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Problem Introduction Fréchet Distance Highway Dimension The Algorithm

The Problem

Overall problem

Given: Graph G , shortest path P, walk Q.
Goal: Compute discrete Fréchet distance of P and Q.

Decision problem

Given: Graph G , shortest path P, walk Q, δ > 0.
Goal: Decide if DF (P,Q) ≤ δ or DF (P,Q) > δ .

Related work for decision problem:
apx-factor time

Driemel, van der Hoog, Rotenberg [2022] 1 + ε O
(
|G | log |G | /

√
ε+ |P|+ 1

ε |Q|
)

van der Hoog, Rotenberg, Wong [2023] 1 + ε O
(
1
ε |Q| (Tdist + log |P|)

)
Driemel, Richter [2024] 5

3 + ε O
(
|P|+ |Q| (h log h)2 logD

)
D diameter, h highway dimension
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Goal: Compute discrete Fréchet distance of P and Q.

Decision problem

Given: Graph G , shortest path P, walk Q, δ > 0.
Goal: Decide if DF (P,Q) ≤ δ or DF (P,Q) > δ .

Related work for decision problem:
apx-factor time

Driemel, van der Hoog, Rotenberg [2022] 1 + ε O
(
|G | log |G | /

√
ε+ |P|+ 1

ε |Q|
)

van der Hoog, Rotenberg, Wong [2023] 1 + ε O
(
1
ε |Q| (Tdist + log |P|)

)
Driemel, Richter [2024] 5

3 + ε O
(
|P|+ |Q| (h log h)2 logD

)
D diameter, h highway dimension

Anne Driemel and Marena Richter University of Bonn
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Discrete Fréchet Distance – Idea

Three possible legal steps:

Anne Driemel and Marena Richter University of Bonn
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Discrete Fréchet Distance – Idea

Three possible legal steps: 1) one frog jumps
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Discrete Fréchet Distance – Idea

Three possible legal steps: 2) the other frog jumps
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Discrete Fréchet Distance – Idea

Three possible legal steps: 3) both frogs jump
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Discrete Fréchet Distance

Setting: metric graph G , distances w.r.t. shortest-path metric.

Definition (Discrete Fréchet Distance)

The discrete Fréchet distance of two walks P = ⟨p1, p2, . . . , pn⟩ and Q = ⟨q1, q2, . . . , qm⟩ in
G is the minimum over the maximum pairwise distance of any legal traversal T ∈ P × Q:

DF (P,Q) := min
T

max
(pi ,pj )∈T

distG (pi , qi ).
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Free Space Matrix

Definition (Free-Space Matrix)

Given two walks P and Q in G , δ > 0, the free-space matrix Mδ ∈ R|P|×|Q| is defined by

Mδ[i , j ] =

{
1 distG (pi , qj) ≤ δ

0 else

G :

1 2 2 1

1 1 3 1

1 1 2

p1

q1

P

Q

0

0

0

0

0

0 0

0

00

01

1 1 0

0 1

1 1

1
Q

P δ

M2 :
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Sparse Shortest Path Hitting Sets

Definition (Sparse Shortest Path Hitting Set (SPHS))

For r > 0 an (h, r)-SPHS is a set C ⊆ V (G ) s.t.

|B2r (v) ∩ C | ≤ h for all v ∈ V (G ),

V (P) ∩ C ̸= ∅ for all “long (w.r.t. r)” shortest paths P.

B2r(v)

2r

(4, r)− SPHSv

Anne Driemel and Marena Richter University of Bonn
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r -significant paths

Definition (r -significant path)

A shortest path P ′ is an r-witness for P if ℓ(P ′) > r and P = P ′ or P arises from P ′ by
deleting one or both end vertices. P is r-significant if it has an r -witness.

candidates for P : 1)

2)

3)

4)

P ′ :
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Sparse Shortest Path Hitting Sets

Definition (Sparse Shortest Path Hitting Set (SPHS))

For r > 0 an (h, r)-SPHS is a set C ⊆ V (G ) s.t.

|B2r (v) ∩ C | ≤ h for all v ∈ V (G ),

V (P) ∩ C ̸= ∅ for all r -significant shortest paths P.

Idea: Highway dimension ≈ smallest h s.t. (h, r)-SPHS exists for all r > 0.

Theorem (Abraham, Delling, Fiat, Goldberg, Werneck)

In a graph with highway dimension h, we can compute a (O(h log h), r)-SPHS in polynomial
runtime.
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The Algorithm

Given: shortest path P, arbitrary walk Q, value δ > 0
Goal: Decide whether DF (P,Q) ≤ δ or DF (P,Q) > δ.

1 compute (h′, δ)-SPHS → C . → polynomial
2 compute simplification of P → Pδ: → O (|P|)

visits endpoints of P and V (P) ∩ C . ⇒ DF
(
Pδ,P

)
≤ δ

2

3 BFS through M2δ of Pδ and Q → DF
(
Pδ,Q

)
≤ 2δ ?

∆-inequality: ⇒ DF (P,Q) ≤ 5
2δ or DF (P,Q) > 3

2δ
#(non-zero entries in each row) ≤ h′ + 2
⇒ O (|Q| h′) steps

P :

0

0

0

0

0

0 0

0

00

01

1 1 0

0 1

1 1

1
Q

P δ

M2 :
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Approximating the Fréchet Distance for Low Highway Dimension Graphs 9
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Approximating the Fréchet Distance for Low Highway Dimension Graphs 9
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∆-inequality: ⇒ DF (P,Q) ≤ 5
2δ or DF (P,Q) > 3

2δ
#(non-zero entries in each row) ≤ h′ + 2
⇒ O (|Q| h′) steps

P :Pδ,

0

0

0

0

0

0 0

0

00

01

1 1 0

0 1

1 1

1
Q

P δ
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The Algorithm

Problems:

1 Computing C can take long.

2 Need to compute distances in G during the BFS.

Solutions:

1 pre-compute ε-multiscale SPHS for ε > 1: (h′, εi−1)-SPHS Ci for 0 ≤ i ≤ ⌈logD/ log ε⌉.
In the algorithm: Choose Ci such that εi−1 ≈ δ.

2 Use oracle with O (h′ logD) query time using a 2-multiscale SPHS.

D := diameter of G .
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Problem Introduction Fréchet Distance Highway Dimension The Algorithm

Final Result

Theorem

G metric graph with highway dimension h, ε > 0.

Preprocessing G in time polynomial in |V (G )| and 1/ log(1 + ε) using
O (|V (G )| logD(1/ log(1 + ε) + h log h)) space.

⇒ decide for any shortest path P, walk Q, δ > 0, if DF (P,Q) > δ or DF (P,Q) ≤ ( 53 + ε)δ in
O
(
|P|+ |Q| (h log h)2 logD

)
time.

Remark

Binary search ⇒ ( 53 + ε)-approximation of DF (P,Q).
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Final Result

apx-factor time

Driemel, van der Hoog, Rotenberg [2022] 1 + ε O
(
|G | log |G | /

√
ε+ |P|+ 1

ε |Q|
)

van der Hoog, Rotenberg, Wong [2023] 1 + ε O
(
1
ε |Q| (Tdist + log |P|)

)
Driemel, Richter [2024] 5

3 + ε O
(
|P|+ |Q| (h log h)2 logD

)
Thank you for your attention!

Questions?

Anne Driemel and Marena Richter University of Bonn
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