Approximating the Fréchet Distance for Low Highway Dimension Graphs

Anne Driemel and Marena Richter

University of Bonn

EuroCG '24, March 2024

The Problem

Overall problem
Given: Graph G, shortest path P, walk Q.
Goal: Compute discrete Fréchet distance of P and Q.

The Problem

Overall problem
Given: Graph G, shortest path P, walk Q.
Goal: Compute discrete Fréchet distance of P and Q.

Decision problem

Given: Graph G, shortest path P, walk $Q, \delta>0$.
Goal: Decide if $D_{\mathcal{F}}(P, Q) \leq \delta$ or $D_{\mathcal{F}}(P, Q)>\delta$.

The Problem

Overall problem
Given: Graph G, shortest path P, walk Q.
Goal: Compute discrete Fréchet distance of P and Q.

Decision problem

Given: Graph G, shortest path P, walk $Q, \delta>0$.
Goal: Decide if $D_{\mathcal{F}}(P, Q) \leq \alpha \cdot \delta$ or $D_{\mathcal{F}}(P, Q)>\delta$ for some $\alpha>1$.

The Problem

Overall problem
Given: Graph G, shortest path P, walk Q.
Goal: Compute discrete Fréchet distance of P and Q.

Decision problem

Given: Graph G, shortest path P, walk $Q, \delta>0$.
Goal: Decide if $D_{\mathcal{F}}(P, Q) \leq \alpha \cdot \delta$ or $D_{\mathcal{F}}(P, Q)>\delta$ for some $\alpha>1$.
Related work for decision problem:

	apx-factor	time
Driemel, van der Hoog, Rotenberg [2022]	$1+\varepsilon$	$\mathcal{O}\left(\|G\| \log \|G\| / \sqrt{\varepsilon}+\|P\|+\frac{1}{\varepsilon}\|Q\|\right)$
van der Hoog, Rotenberg, Wong [2023]	$1+\varepsilon$	$\mathcal{O}\left(\frac{1}{\varepsilon}\|Q\|\left(T_{\text {dist }}+\log \|P\|\right)\right)$
Driemel, Richter [2024]	$\frac{5}{3}+\varepsilon$	$\mathcal{O}\left(\|P\|+\|Q\|(h \log h)^{2} \log D\right)$

D diameter, h highway dimension

Discrete Fréchet Distance - Idea

Three possible legal steps:

Discrete Fréchet Distance - Idea

Three possible legal steps: 1) one frog jumps

Discrete Fréchet Distance - Idea

Three possible legal steps: 2) the other frog jumps

Discrete Fréchet Distance - Idea

Three possible legal steps: 3) both frogs jump

Discrete Fréchet Distance

Setting: metric graph G, distances w.r.t. shortest-path metric.

Definition (Discrete Fréchet Distance)

The discrete Fréchet distance of two walks $P=\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ and $Q=\left\langle q_{1}, q_{2}, \ldots, q_{m}\right\rangle$ in G is the minimum over the maximum pairwise distance of any legal traversal $\mathcal{T} \in P \times Q$:

$$
D_{\mathcal{F}}(P, Q):=\min _{\mathcal{T}} \max _{\left(p_{i}, p_{j}\right) \in \mathcal{T}} \operatorname{dist}_{G}\left(p_{i}, q_{i}\right) .
$$

Discrete Fréchet Distance

Setting: metric graph G, distances w.r.t. shortest-path metric.

Definition (Discrete Fréchet Distance)

The discrete Fréchet distance of two walks $P=\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ and $Q=\left\langle q_{1}, q_{2}, \ldots, q_{m}\right\rangle$ in G is the minimum over the maximum pairwise distance of any legal traversal $\mathcal{T} \in P \times Q$:

$$
D_{\mathcal{F}}(P, Q):=\min _{\mathcal{T}} \max _{\left(p_{i}, p_{j}\right) \in \mathcal{T}} \operatorname{dist}_{G}\left(p_{i}, q_{i}\right) .
$$

Discrete Fréchet Distance

Setting: metric graph G, distances w.r.t. shortest-path metric.

Definition (Discrete Fréchet Distance)

The discrete Fréchet distance of two walks $P=\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ and $Q=\left\langle q_{1}, q_{2}, \ldots, q_{m}\right\rangle$ in G is the minimum over the maximum pairwise distance of any legal traversal $\mathcal{T} \in P \times Q$:

$$
D_{\mathcal{F}}(P, Q):=\min _{\mathcal{T}} \max _{\left(p_{i}, p_{j}\right) \in \mathcal{T}} \operatorname{dist}_{G}\left(p_{i}, q_{i}\right) .
$$

Discrete Fréchet Distance

Setting: metric graph G, distances w.r.t. shortest-path metric.

Definition (Discrete Fréchet Distance)

The discrete Fréchet distance of two walks $P=\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ and $Q=\left\langle q_{1}, q_{2}, \ldots, q_{m}\right\rangle$ in G is the minimum over the maximum pairwise distance of any legal traversal $\mathcal{T} \in P \times Q$:

$$
D_{\mathcal{F}}(P, Q):=\min _{\mathcal{T}} \max _{\left(p_{i}, p_{j}\right) \in \mathcal{T}} \operatorname{dist}_{G}\left(p_{i}, q_{i}\right) .
$$

Free Space Matrix

Definition (Free-Space Matrix)

Given two walks P and Q in $G, \delta>0$, the free-space matrix $M_{\delta} \in \mathbb{R}^{|P| \times|Q|}$ is defined by

$$
M_{\delta}[i, j]= \begin{cases}1 & \operatorname{dist}_{G}\left(p_{i}, q_{j}\right) \leq \delta \\ 0 & \text { else }\end{cases}
$$

G :

Free Space Matrix

Definition (Free-Space Matrix)

Given two walks P and Q in $G, \delta>0$, the free-space matrix $M_{\delta} \in \mathbb{R}^{|P| \times|Q|}$ is defined by

$$
M_{\delta}[i, j]= \begin{cases}1 & \operatorname{dist}_{G}\left(p_{i}, q_{j}\right) \leq \delta \\ 0 & \text { else }\end{cases}
$$

$M_{2}:$	0	0	0	1	1
	0	0	1	0	0
	1	0	1	0	0
q_{1}	1	1	0	0	0
	p_{1}				

Free Space Matrix

Definition (Free-Space Matrix)
Given two walks P and Q in $G, \delta>0$, the free-space matrix $M_{\delta} \in \mathbb{R}^{|P| \times|Q|}$ is defined by

$$
M_{\delta}[i, j]= \begin{cases}1 & \operatorname{dist}_{G}\left(p_{i}, q_{j}\right) \leq \delta \\ 0 & \text { else }\end{cases}
$$

Observation:

$$
\begin{aligned}
& D_{\mathcal{F}}(P, Q) \leq \delta \\
& \Leftrightarrow \quad \exists \text { legal traversal } \mathcal{T} \text { through } P \times Q \text { s.t. } M_{\delta}[i, j]=1 \\
& \quad \forall\left(p_{i}, q_{j}\right) \in \mathcal{T} .
\end{aligned}
$$

$M_{2}:$	0	0	0	1	1
	0	0	1	0	0
	1	0	1	0	0
q_{1}	1	1	0	0	0

Free Space Matrix

Definition (Free-Space Matrix)
Given two walks P and Q in $G, \delta>0$, the free-space matrix $M_{\delta} \in \mathbb{R}^{|P| \times|Q|}$ is defined by

$$
M_{\delta}[i, j]= \begin{cases}1 & \operatorname{dist}_{G}\left(p_{i}, q_{j}\right) \leq \delta \\ 0 & \text { else }\end{cases}
$$

Observation:

$$
\begin{aligned}
& D_{\mathcal{F}}(P, Q) \leq \delta \\
& \Leftrightarrow \quad \exists \text { legal traversal } \mathcal{T} \text { through } P \times Q \text { s.t. } M_{\delta}[i, j]=1 \\
& \quad \forall\left(p_{i}, q_{j}\right) \in \mathcal{T} .
\end{aligned}
$$

Sparse Shortest Path Hitting Sets

Definition (Sparse Shortest Path Hitting Set (SPHS))
For $r>0$ an (h, r)-SPHS is a set $C \subseteq V(G)$ s.t.

- $\left|B_{2 r}(v) \cap C\right| \leq h$ for all $v \in V(G)$,
- $V(P) \cap C \neq \emptyset$ for all "long (w.r.t. r)" shortest paths P.

r-significant paths

Definition (r-significant path)
A shortest path P^{\prime} is an r-witness for P if $\ell\left(P^{\prime}\right)>r$ and $P=P^{\prime}$ or P arises from P^{\prime} by deleting one or both end vertices. P is r-significant if it has an r-witness.

Sparse Shortest Path Hitting Sets

Definition (Sparse Shortest Path Hitting Set (SPHS))
For $r>0$ an (h, r)-SPHS is a set $C \subseteq V(G)$ s.t.

- $\left|B_{2 r}(v) \cap C\right| \leq h$ for all $v \in V(G)$,
- $V(P) \cap C \neq \emptyset$ for all r-significant shortest paths P.

Sparse Shortest Path Hitting Sets

Definition (Sparse Shortest Path Hitting Set (SPHS))
For $r>0$ an (h, r)-SPHS is a set $C \subseteq V(G)$ s.t.

- $\left|B_{2 r}(v) \cap C\right| \leq h$ for all $v \in V(G)$,
- $V(P) \cap C \neq \emptyset$ for all r-significant shortest paths P.

Idea: Highway dimension \approx smallest h s.t. (h, r)-SPHS exists for all $r>0$.

Sparse Shortest Path Hitting Sets

Definition (Sparse Shortest Path Hitting Set (SPHS))
For $r>0$ an (h, r)-SPHS is a set $C \subseteq V(G)$ s.t.

- $\left|B_{2 r}(v) \cap C\right| \leq h$ for all $v \in V(G)$,
- $V(P) \cap C \neq \emptyset$ for all r-significant shortest paths P.

Idea: Highway dimension \approx smallest h s.t. (h, r)-SPHS exists for all $r>0$.
Theorem (Abraham, Delling, Fiat, Goldberg, Werneck)
In a graph with highway dimension h, we can compute a $(\mathcal{O}(h \log h), r)$-SPHS in polynomial runtime.

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \delta$ or $D_{\mathcal{F}}(P, Q)>\delta$.

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C$.

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C$.
$\boxed{2}$ compute simplification of $P \rightarrow P^{\delta}$:

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C$.
$\boxed{2}$ compute simplification of $P \rightarrow P^{\delta}$: visits endpoints of P and $V(P) \cap C$.

$$
P^{\delta}, P:
$$

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C$.
2 compute simplification of $P \rightarrow P^{\delta}$: visits endpoints of P and $V(P) \cap C$.
3 BFS through $M_{2 \delta}$ of P^{δ} and $Q \rightarrow D_{\mathcal{F}}\left(P^{\delta}, Q\right) \leq 2 \delta$?

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C$.
2 compute simplification of $P \rightarrow P^{\delta}$: visits endpoints of P and $V(P) \cap C . \Rightarrow D_{\mathcal{F}}\left(P^{\delta}, P\right) \leq \frac{\delta}{2}$
3 BFS through $M_{2 \delta}$ of P^{δ} and $Q \rightarrow D_{\mathcal{F}}\left(P^{\delta}, Q\right) \leq 2 \delta$?

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C$.
$\boxed{2}$ compute simplification of $P \rightarrow P^{\delta}$: visits endpoints of P and $V(P) \cap C . \Rightarrow D_{\mathcal{F}}\left(P^{\delta}, P\right) \leq \frac{\delta}{2}$
3 BFS through $M_{2 \delta}$ of P^{δ} and $Q \rightarrow D_{\mathcal{F}}\left(P^{\delta}, Q\right) \leq 2 \delta$? Δ-inequality: $\Rightarrow D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C$. \rightarrow polynomial
2 compute simplification of $P \rightarrow P^{\delta}$: visits endpoints of P and $V(P) \cap C . \Rightarrow D_{\mathcal{F}}\left(P^{\delta}, P\right) \leq \frac{\delta}{2}$
3 BFS through $M_{2 \delta}$ of P^{δ} and $Q \rightarrow D_{\mathcal{F}}\left(P^{\delta}, Q\right) \leq 2 \delta$? Δ-inequality: $\Rightarrow D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C . \quad \rightarrow$ polynomial
$\boxed{2}$ compute simplification of $P \rightarrow P^{\delta}: \quad \rightarrow \mathcal{O}(|P|)$ visits endpoints of P and $V(P) \cap C . \Rightarrow D_{\mathcal{F}}\left(P^{\delta}, P\right) \leq \frac{\delta}{2}$
3 BFS through $M_{2 \delta}$ of P^{δ} and $Q \rightarrow D_{\mathcal{F}}\left(P^{\delta}, Q\right) \leq 2 \delta$? Δ-inequality: $\Rightarrow D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C . \quad \rightarrow$ polynomial
2 compute simplification of $P \rightarrow P^{\delta}: \quad \rightarrow \mathcal{O}(|P|)$ visits endpoints of P and $V(P) \cap C . \Rightarrow D_{\mathcal{F}}\left(P^{\delta}, P\right) \leq \frac{\delta}{2}$
3 BFS through $M_{2 \delta}$ of P^{δ} and $Q \rightarrow D_{\mathcal{F}}\left(P^{\delta}, Q\right) \leq 2 \delta$?
Δ-inequality: $\Rightarrow D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$ $\#($ non-zero entries in each row $) \leq h^{\prime}+2$

The Algorithm

Given: shortest path P, arbitrary walk Q, value $\delta>0$
Goal: Decide whether $D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$.
1 compute $\left(h^{\prime}, \delta\right)$-SPHS $\rightarrow C . \quad \rightarrow$ polynomial
2 compute simplification of $P \rightarrow P^{\delta}: \quad \rightarrow \mathcal{O}(|P|)$ visits endpoints of P and $V(P) \cap C . \Rightarrow D_{\mathcal{F}}\left(P^{\delta}, P\right) \leq \frac{\delta}{2}$
3 BFS through $M_{2 \delta}$ of P^{δ} and $Q \rightarrow D_{\mathcal{F}}\left(P^{\delta}, Q\right) \leq 2 \delta$?
Δ-inequality: $\Rightarrow D_{\mathcal{F}}(P, Q) \leq \frac{5}{2} \delta$ or $D_{\mathcal{F}}(P, Q)>\frac{3}{2} \delta$ $\#($ non-zero entries in each row $) \leq h^{\prime}+2$
$\Rightarrow \mathcal{O}\left(|Q| h^{\prime}\right)$ steps

The Algorithm

Problems:

1 Computing C can take long.

The Algorithm

Problems:

1 Computing C can take long.

- Need to compute distances in G during the BFS.

The Algorithm

Problems:

1 Computing C can take long.
■ Need to compute distances in G during the BFS.
Solutions:

The Algorithm

Problems:

1. Computing C can take long.

- Need to compute distances in G during the BFS.

Solutions:

1 pre-compute ε-multiscale SPHS for $\varepsilon>1$: $\left(h^{\prime}, \varepsilon^{i-1}\right)$-SPHS C_{i} for $0 \leq i \leq\lceil\log D / \log \varepsilon\rceil$.
$D:=$ diameter of G.

The Algorithm

Problems:

1. Computing C can take long.

- Need to compute distances in G during the BFS.

Solutions:

1 pre-compute ε-multiscale SPHS for $\varepsilon>1$: $\left(h^{\prime}, \varepsilon^{i-1}\right)$-SPHS C_{i} for $0 \leq i \leq\lceil\log D / \log \varepsilon\rceil$. In the algorithm: Choose C_{i} such that $\varepsilon^{i-1} \approx \delta$.
$D:=$ diameter of G.

The Algorithm

Problems:

1. Computing C can take long.

- Need to compute distances in G during the BFS.

Solutions:

1 pre-compute ε-multiscale SPHS for $\varepsilon>1$: $\left(h^{\prime}, \varepsilon^{i-1}\right)$-SPHS C_{i} for $0 \leq i \leq\lceil\log D / \log \varepsilon\rceil$.
In the algorithm: Choose C_{i} such that $\varepsilon^{i-1} \approx \delta$.
■ Use oracle with $\mathcal{O}\left(h^{\prime} \log D\right)$ query time using a 2 -multiscale SPHS.
$D:=$ diameter of G.

Final Result

Theorem

G metric graph with highway dimension $h, \varepsilon>0$.
Preprocessing G in time polynomial in $|V(G)|$ and $1 / \log (1+\varepsilon)$ using $\mathcal{O}(|V(G)| \log D(1 / \log (1+\varepsilon)+h \log h))$ space.
\Rightarrow decide for any shortest path P, walk $Q, \delta>0$, if $D_{\mathcal{F}}(P, Q)>\delta$ or $D_{\mathcal{F}}(P, Q) \leq\left(\frac{5}{3}+\varepsilon\right) \delta$ in $\mathcal{O}\left(|P|+|Q|(h \log h)^{2} \log D\right)$ time

Final Result

Theorem

G metric graph with highway dimension $h, \varepsilon>0$.
Preprocessing G in time polynomial in $|V(G)|$ and $1 / \log (1+\varepsilon)$ using
$\mathcal{O}(|V(G)| \log D(1 / \log (1+\varepsilon)+h \log h))$ space.
\Rightarrow decide for any shortest path P, walk $Q, \delta>0$, if $D_{\mathcal{F}}(P, Q)>\delta$ or $D_{\mathcal{F}}(P, Q) \leq\left(\frac{5}{3}+\varepsilon\right) \delta$ in $\mathcal{O}\left(|P|+|Q|(h \log h)^{2} \log D\right)$ time

Remark

Binary search $\Rightarrow\left(\frac{5}{3}+\varepsilon\right)$-approximation of $D_{\mathcal{F}}(P, Q)$.

Final Result

	apx-factor	time
Driemel, van der Hoog, Rotenberg [2022]	$1+\varepsilon$	$\mathcal{O}\left(\|G\| \log \|G\| / \sqrt{\varepsilon}+\|P\|+\frac{1}{\varepsilon}\|Q\|\right)$
van der Hoog, Rotenberg, Wong [2023]	$1+\varepsilon$	$\mathcal{O}\left(\frac{1}{\varepsilon}\|Q\|\left(T_{\text {dist }}+\log \|P\|\right)\right)$
Driemel, Richter [2024]	$\frac{5}{3}+\varepsilon$	$\mathcal{O}\left(\|P\|+\|Q\|(h \log h)^{2} \log D\right)$

Thank you for your attention!

Questions?

