

GeoCluster

A Latent Variable Generative Model for Continuous Space Geometric Clustering

Presenter: Panagiotis Rigas

Introduction

GeoCluster is a generative model that aims to partition the data space, while approximately preserving the original metric space. Applications may include:

- VLSI: maximum empty cube
- Robotics: path planning

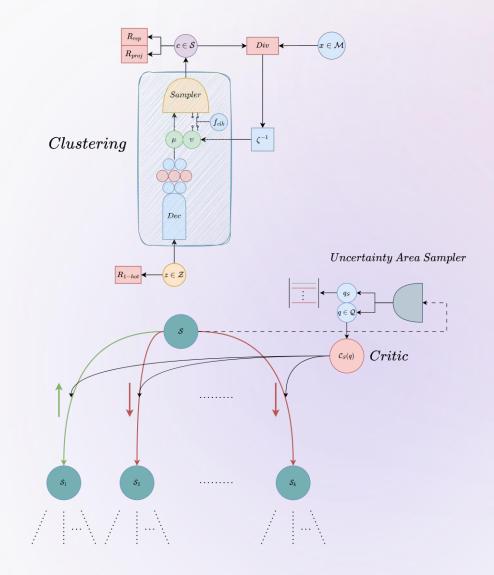
GeoCluster Architecture

GeoCluster consists of two models:

- Clustering

 aims to partition the
 data space
- Critic

 aims to preserve the
 isometric properties of
 the original space



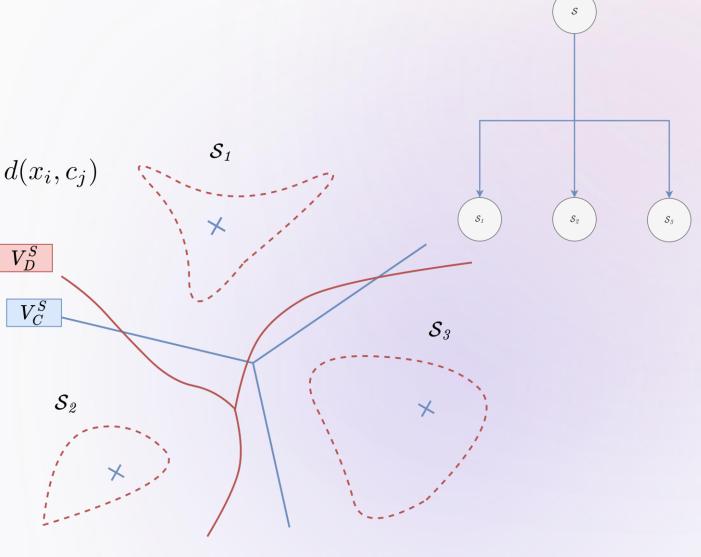
GeoCluster: Clustering

$$V_C = \{v_{c_1}, v_{c_2}, \dots, v_{c_k}\} = \arg\min_{C} \sum_{i=1}^{n} \min_{c_j \in C} d(x_i, c_j)$$

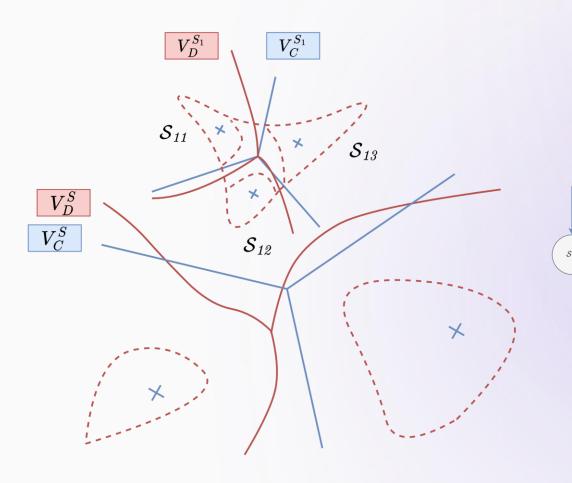
$$v_{c_i} = \{ x \in S \mid \forall j \neq i, d(x, c_i) < d(x, c_j) \}$$

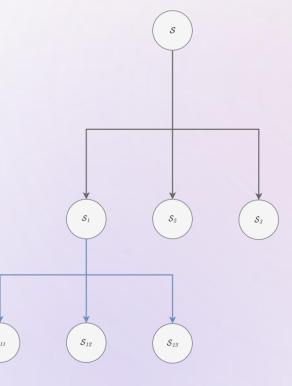
$$V_D = \{v_{d_1}, v_{d_2}, \cdots, v_{d_k}\}$$

$$v_{d_i} = \{ x \in S \mid \forall j \neq i, d(x, d_i) < d(x, d_j) \}$$



GeoCluster: Hierarchical Clustering

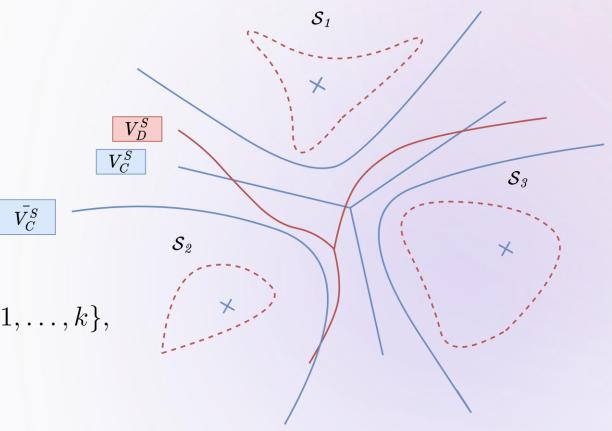




GeoCluster: Uncertainty Area Sampler

$$\tilde{V}_C = \{\tilde{v}_{c_1}, \tilde{v}_{c_2}, \dots, \tilde{v}_{c_k}\}$$
 $\tilde{v}_{c_i} = \{(x, \mu_{c_i}(x)) \mid x \in S\}$

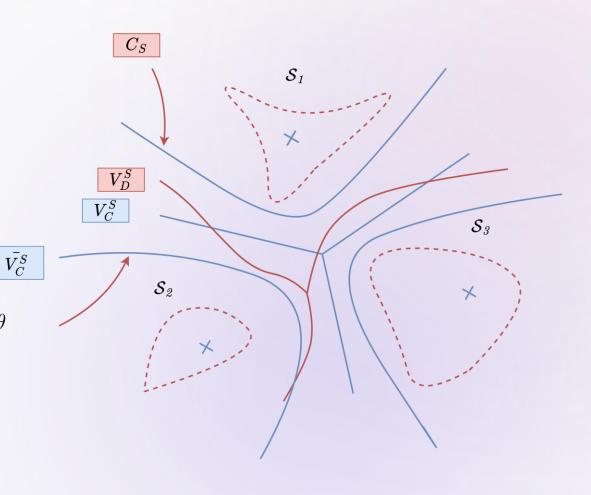
$$\begin{split} &\{\tilde{x}_i\}_{i=1}^m \sim \text{Uniform}(\tilde{V}_C) \\ &\{\mathbf{y}_i\}_{i=1}^M, \text{ such that } \forall i \in \{1,\ldots,M\}, \exists j \in \{1,\ldots,k\}, \\ &\text{where } y_i = j \text{ if } x_i \in v_{d_j} \end{split}$$



GeoCluster: Critic

$$C_S = \arg\min_{\theta} \sum_{i=1}^{m} L(f_{\theta}(\tilde{x}_i), y_i)$$

- θ are the parameters of the critic neural network
- $f_{\theta}(\cdot)$ represents the critic neural network's function, parameterized by θ
- y_i is the true label of \tilde{x}_i according to V_D
- L is a loss function



Results: Accuracy & Efficiency

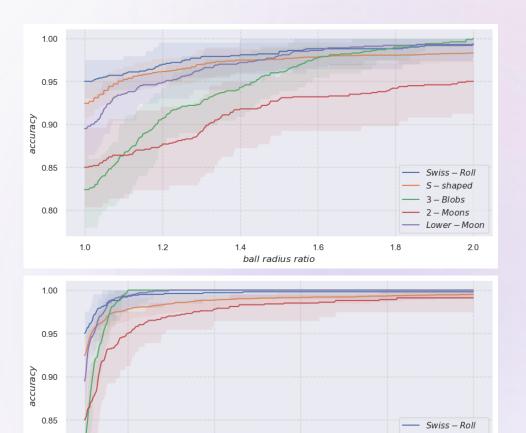
	Layer 1-2	Layer 2-3	Layer 3-4	Layer 4-5	Layer 5-6	Dimensions	s Metric
	82.8 ± 2.0 891.3 ± 0.8				-99.3 ± 0.7	\mathbb{R}^2 \mathbb{R}^3	L_{∞} L_{∞}
Ellipses	95.7 ± 0.6	95.2 ± 1.1	97.7 ± 0.9	-	-	\mathbb{R}^2	L_2
	Top 1	Top 2	Top 5	<i>Top</i> 10	Top~1%	Top~5%	Top~10%
Squares	77.3 ± 2.3	79.1 ± 1.8	81.7 ± 2.4	83.4 ± 2.1	90.9 ± 2.0	99.7 ± 0.3	99.9 ± 0.1
Cuboids	61.9 ± 2.0	73.3 ± 1.6	85.3 ± 2.0	91.0 ± 1.2	99.0 ± 0.7	100	100
Ellipses	76.9 ± 1.6	79.3 ± 1.7	81.5 ± 1.8	83.8 ± 2.1	91.0 ± 0.9	98.4 ± 0.1	99.6 ± 0.4

GEOCLUSTER

Results: Accuracy & Efficiency

Continuous Soft-Accuracy, "is our NN a good candidate, in terms of distance", measured for differently distributed 2D rectangles:

- Structure complexity does not decrease accuracy
- Complexity related decrease, converges
 @ ball = 2
- Data density seem to play a role



3 - Blobs

2 – Moons

GEOCLUSTER

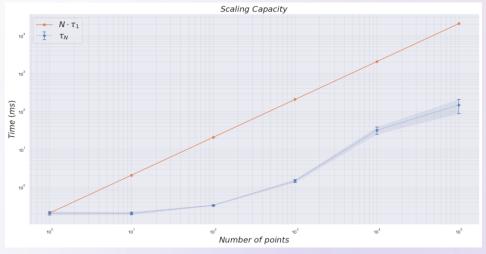
ball radius ratio

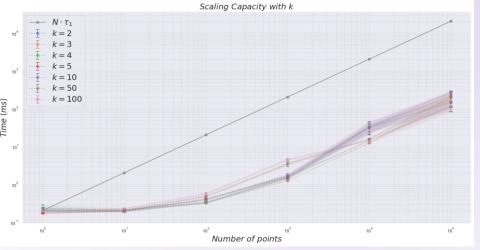
0.80

Results: Accuracy & Efficiency

Experimental average complexity is measured for *N* queries and m data:

- $N\tau_1 \to O(Nlog_k m)$
- $au_N \ll N au_1 o O\left(\left\lceil\frac{N}{p}\right\rceil\log_k m\right)$, $ilde{p}=100$ p is due to parallelization
- $\tau_{N,1} \approx \tau_{N,k} \ \forall k \in \{2,3,4,5,10,50,100\}$

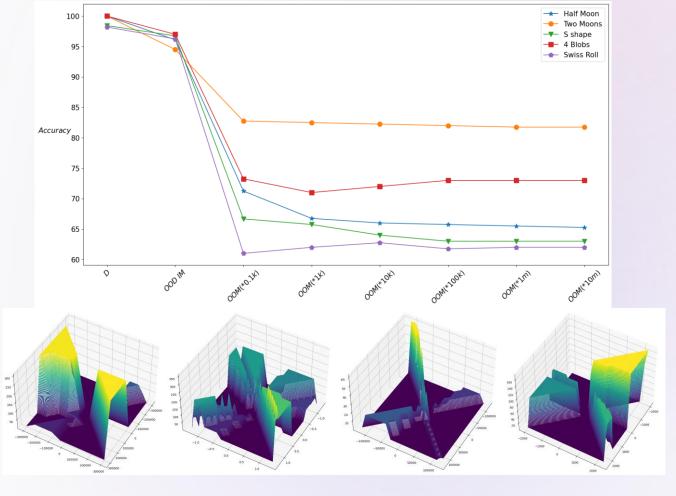




Results: Robustness

We measure the effectiveness of our model in approximating the nearest neighbor in out of distribution and out of manifold queries.

- Accuracy, drops, but converges as we move away
- Data structure seem to play a role in converged accuracy



Conclusions

- ✓ Clustering to partition space S
- ✓ Critic to preserve nearest neighbor information
- ✓ Hierarchical structure used for parsing
- ✓ Works for different data, metrics, and in 2,3 dimensions
- ✓ Fast due to neural network inherent parallelization abilities

GEOCLUSTER 1

Thank you

Minas Dioletis^{1,7}, Ioannis Z. Emiris^{2,4}, George Ioannakis¹, Evanthia Papadopoulou⁵, Thomas Pappas¹, Panagiotis Repouskos¹, Panagiotis Rigas^{1,2,3,†} and Charalampos Tzamos^{1,6}

1. Institute for Language and Speech Processing, Athena Research Center, Greece

2. Archimedes Unit, Athena Research Center, Greece

3. Athena Research Center, Greece

4. Department of Informatics & Telecommunication, National & Kapodistrian University of Athens, Greece

5. Faculty of Informatics, Università della Svizzera italiana, Switzerland

6. Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

7. School of Electrical and Computer Engineering, National Technical University of Athens, Greece

†. Presenter

GEOCLUSTER 13