Reconfiguration of plane trees in convex geometric graphs

Nicolas Bousquet ${ }^{1}$, Lucas De Meyer ${ }^{1}$, Théo Pierron ${ }^{1}$, Alexandra Wesolek ${ }^{2}$

${ }^{1}$ GOAL, LIRIS, Université de Lyon 1
${ }^{2}$ Technische Universität Berlin
March 13, 2024

Reconfiguration / Flip graphs

Two geometric objects A and B.

Reconfiguration / Flip graphs

Two geometric objects A and B. Can we transform A into B ?

Reconfiguration / Flip graphs

Two geometric objects A and B.
Can we transform A into \bar{B} via a sequence of flips (keeping the same kind of geomertic objects all along) ?

Reconfiguration / Flip graphs

Two geometric objects A and B.
Can we transform A into B via a sequence of flips (keeping the same kind of geomertic objects all along) ?
If yes, how many flips do we need?

Reconfiguration / Flip graphs

Two geometric objects A and B.
Can we transform A into \bar{B} via a sequence of flips (keeping the same kind of geomertic objects all along) ?
If yes, how many flips do we need?

Start

Target
$A \rightarrow A_{1} \rightarrow A_{2} \rightarrow$
$\rightarrow A_{k} \rightarrow(B$

Reconfiguration / Flip graphs

Two geometric objects A and B.
Can we transform A into \bar{B} via a sequence of flips (keeping the same kind of geomertic objects all along) ?
If yes, how many flips do we need?

Start

$A \rightarrow A_{1} \rightarrow A_{2} \rightarrow \cdots \cdots \cdots \cdots \rightarrow A_{k} \rightarrow B$

Spanning trees

- Geo. objects: Two spanning trees on a set of n points

Spanning trees

- Geo. objects: Two spanning trees on a set of n points
- Flip: remove an edge, then add another one

Spanning trees

- Geo. objects: Two spanning trees on a set of n points
- Flip: remove an edge, then add another one

Spanning trees

- Geo. objects: Two spanning trees on a set of n points
- Flip: remove an edge, then add another one

Spanning trees

- Geo. objects: Two spanning trees on a set of n points
- Flip: remove an edge, then add another one

Reconfiguration of spanning trees

$$
\text { bicolored }=T_{1} \cup T_{2} \text {, black }=T_{1} \backslash T_{2} \text {, red }=T_{2} \backslash T_{1}
$$

Reconfiguration of spanning trees

$$
\text { bicolored }=T_{1} \cup T_{2} \text {, black }=T_{1} \backslash T_{2} \text {, red }=T_{2} \backslash T_{1}
$$

Reconfiguration of spanning trees

$$
\text { bicolored }=T_{1} \cup T_{2} \text {, black }=T_{1} \backslash T_{2} \text {, red }=T_{2} \backslash T_{1}
$$

Reconfiguration of spanning trees

1 flip per match

Reconfiguration of spanning trees

1 flip per match

Theorem (folklore)

A minimal transformation from a spanning tree T_{1} to another spanning tree T_{2} uses exactly $d\left(T_{1}, T_{2}\right)$ flips.

$$
d\left(T_{1}, T_{2}\right)=\left|T_{1} \backslash T_{2}\right|=\left|T_{2} \backslash T_{1}\right|
$$

Reconfiguration of spanning trees

1 flip per match

Theorem (folklore)

A minimal transformation from a spanning tree T_{1} to another spanning tree T_{2} uses exactly $d\left(T_{1}, T_{2}\right)$ flips.

$$
d\left(T_{1}, T_{2}\right)=\left|T_{1} \backslash T_{2}\right|=\left|T_{2} \backslash T_{1}\right|
$$

Reconfiguration of spanning trees

1 flip per match

Theorem (folklore)

A minimal transformation from a spanning tree T_{1} to another spanning tree T_{2} uses exactly $d\left(T_{1}, T_{2}\right)$ flips.

$$
d\left(T_{1}, T_{2}\right)=\left|T_{1} \backslash T_{2}\right|=\left|T_{2} \backslash T_{1}\right|<n
$$

Reconfiguration of spanning trees

1 flip per match

Theorem (folklore)

A minimal transformation from a spanning tree T_{1} to another spanning tree T_{2} uses exactly $d\left(T_{1}, T_{2}\right)$ flips.

$$
d=d\left(T_{1}, T_{2}\right)=\left|T_{1} \backslash T_{2}\right|=\left|T_{2} \backslash T_{1}\right|<n
$$

Non-crossing spanning tree on a convex set

- Geo. objects: Two
spanning trees on a set of n points

Non-crossing spanning tree on a convex set

- Geo. objects: Two non-crossing spanning trees on a set of n points

Non-crossing spanning tree on a convex set

- Geo. objects: Two non-crossing spanning trees on a set of n points in convex position

Non-crossing spanning tree on a convex set

- Geo. objects: Two non-crossing spanning trees on a set of n points in convex position
- Flip: remove an edge and add another one

Non-crossing spanning tree on a convex set

- Geo. objects: Two non-crossing spanning trees on a set of n points in convex position
- Flip: remove an edge and add another one

Tree $=$ non-crossing spanning tree on a convex set.

Reconfiguration of n.-c. spanning trees on convex set

Reconfiguration of n.-c. spanning trees on convex set

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

How many flips are needed in the worst case?

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using at most $2 n-4$ flips.

$$
T_{2}
$$

How many flips are needed in the worst case?

Existing results

How many flips are needed in the worst case?

- Upper Bounds:
- $2 n-4$ flips (Avis and Fukuda, 1996).

Existing results

How many flips are needed in the worst case?

- Upper Bounds:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).

Existing results

How many flips are needed in the worst case?

- Upper Bounds:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).

Existing results

How many flips are needed in the worst case?

- Upper Bounds:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bounds:

Existing results

How many flips are needed in the worst case?

- Upper Bounds:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bounds:
- $\frac{3}{2} n-5$ flips (Hernando et al., 1999).

Existing results

How many flips are needed in the worst case?

- Upper Bounds:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bounds:
- $\frac{3}{2} n-5$ flips (Hernando et al., 1999).

Conjecture

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Existing results

How many flips are needed in the worst case?

- Upper Bounds:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- c. $d \approx 1.95 d$ flips.
- Lower Bounds:
- $\frac{3}{2} n-5$ flips (Hernando et al., 1999).

Conjecture

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Existing results

How many flips are needed in the worst case?

- Upper Bounds:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- c. $d \approx 1.95 d$ flips.
- Lower Bounds:
- $\frac{3}{2} n-5$ flips (Hernando et al., 1999).
- $\frac{5}{3} d$ flips.

Conjecture

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Result on upper bound

Theorem (Bousquet, DM, Pierron, Wesolek)
For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $c \cdot d$ flips with:

$$
c=\frac{1}{12}(22+\sqrt{2}) \approx 1.95
$$

Result on upper bound

Theorem (Bousquet, DM, Pierron, Wesolek)

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $c \cdot d$ flips with:

$$
c=\frac{1}{12}(22+\sqrt{2}) \approx 1.95
$$

\Longrightarrow there is always a transformation using at most $c \cdot n$ flips.

Proof sketch

End of proof

End of proof

Conclusion

How many flips are needed in the worst case?

Conclusion

How many flips are needed in the worst case ?

$$
\text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conclusion

How many flips are needed in the worst case ?

$$
\frac{5}{3} d \leq \text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conclusion

How many flips are needed in the worst case ?

$$
\frac{5}{3} d \leq \text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conjecture with symmetric difference

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{5}{3} d$ flips.

Conclusion

How many flips are needed in the worst case ?

$$
\frac{5}{3} d \leq \text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conjecture with symmetric difference
For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{5}{3} d$ flips.

Conjecture with number of points

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Thanks for your attention

END

