Reconfiguration of plane trees in convex geometric graphs

Nicolas Bousquet ¹, Lucas De Meyer ¹, Théo Pierron ¹, Alexandra Wesolek ²

¹GOAL, LIRIS, Université de Lyon 1

²Technische Universität Berlin

March 13, 2024

Two geometric objects A and B.

Two geometric objects *A* and *B*. Can we transform *A* into *B*?

Two geometric objects A and B. Can we transform A into B via a sequence of flips (keeping the same kind of geometric objects all along) ?

• Geo. objects: Two spanning trees on a set of *n* points

- Geo. objects: Two spanning trees on a set of n points
- Flip: remove an edge, then add another one

- Geo. objects: Two spanning trees on a set of n points
- Flip: remove an edge, then add another one

- Geo. objects: Two spanning trees on a set of n points
- Flip: remove an edge, then add another one

- Geo. objects: Two spanning trees on a set of n points
- Flip: remove an edge, then add another one

bicolored = $T_1 \cup T_2$, black = $T_1 \setminus T_2$, red = $T_2 \setminus T_1$

bicolored = $T_1 \cup T_2$, black = $T_1 \setminus T_2$, red = $T_2 \setminus T_1$

bicolored = $T_1 \cup T_2$, black = $T_1 \setminus T_2$, red = $T_2 \setminus T_1$

Theorem (folklore)

$$d(T_1, T_2) = |T_1 \setminus T_2| = |T_2 \setminus T_1|$$

Theorem (folklore)

$$d(T_1, T_2) = |T_1 \setminus T_2| = |T_2 \setminus T_1|$$

Theorem (folklore)

$$d(T_1, T_2) = |T_1 \setminus T_2| = |T_2 \setminus T_1| < n$$

Theorem (folklore)

$$d = d(T_1, T_2) = |T_1 \setminus T_2| = |T_2 \setminus T_1| < n$$

• Geo. objects: Two

spanning trees on a set of n points

• Geo. objects: Two non-crossing spanning trees on a set of n points

• **Geo. objects:** Two non-crossing spanning trees on a set of *n* points in convex position

- **Geo. objects:** Two non-crossing spanning trees on a set of *n* points in convex position
- Flip: remove an edge and add another one

- **Geo. objects:** Two non-crossing spanning trees on a set of *n* points in convex position
- Flip: remove an edge and add another one

Tree = non-crossing spanning tree on a convex set.

Avis and Fukuda ('96)

Avis and Fukuda ('96)

Avis and Fukuda ('96)

Avis and Fukuda ('96)

Avis and Fukuda ('96)

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_1 and T_2 , there exists a transformation from T_1 to T_2 using flips.

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_1 and T_2 , there exists a transformation from T_1 to T_2 using at most 2n - 4 flips.

- Upper Bounds:
 - 2n 4 flips (Avis and Fukuda, 1996).

- Upper Bounds:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).

- Upper Bounds:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).

- Upper Bounds:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bounds:

- Upper Bounds:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bounds:
 - $\frac{3}{2}n 5$ flips (Hernando et al., 1999).

- Upper Bounds:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bounds:
 - $\frac{3}{2}n 5$ flips (Hernando et al., 1999).

Conjecture

- Upper Bounds:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
 - $c \cdot d \approx 1.95d$ flips.
- Lower Bounds:
 - $\frac{3}{2}n 5$ flips (Hernando et al., 1999).

Conjecture

- Upper Bounds:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
 - $c \cdot d \approx 1.95d$ flips.
- Lower Bounds:
 - $\frac{3}{2}n 5$ flips (Hernando et al., 1999).
 - $\frac{5}{3}d$ flips.

Conjecture

Theorem (Bousquet, DM, Pierron, Wesolek)

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $c \cdot d$ flips with:

$$c = rac{1}{12}(22 + \sqrt{2}) pprox 1.95$$

Theorem (Bousquet, DM, Pierron, Wesolek)

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $c \cdot d$ flips with:

$$c = rac{1}{12}(22 + \sqrt{2}) pprox 1.95$$

 \implies there is always a transformation using at most $c \cdot n$ flips.

Very good side

Existing side with weaker properties

End of proof

End of proof

number of flips $\leq c \cdot d \approx 1.95d$

 $\frac{5}{3}d \leq \text{number of flips} \leq c \cdot d \approx 1.95d$

 $\frac{5}{3}d \leq \text{number of flips} \leq c \cdot d \approx 1.95d$

Conjecture with symmetric difference

Conclusion

How many flips are needed in the worst case ?

$$\frac{5}{3}d \leq \text{number of flips} \leq c \cdot d \approx 1.95d$$

Conjecture with symmetric difference

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $\frac{5}{3}d$ flips.

Conjecture with number of points

Thanks for your attention

END

Reconfiguration of plane trees in convex geometric graphs