

A Note on Mixed Linear Layouts of Planar Graphs

UNIVERSITY

Michael Kaufmann, Maria Eleni Pavlidi

A Note on Mixed Linear Layouts of Planar Graphs

EuroCG 2024, 13-15 March, Ioannina, Greece

Mixed Linear Layouts

- In a mixed linear layout with *k* pages, the task is to:
 - o arrange the vertices of the graph on a line.
 - partition the edges into *k* pages s.t. each page satisfies a specific property:

 Our goal: Determine whether all planar graphs admit mixed linear layouts with one rique, and either one stack or one queue.

Known characterization

- A graph admits a linear layout with
 - one stack \Leftrightarrow it is outerplanar
 - one queue \Leftrightarrow it is level planar
 - one deque \Leftrightarrow it is subgraph of a planar graph with Hamiltonian path Auer et al. (2010)
 - o one rique \Leftrightarrow it admits a vertex order avoiding the following: Bekos et al. (2022)

Kainen, Bernhart (1979)

Heath et al. (1992)

Known results on planar graphs

• A general planar graph admits a linear layout with:

- \circ \leq 4 stacks (which sometimes are required)
- $o \leq 42$ queues (4 is the lower bound)
- \circ \leq 2 deques (which sometimes are required)
- $o \leq 4$ riques (2 is the lower bound).
- Note 1: Any two stack pages form a deque
- Note 2: A rique page can be split into a stack and a queue the reverse is not true

Yannakakis (1986), Bekos at el. (2020) Bekos et al. (2018, 2020) Auer et al. (2010) Bekos et al. (2022)

Motivation and our result

- Theorem: There exist planar graphs that do not admit mixed linear layouts with one rique, and either one stack or one queue.
- Motivation: Stems from a conjecture by Heath and Rosenberg (1992):

Every planar graph admits a mixed linear layout with one stack and one queue

- o Pupyrev (2017) disproved the conjecture.
- o Angelini et al. (2022) showed that the conjecture does not hold for 2-trees.
- o Note 1: Our result strengthens Pupyrev's result.
- o Note 2: 2-trees admit 2-stack layouts.
 Rengarajan, Madhavan (1995) thus also mixed with one rique and one stack

Michael Kaufmann, Maria Eleni Pavlidi

A Note on Mixed Linear Layouts of Planar Graphs

EuroCG 2024, 13-15 March, Ioannina, Greece

A Note on Mixed Linear Layouts of Planar Graphs

The combinatorial part of the proof

- By contradiction: Assume that G_T has a mixed linear layout with one rique, and either one stack or one queue.
- $T \gg 1 \Rightarrow \exists k \text{ components } C_1, \ldots, C_k \text{ of } G_T \text{ with the same layout:}$
 - For C_i , C_j , $1 \le i, j \le k$, the order that the vertices u, v of C_i appear in the mixed linear layout, is the same with the order of their twin vertices u', v' of C_j (e.g. $s_i \prec t_i \Rightarrow s_j \prec t_j$).
 - Twin edges of C_i and C_j :
 - □ are in the same page (e.g. $(A, x_i) \in P \Rightarrow (A, x_j) \in P$).
 - □ are pairwise nesting or crossing or separated.
 - □ are of the same type, if they are in the rique (head-head or head-tail).

The combinatorial part of the proof

• By contradiction: Assume that G_T has a mixed linear layout with one rique, and either one stack or one queue.

- $T \gg 1 \Rightarrow \exists k \text{ components } C_1, \ldots, C_k \text{ of } G_T \text{ with the same layout:}$
 - For C_i , C_j , $1 \le i, j \le k$, the order that the vertices u, v of C_i appear in the mixed linear layout, is the same with the order of their twin vertices u', v' of C_j (e.g. $s_i \prec t_i \Rightarrow s_j \prec t_j$).
 - Twin edges of C_i and C_j :
 - □ are in the same page (e.g. $(A, x_i) \in P \Rightarrow (A, x_j) \in P$).
 - □ are pairwise nesting or crossing or separated.
 - are of the same type, if they are in the rique (head-head or head-tail).

monotonically ordered

• Let *T* be s.t. k = 4 and w.l.o.g. $s_1 \prec s_2 \prec s_3 \prec s_4 \Rightarrow w_1 \prec w_2 \prec w_3 \prec w_4$ or $w_4 \prec w_3 \prec w_2 \prec w_1$ \forall quadruple of twin vertices w_1, w_2, w_3, w_4

The computer aided part of the proof

• We tested with SAT if the subgraph induced by the four components C_1 , C_2 , C_3 , C_4 has a mixed linear layout s.t.:

 $o A \prec B$

o $s_i \prec t_i$, $\forall i = 1, 2, 3, 4$

o $s_1 \prec s_2 \prec s_3 \prec s_4$

- Every quadruple of twin edges is assigned to the same page.
- Every quadruple of twin vertices:
 - □ is monotically ordered
 - either precedes or follows pole A
 - either precedes or follows pole B

The computer aided part of the proof

• We tested with SAT if the subgraph induced by the four components C_1 , C_2 , C_3 , C_4 has a mixed linear layout s.t.:

 $o A \prec B$

o $s_i \prec t_i$, $\forall i = 1, 2, 3, 4$

- o $s_1 \prec s_2 \prec s_3 \prec s_4$
- Every quadruple of twin edges is assigned to the same page.
- Every quadruple of twin vertices:
 - □ is monotically ordered
 - either precedes or follows pole A
 - either precedes or follows pole B
- SAT solver concluded \nexists such a layout $\Rightarrow G_T$ does not admit the claimed mixed linear layout

Conclusions

• We proved that there exist planar graphs that do not admit mixed linear layouts with one rique, and either one stack or one queue.

• Open Problems:

- Does there exist a planar graph that admits no linear layout with two riques?
- Do all planar graphs admit mixed linear layouts with one deque and one stack or one queue?

Conclusions

• We proved that there exist planar graphs that do not admit mixed linear layouts with one rique, and either one stack or one queue.

• Open Problems:

- Does there exist a planar graph that admits no linear layout with two riques?
- Do all planar graphs admit mixed linear layouts with one deque and one stack or one queue?

Thanks for your attention ~