w.l.o.g. $C \cap M \subseteq \{e_1, e_2\}$

 $\forall G_k$: (1) vertices v_1, \ldots, v_k (2) 2 vertices of degree 1: v_1 , v_k

(3)
$$\forall v \in V(G_k) \setminus \{v_1, v_k\}$$
:

•
$$\deg(v) = 2$$

• incident to one edge in M, one edge in $C \setminus M$

 $G_2 = \{e_1\}, G_3, \ldots, G_p$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq \{e_1, e_2\}$

 $G_2 = \{e_1\}, G_3, \ldots, G_p$

 $\forall G_k : (1) \text{ vertices } v_1, \dots, v_k$ (2) 2 vertices of degree 1: v_1, v_k

(3)
$$\forall v \in V(G_k) \setminus \{v_1, v_k\}$$
:

•
$$\deg(v) = 2$$

• incident to one edge in M, one edge in $C \setminus M$

(4)
$$v_1 = a, v_2 = b, v_p = c$$

Finding a Plane Alternating Path

Proof: w.l.o.g. $C \cap M \subseteq \{e_1, e_2\}$

$$G_2 = \{e_1\}, G_3, \ldots, G_p$$

 $\forall G_k : (1) \text{ vertices } v_1, \dots, v_k$ (2) 2 vertices of degree 1: v_1, v_k

(3)
$$\forall v \in V(G_k) \setminus \{v_1, v_k\}$$
:

•
$$\deg(v) = 2$$

• incident to one edge in M, one edge in $C \setminus M$

(4)
$$v_1 = a, v_2 = b, v_p = c$$

 $G_p = \dot{\bigcup} \{ \mathsf{cycles} \} \dot{\cup} P$

Let e be incident to v_k .

